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SUMMARY

This paper investigates the relationship between the energy- and momentum-conserving time-integration
scheme of Simo and Gonzalez (Papers—American Society of Mechanical Engineers—All Series, 1993;
93(4)) and a momentum-conserving time-integration scheme due to Betsch and Steinmann (Int. J.
Numer. Meth. Engng 2000; 49:599) for N -body problems. The schemes are shown to be identical if
the potential energy of interaction between masses is a polynomial function of the distances between
the masses, of degree two or lower. In addition, they are shown to recover the same relative equilibria.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Di�culties arising from the numerical integration of Hamiltonian systems have been
proli�cally researched in recent years, and a small selection of the results in this area have
been given in the list of references, with further sources provided by the references therein.
The advantages of using time-integration schemes speci�cally designed to conserve the �rst
integrals of motion (namely the total energy and momenta for Hamiltonian systems with sym-
metries) for integrating sti� dynamical systems have been expounded in References [1–7] for
problems of non-linear elastodynamics and N -body dynamics. These conservation properties
may also be obtained by applying a di�erent technique, using �nite elements to discretize the
time domain, as shown in References [8; 9].
Important characteristics of the energy- and momentum-conserving algorithms given in

References [1–7] are the de�nition of the algorithmic (nodal) inertial forces as the di�erence
between the (nodal) translational momenta (at the beginning and end of the current time-step)
divided by the time-step length, and an appropriate de�nition of the algorithmic (nodal)
potential forces which satis�es the conservation requirements. For example, the energy–
momentum algorithm of Simo and Tarnow (developed for non-linear elastodynamics of
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St. Venant–Kirchho� materials [3]) uses the average of the Second Piola–Kirchho� stresses
at the beginning and end of the observed time-step: note that these are not the stresses com-
puted at the average positions. Taking the stresses computed at the average positions results
in the symplectic mid-point scheme given in Reference [4]. This scheme, however, is not
energy-conserving, and has been widely reported as unsuitable for sti� dynamical systems
[1–3; 5; 7].
Betsch and Steinmann [8] have recently proposed another (closely related) interpretation

of the nodal potential forces in the context of N -body problems. They suggest de�ning the
algorithmic force of interaction between two masses as the force computed at the average
distance between the two masses over the considered time-step, and demonstrate its surpris-
ingly good performance numerically. In this short note, we show that the method of Betsch
and Steinmann is in fact energy-conserving if the potential energy of interaction between
masses is a particular type of polynomial function of the distances between the masses.

2. OUTLINE OF ALGORITHMS

The energy- and momentum-conserving algorithm proposed independently by Greenspan
[6; 10] for N =1 and 3 and Simo and Gonzalez [1] for general N can be written as

rin+1 − rin −
�t
2mi

(pin+1 + p
i
n) = 0 (1)

pin+1 − pin −�t
N∑
j=1;
j �=i

V (lijn+1)− V (lijn )
(lijn+1)2 − (lijn )2

(rijn+1 + r
ij
n ) = 0 (2)

for bodies i=1; : : : ; N where rin, pin and mi denote the position and linear momentum vectors
and the mass, respectively, of body i at time-step n, and V (·) represents the potential energy
of interaction between masses, which we refer to as the potential function. The time-step
length is given by �t. For brevity, we write rijn = r

j
n − rin, and thus lijn = ‖rijn ‖≡

√
rijn · rijn is the

distance between bodies i and j at time-step n. We will refer to this algorithm as Algorithm 1.
The momentum-conserving algorithm of Betsch and Steinmann [8] (named the Assumed

Distance Method by the authors) can be written as

rin+1 − rin −
�t
2mi

(pin+1 + p
i
n) = 0 (3)

pin+1 − pin −�t
N∑
j=1;
j �=i

V ′(lijn+1=2)

lijn+1 + l
ij
n
(rijn+1 + r

ij
n ) = 0 (4)

where V ′(x) represents the derivative of the potential function with respect to x. We will refer
to this algorithm as Algorithm 2.
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3. COMPARISON OF ALGORITHMS

