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Master–slave approach for the modelling of joints with
dependent degrees of freedom in �exible mechanisms
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SUMMARY

The analysis of multibody systems requires an exact description of the kinematics of the joints involved.
In the present work the master–slave approach is employed and endowed with the possibility of including
several more complex types of joints. We present the formulation for joints where some relation between
the di�erent released degrees of freedom exists such as the screw joint, the rack-and-pinion joint or
the cam joint. These joints are implemented in conjunction with geometrically exact beams and an
energy-momentum conserving time-stepping algorithm. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: multibody dynamics; �exible mechanisms; conserving time-integration; master–slave
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1. INTRODUCTION

In this paper we extend a method for dynamic analysis of �exible mechanisms [1–3] to
more complex joints including screw joint, rack-and-pinion joint and cam joint. The essential
ingredients of the method are the geometrically exact treatment of the beam deformation in
presence of large displacements and rotations [4–8] and exact non linear kinematics of joints
using the minimum set of parameters [2, 3, 9].
Several techniques can be found in the literature of which the method of Lagrangian mul-

tipliers, the penalty method and the augmented Lagrangian method are widely used [10, 11].
The present work is motivated by the authors’ earlier work on geometrically non-linear static
and dynamic formulations for 3D beams with end releases, whereby the non-linear 3D kine-
matics of the joints was handled using the so-called master–slave technique [1–3], also known
as the minimum set method. Further results in this area have been given in Reference [9]. In
the master–slave approach, it is the relationship between the variations of the nodal positions
in a spatially discretised weak form of the problem that de�nes the character of the joint in
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question. In this sense, the approach seems to be particularly convenient for �nite-element
implementation, whereby the compatibility relationships of this type are handled at the point
of assembling the structural (linearised) equilibrium from the linearized element equilibria.
The kinematics of the joints is therefore treated directly, without resorting to Lagrangian
multipliers or penalty sti�nesses, thus resulting in a procedure with a minimal number of
parameters.
In Section 2 the general master–slave formulation is introduced and embedded in the �-

nite element context and in Section 3 its modi�cation in order to allow more complex joints
with some dependence between the released degrees of freedom is presented where their
applications and advantages are highlighted. Section 4 introduces an energy and momentum
conserving algorithm that is adapted to joints with dependent degrees of freedom. Two nu-
merical examples are presented in Section 5.

2. MASTER–SLAVE APPROACH

The master–slave approach has been described in detail in References [2, 3] and will be
summarized here in order to prepare the ground for the modi�cations needed for the im-
plementation of the more complex joints. A joint will be formed when two elements of a
system are not rigidly attached to each other. The kinematic relationship between two nodes
of two di�erent element ends connected to the same joint can be given as an algebraic equa-
tion. In the master–slave approach the degrees of freedom (dof) of one of the two nodes
(the slave node) are referred to the degrees of freedom of the other node (the master node)
through the released degrees of freedom (relative displacement and rotation of the slave node
with respect to the master node given in the body attached frame) denoted by pR = 〈rTR �TR〉T,
whereas pm = 〈rTm �Tm〉T and ps = 〈rTs �Ts 〉T are the displacements and rotations of the mas-
ter and slave nodes given in the inertial frame (see Figure 1 where the nomenclature is
indicated).

(a) (b) (c)

Figure 1. (a) Prismatic joint; (b) revolute joint; and (c) notation used.
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MASTER–SLAVE APPROACH 691

The kinematic relation between the master and slave dof may be written as follows:

rs = rm + rr = rm +�mrR
(1)

�s =�m�R =�r�m

where rr =�mrR and �r =�m�R�
T
m are the released translations and the triad of released

rotations referred to the inertial frame, with �s = exp[�̂s], �m = exp[�̂m] and �R = exp[�̂R]
being the orthogonal tensors in R3. Note that rR and �R are the released translations and
the triad of released rotations referred to the body attached frame. Here and throughout the
paper a hat (̂) will be used to denote the skew-symmetric matrix of a 3D vector C such
that Ĉw= C×w= − w× C= − ŵC= ŵTC for any 3D vector w. It is convenient to work with
the incremental rotation, denoted as !R, which measures the relative rotation between time
steps, i.e.