Algorithm 2 is not energy-conserving in general, but was reported to perform surprisingly well
when tested on the numerical examples given in Reference [8]. A clue to this unexpectedly
good performance may lie in the similarity of Algorithm 2 to Algorithm 1, which is known
to be energy-conserving: upon examination, we see that Equations (1) and (3) are identical,
and Equations (2) and (4) di�er only in the scalar term inside the summation sign; namely
[V (lijn+1)− V (lijn )]=[(lijn+1)2 − (lijn )2] in Algorithm 1 and V ′(lijn+1=2)=(l

ij
n+1 + l

ij
n ) in Algorithm 2.

Proposition
For potential functions that are polynomials of degree two or lower, Algorithms 1 and 2 are
identical.

Starting with the term [V (lijn+1) − V (lijn )]=[(lijn+1)2 − (lijn )2] in Algorithm 1 and treating lijn as
a �xed value, we can express V (lijn+1) as a Taylor series expansion about the point l

ij
n , i.e.

V (lijn+1)≡V [lijn + (lijn+1 − lijn )]=
∑∞

s=0 V
(s)(lijn )=s!(l

ij
n+1 − lijn )s. Thus we have

V (lijn+1)− V (lijn )
(lijn+1)2 − (lijn )2

=
1

lijn+1 + l
ij
n

∞∑
s=0

V (s+1)(lijn )
(s+ 1)!

(lijn+1 − lijn )s (5)

Similarly, with the term V ′(lijn+1=2)=(l
ij
n+1+l

ij
n ) in Algorithm 2, we can write V ′(lijn+1=2)≡V ′[lijn+

1
2 (l

ij
n+1 − lijn )]=

∑∞
s=0 V

(s+1)(lijn )=(2ss!)(l
ij
n+1 − lijn )s. Now we have

V ′(lijn+1=2)

lijn+1 + l
ij
n
=

1
lijn+1 + l

ij
n

∞∑
s=0

V (s+1)(lijn )
2ss!

(lijn+1 − lijn )s (6)

Comparing (5) with (6) reveals that the �rst and second terms of each series are identical,
given that (s+1)!=2ss! for s=0; 1. Thus for potential functions V (·) such that V (s+1) vanishes
for s¿2, Equations (5) and (6), and thus Algorithms 1 and 2, are identical: this class of
functions is precisely the set of polynomials of degree two or lower.

Corollary
For potential functions that are polynomials of degree two or lower, Algorithm 2 is energy-
conserving.

Comparing (5) with (6) also reveals that Algorithms 1 and 2 are identical in the case
where lijn+1 = l

ij
n ∀i; j; n since then only the �rst term in each series expansion is non-zero.

This condition holds for relative equilibrium motions of the system, e.g. uniformly translating
or rotating motions where the forces of interaction match the inertial and applied forces for
each body, and so the bodies move in unison while their relative positions with respect to
one another remain constant. Hence Algorithm 2 recovers the same relative equilibria as
Algorithm 1. The latter correspond, up to a relative group motion, to the relative equilibria of
the underlying physical system, regardless of the time-step length [11], which is a desirable
property not present in many popular time-integration schemes.
Of course, in general we have lijn+1 �= lijn for at least some i; j; n. However, for problems

where the forces of interaction approximately match the inertial and applied forces, the change
in length is small, and thus lijn+1≈ lijn ∀i; j; n. In this case, the powers (lijn+1−lijn )s in each series
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decay rapidly to zero as s increases, and thus the algorithms produce very similar results:
hence for these problems, Algorithm 2 will be ‘almost’ energy-conserving, which may help
to explain its impressive performance.
For a practical example of a potential function where Algorithms 1 and 2 may coincide,

consider the strain energy potential for linear materials, which can be written as

V (lijn )≡�(lijn )= 1
2k[”(l

ij
n )]