�R; n+1 = exp[!̂R]�R; n

where here and throughout the paper indices n and n+ 1 will denote the value of a quantity
at times tn and tn+1. Kinematic equations (1) may be varied to obtain [2, 3]

�rs = �rm − �̂mrR�#m +�m�rR (2)

�#s = �#m +�mH(!R)�!R (3)

where �#s and �#m are the spin rotational variations of �s and �m, obtained from ��s = �̂#s�s
and ��m = �̂#m�m and matrix H(!R) is de�ned as [4, 5, 8]

H(!R)= I+
1− cos|!R|

|!R|2 !̂R +
1

|!R|2
(
1− sin|!R|

|!R|
)
!̂2R (4)

Equations (2) and (3) can be written in a compact form as

�ps =N�pRm (5)

where �pRm = 〈�rTR �!TR �rTm �#Tm〉T are the released and master displacement and rotation
variations and �ps = 〈�rTs �#Ts 〉T are the slave displacement and rotation variations. The matrix
N has the following expression

N=

[
�m 0 I −�̂mrR
0 �mH(!R) 0 I

]
(6)

The general �nite element formulation of a beam element with N nodes leads to the
following discretised weak form [6, 8]

G=
N∑
i= 1
�pis · gi=0 (7)

where gi= 〈gi Tf gi T� 〉T is the dynamic residual including the internal, inertial and external load
vectors of node i and gif and g

i
� correspond to its force and moment parts. Using the matrix
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N in (6) and replacing (5) into (7) gives rise to

N∑
i= 1
�piRm ·NTi gi=0

The arbitrariness of the virtual displacements leads to the following system of equations

NTi g
i= �gi= 0 (8)

The details about the linearisation procedure and the solution process of the non-linear
equations (8) will not be described here but can be found in References [2, 12].

3. JOINTS WITH DEPENDENT RELEASED DOF

In this section the above results will be modi�ed in order to model joints where some of the
released degrees of freedom are dependent on some independent released dof. Three examples
are shown in Figure 2: the cam joint, the rack-and-pinion joint and the screw joint. Other
joints such as worm gears, helical gears or bevel gears [13] also fall into this category. In
general, the relation between the two dependent degrees of freedom is non-linear. A general
setting will be presented �rst and will be applied later for the screw, rack-and-pinion and cam
joints.

3.1. General case

Setting the released displacement rR as the dependent variable and the released rotation �R as
the independent variable, the relationship between the two of them may be written through a
function f ∈C2 :R3 → R3,

rR = f (�R) (9)

In the joints commonly considered, only one component of the released rotation will be
di�erent from zero, in which case �R and !R (total and incremental released rotations)

(a) (b) (c)

Figure 2. Examples of complex joints with dependent released degrees of
freedom: (a) cam joint; (b) rack-and-pinion joint; and (c) screw joint.
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Figure 3. Scheme of the screw joint and the rack-and-pinion joint.

Figure 4. Scheme of the cam joint.

are in the same direction. Therefore ��R = �!R, and the variation of (9) reads

�rR =
@f (�R)
@�R

�!R (10)

where @f (�R)=@�R is a matrix of partial derivatives of the components of f (�R) with respect
to the components of �R. Replacing �rR into (2) turns the matrix N into

N=

0 �m
@f (�R)
@�R

I −�̂mrR
0 �mH(!R) 0 I

 (11)

The three joints in Figure 2 have important common features that allow us to study them
from a single standpoint. In all cases there exists a released rotation around axis t� (see
Figures 3 and 4), and a released displacement with components along axes tr (attached to
the master node) and tr × t�.
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3.2. Screw joint and rack-and-pinion joint