2( �lij)2 (7)

where �(·) is a strain measure to be de�ned. Here, k is the sti�ness constant and �lij denotes the
original distance between the two bodies, such that V ′( �lij)=V ( �lij)=0, where V ′(·) represents
the magnitude of the force of interaction between the bodies. For the algorithms to coincide,
V (lijn ) must not contain powers of l

ij
n higher than (l

ij
n )2, which means that �(l

ij
n ) can be at most

linear in lijn . Now consider two popular strain measures; the (Rotated) Engineering strain

�(lijn )=
lijn
�lij

− 1 (8)

and Green’s strain

�(lijn )=
1
2

(
(lijn )2

( �lij)2
− 1
)

(9)

(see Reference [12] for details). We immediately see that the use of the Engineering strain
in conjunction with the strain energy potential (7) ful�ls the condition for Algorithm 2 to be
energy-conserving. However, the use of Green’s strain with the strain energy potential (7)
(thus giving the St. Venant–Kirchho� material model), often lauded for the simplicity of the
mathematical expressions it produces, does not ful�l this condition.

4. NUMERICAL EXAMPLE

For completeness, we include a numerical demonstration of the energy conservation properties
of Algorithm 2 when applied to problems with the strain energy potential (7) using Engineer-
ing strain. Our model problem is the spring–mass system (Figure 1) as given by Simo et al.
in Reference [4]; thus the potential function for this problem is

V (lijn )=
1
2
k

(
lijn
�lij

− 1
)2
( �lij)2 =

1
2
k(lijn − �lij)2

and the material parameters are k=1:0, mi=1:0 and �lij=1:0 ∀i; j. The initial position and linear
momentum vectors ri0 and p

i
0, generated randomly by the authors, are

r10=〈0:2340;−0:2166;−0:0109〉T; p10=〈0:04095;−0:01483; 0:04325〉T

r20=〈0:0772; 0:7605; 0:0061〉T; p20=〈−0:02980; 0:04400;−0:02959〉T

r30=〈0:8054; 0:6466;−0:1059〉T; p30=〈−0:02328;−0:01432;−0:03716〉T

r40=〈0:3903; 0:6187; 0:9678〉T and p40=〈0:04152; 0:00114; 0:02621〉T
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Figure 1. Spring–mass system [5].

Figure 2. Performance of Algorithm 2 for �t=0:5: (a) energy; (b) angular momentum; (c) linear
momentum; and (d) length between two masses.

Note that the reference positions �r i (which ensure that V ( �lij)=0 ∀i; j) and initial displacements
ri0 − �r i of each body are therefore indeterminate (although the initial lengths lij0 are fully
de�ned): in fact they are arbitrary, provided the resulting initial position vectors ri0 are as given
above. Figure 2 shows the energy and momentum conservation of Algorithm 2 when applied to
this problem using a time-step size of �t=0:5 ∀n. Graphs (a)–(c) can readily be compared
with those in Figure 9 of Reference [5], obtained using an energy–momentum algorithm
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called the projection method by the authors, which has since been superseded in terms of
performance by Algorithm 1. Graph (d) can be visually compared to the corresponding graph
in Figure 8 of Reference [4], although the time-step used there is �t=0:01.

5. CONCLUSIONS

An interesting relationship between two recent momentum-conserving time-integration schemes
has been shown. By applying a Taylor series expansion, the newly proposed momentum-
conserving algorithm for N -body problems due to Betsch and Steinmann [8] has been shown
to be energy-conserving provided the potential energy of interaction between masses is a poly-
nomial function of the distances between the masses, of degree two or lower, whereupon it is
identical to the energy–momentum algorithm of Simo and Gonzalez [1]. The same argument
has shown that the two algorithms recover the same relative equilibria, which are known to
be those of the underlying physical system, up to a group motion. Consequently, for a general
potential function, the two algorithms are shown to give very similar results provided that the
distances between pairs of masses remain more or less constant: in this case, the algorithm
of Betsch and Steinmann can be said to be ‘almost’ energy-conserving.
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