For the screw joint axes tr and t� are coincident, while in the rack-and-pinion joint they are
perpendicular to each other (see Figure 3). The latter also has a non-zero initial displacement
(the radius of the pinion) in a direction perpendicular to tr and t�.
The particular form of (9) for the rack-and-pinion joint (rp) and the screw joint (sc) can

be written using the scalar parameters b and c as

rR = frp(�R)= fsc(�R)= b(tr × t�) + c(�R · t�)tr = bt̂rt� + c(tr ⊗ t�)�R (12)

where b is the radius of the pinion and c has a di�erent meaning for the two joints. In the
rack-and-pinion joint c= b and in the screw joint it corresponds to the pitch of the thread.
Note that since tr and t� have the same direction in the screw joint, the constant term bt̂rt� in
this case vanishes. Applying the directional derivative to the kinematic relation (12), equation
(10) gives rise to the term @f (�R)=@�R, needed in (11), for both joints as

@f (�R)
@�R

∣∣∣∣
rp
=
@f (�R)
@�R

∣∣∣∣
sc
= ctr ⊗ t� (13)

3.3. Cam joint

The technique will be presented on a cam joint with a simple eccentric cam lobe pro�le.
Setting the upper node of the rotating element B as the slave node and the left-end node of
the element A as the master node (see Figure 4), the relation between the released translational
displacement rR and the released rotation �R may be written as

rR = fcam(�R)= (R cos|�R| − R− a)tr (14)

where a and 2R+a are the minimum and maximum released displacements of the arm A and
tr is the unit vector attached to the master node (direction in which the relative translation
takes place).
The term @f (�R)=@�R for the cam joint is derived as

@f (�R)
@�R

∣∣∣∣
cam
= −R sin|�R|tr ⊗ t� (15)

4. ENERGY AND MOMENTUM CONSERVING ALGORITHM
FOR BEAMS AND JOINTS

The energy–momentum conserving algorithm presented in this section allows the interpolation
of nodal unscaled rotations. This is in contrast to the energy and momentum conserving
algorithm given in [14] and applied to systems with joints in Reference [3] which interpolates
incremental tangent-scaled rotations. Interpolation of tangent-scaled rotations leads to a loss
of strain-invariance [15]. The present formulation, which is an extension of [16] to systems
with joints, restores this important property.
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4.1. Energy and momentum conservation for 3D beams

The algorithm stems from the following momentum conserving weak form:

N∑
i=1
pits · [qik(Nn+(1=2);Mn+(1=2)) + qid]= 0 (16)

that uses the following de�nitions of the internal force vector qik and the inertial force
vector qid,

qik(Nn+(1=2);Mn+(1=2)) =
∫
L

[
I ′iI 0

−r̂′n+(1=2)I i I ′iI

]{
�n+(1=2)Nn+(1=2)

S(�)−1�nMn+(1=2)

}
ds

(17)

qid =
1
�t

∫
L

{
A�(ṙn+1 − ṙn)I i

(�n+1 − �n)I i

}
ds

where (•)′ and (•̇) are the derivatives with respect to the arc-length parameter of the beam
and time respectively, �t is the time-step size, A�=�A, A is the area of the cross section,
�=�J�W is the speci�c angular momentum, J�=� diag(I2 + I3 I2 I3) is the inertial tensor,
W is the body attached angular velocity, � is the density of the material, I2 and I3 are
second moments of area of the cross section with respect to the principal axes of inertia,
(•)

n+12
= 1

2((•)n+(•)n+1), r is the position vector of the centroid axis, N is the stress resultant

and M is the moment resultant in the cross section. Also, S(�)−1 = 1=(1 + (1=4)|�|2)(I+ 1
2 �̂)

with �=(tan|�=2|=|�=2|)!, and I i are the standard Lagrangian polynomials. Vector pits has
completely arbitrary nodal test parameters in the present momentum conserving algorithm.
Although various momentum conserving algorithms are possible, the form (17), taken here

for further analysis, has been deduced in Reference [12] in such a way to keep the force
vectors as close as possible to the energy conserving form given in Reference [14]. The
internal and the inertial forces (17) do not provide a full energy conservation, but as described
in Reference [16], this important property can be restored by adding an extra term into the
weak form multiplied by a parameter �, to be found from the condition that the weak form
is equal to the energy increment over a time-step:

N∑
i=1
pits · [qik(Nn+(1=2);Mn+(1=2)) + qid + �q

i
k(Nd; 0)]=Hn+1 −Hn (18)

where Nd=Nn+1−Nn, H is the total energy, and a non-zero pits can be arbitrarily chosen. In
order to facilitate the application of the method to systems with joints, pits will be chosen as
pits = 〈uT �T〉Ti where ui are the nodal incremental displacements and �i are the nodal incre-
mental tangent-scaled rotations. Since the energy increment should be zero for a conservative
problem (no external loads are considered here), the weak form in (18) leads to the following
dynamic equilibrium equation:

gi= qik(Nn+(1=2);Mn+(1=2)) + qid + �q
i
k(Nd; 0)= 0 (19)
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and the value for � follows as

�=
Hn+1 −Hn −

∑N
i p

i
ts · [qik(Nn+(1=2);Mn+(1=2)) + qid]∑N
i p

i
ts · qik(Nd; 0)

(20)

Full details on the implementation, including the linearisation of (18), are given in Reference
[12].

4.2. Application to systems with joints

Extending the method to beam systems with joints can be done in a way similar to that of
Section 3. We de�ne the slave, master and released incremental displacements and tangent-
scaled rotations that will be written as ps; ts, pm; ts and pR; ts respectively. In addition, the vector
composed of the released and master increments will be denoted as pRm; ts. Following the
notation used in Reference [3] the general relation between ps; ts and pRm; ts is written as

ps; ts = ÑpRm; ts with Ñ=

[
C 0 I D

0 A 0 I

]
(21)

It was proven in Reference [3] that this relationship serves to extend any existing conserva-
tion properties of an underlying beam formulation onto systems with joints (with independent
degrees of freedom) for the matrices A, C and D given as

A=
1

1− 1
4�m ·�m; n�R

ST(�m)�m; n

C=
(
I − 1

4 �̂
2
m

)
�m; n+(1=2)

D=−1
2

(
�̂m; nrR; n + �̂m; n+1rR; n+1

)
In contrast to Reference [3] where the energy and momentum conserving residual proposed

in Reference [14] was taken for the underlying beam formulation, here we use residual (19)
and apply it to joints with dependent degrees of freedom from Section 3. Assuming that the
kinematic relation (9) can be expressed in an incremental form as

uR = rR; n+1 − rR; n=G�R
a modi�cation of Ñ given in (21) is obtained as

Ñ=

[
0 CG I D

0 A 0 I

]
(22)

The energy-momentum conserving algorithm in (18) thus becomes

Hn+1 −Hn=
N∑
i
piRm; ts · Ñ

T [
qik(Nn+(1=2);Mn+(1=2)) + qid + �q

i
k(Nd; 0)

]
=0 (23)
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The kinematic relation for the screw joint and rack-and-pinion joint has been given in (12).
The expression for uR is obtained from the di�erence between rR; n+1 and rR; n as

uR = ctr ⊗ t�(�R; n+1 − �R; n)= ctr ⊗ t�!R = c arctan|�R=2||�R|=2 tr ⊗ t��R

i.e.

G=
c arctan|�R=2|

|�R|=2 tr ⊗ t�

where, for the screw-joint, tr = t�.
Following a similar procedure as above, the increment of the released translations for the

cam-lobe pro�le given in (14) reads

uR =R(cos|�R; n+1| − cos|�R; n|)tr =R cos|�R; n+1| − cos|�R; n|t� · �R tr ⊗ t��R

thus giving

G=R
cos|�R; n+1| − cos|�R; n|

t� · �R tr ⊗ t�

5. NUMERICAL EXAMPLES

5.1. Freely rotating screw joint

A vertical beam clamped at the bottom has a horizontal arm connected to it via a screw joint.
The material properties for the two beams are shown in Figure 5. Both beams have been
discretised using four linear elements. An initial distributed velocity in the X direction and
an angular velocity in the Z direction that make the arm turn around and descend along the
vertical beam are applied as depicted in Figure 5.
Three di�erent time integration procedures with �t=0:02 have been tested in this example:

the Newmark method [17] with �= 1
4 and �=

1
2 (trapezoidal rule), the momentum conserving

algorithm similar to (17), but with �n+(1=2) instead of S(�)−1�n, and the energy–momentum
algorithm given in (19) and (20). As shown in Figure 6 where the Y displacement of the top
of the vertical beam is plotted, the conserving algorithms give very similar results whereas
the Newmark algorithm fails to converge due to energy blow-up at time t=1:8653 s after a
series of successive step halvings.
The analysis runs using the momentum conserving algorithm without any convergence

problems, whereas in the energy–momentum conserving algorithm some time-step reductions
have occasionally been necessary in order to achieve a converged solution. This fact reveals
certain weaknesses in the method, which although energy and momentum conserving, is still
not su�ciently robust. The momentum conserving algorithm is here capable of handling even
larger time-steps. For this algorithm, however, a possibility of eventual energy blow-up must
not be discounted [16].
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= 4.0m /s
= 8.0rad/s

E = 2G = 104N/m2

A = 1.0m2

Iyy = Izz = Kt =10-3m4

� = 1.0kg/m3

c = 0.02m/rad

Figure 5. Turning arm with screw joint.

5.2. Driven screw joint [10]

In this example a vertical driver is attached to a �xed point A through a revolute joint with
its axis of rotation in the direction of Z (perpendicular to the plane of the �gure). The
other end B is connected to a horizontal beam �rst through a universal joint where the only
constrained rotation is the one in the direction of the horizontal beam, and afterwards through
a screw joint with the released rotation in the same direction. The pitch of the screw is
c=(2:4=�=3)=2:2918 m=rad which corresponds to a twist of 60◦ from point R to point T .
The beam is also physically twisted at the same ratio in such a way that at point R the local
axes Y and Z of the beam are rotated by 30◦ with respect to the global axis Y and Z while
at point T they are rotated by −30◦ with respect to the same global axes. At point T a rigid
body M is attached to the beam as depicted in Figure 7. The beam is attached to a �xed
point R by means of a universal joint that has the X axis constrained. The geometrical and
material properties of the beams are given in Figure 7.
The translation of the screw joint is prescribed during the analysis according to the function

rR =0:6(1− cos 2�t)tr
where t is the time variable and tr is the body-attached axis perpendicular to the cross section
of the beam at point B (initially in the direction of the global axis X ).
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Figure 6. Displacement in the Y direction of the top of the vertical beam for
the freely rotating screw joint.

The driver and the beam have been discretised using 2 and 12 quadratic elements, respec-
tively, and the total response time is 3s. The axial twist of the beam is modelled approximately
by axially rotating each of the 12 untwisted elements with respect to each other in a way
consistent with the geometry of the problem.
The problem has been run using the same three time-integration methods of the �rst exam-

ple. For all the algorithms the time-step is set to 0:015s, and all of them successfully complete
the analysis run for 3 s. Newmark’s method however has occasionally experienced conver-
gence problems, which has necessitated time-step reductions at these time instants. Figures 8
and 9 show the out-of-plane displacement uz and rotation �X of the tip point T for each time
integration scheme. These plots agree very nicely with the original results [10] apart from
some small di�erences during the last second of the simulation, which we believe are due to
the di�erent time integration scheme and the di�erent spatial and time discretisation used.

6. CONCLUSIONS

The modi�cations added to the master–slave formulation in this work allow modelling a
wider set of joints, some of them extensively used in �exible multibody systems. The general
approach used in the present paper treats them from a single standpoint by adding small
modi�cations to the standard master–slave approach.
The formulation has been implemented in a (statically) path-independent and invariant

manner, and embedded within a dynamic time-stepping framework which enables using either
the traditional end-point algorithms, or the conserving mid-point algorithms.
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Figure 7. Geometrical and material properties of the driven screw joint problem.

Figure 8. Out of plane displacement uz of the tip of the beam for the driven screw joint problem.

Copyright ? 2003 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2003; 19:689–702
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Figure 9. Rotation �x of the tip of the beam for the driven screw joint problem.

None of the advantages of the standard master–slave approach are spoilt, preserving the
use of a minimum set of variables and exactly satisfying the constraint conditions of the
joints.
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