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Abstract

A general framework for algorithms that conserve linear and angular momenta for problems of multi-particle mechanics is presented.
Conditions for energy conservation are derived, and different manners in which this may be achieved are discussed. A detailed exami-
nation of the relative equilibrium states is carried out, and conditions under which algorithms preserve these states are given; in partic-
ular, algorithms can be designed to capture the exact solutions of relative equilibrium problems, although these algorithms are unlikely to
be energy-conserving. Following on from the approach proposed by Argyris et al. [J.H. Argyris, P.C. Dunne, T. Angelopoulos, Dynamic
response by large step integration, Earthquake Engrg. Struct. Dynam. 2 (1973) 185–203], the local accuracy characteristics of algorithms
are investigated thoroughly, and it is shown that there is no limit to the order of accuracy that can be achieved by algorithms in this
framework, even for problems with time-dependent forces. No extra stages of calculation or additional degrees of freedom are required
to be present, although the sparsity of the resulting system of equations is compromised. A few examples of new algorithms are given,
and their properties verified on some model problems.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this work, we explore the possibilities for higher-order accuracy in the design of algorithms to solve non-linear,
dynamic problems involving large displacements. The exact solutions to these problems are generally unavailable in closed
form, existing only as power series in Dt. Our sphere of interest concerns undamped systems for which the forces are
derived from a single scalar function, known as monogenic systems [2]. We are particularly interested in Hamiltonian sys-
tems, for which the external forces are conservative; in these cases, the Hamiltonian function H defining the total energy of
the system is constant throughout the motion.

Fundamental to the accuracy of an algorithm is the concept of stability. There are many different definitions of algo-
rithmic stability that exist; e.g., [3–6] and many more besides. Loosely speaking, each relates to whether or not an algorithm
produces a solution that is bounded as the total time T!1 (for some fixed Dt), assuming the exact solution to be
bounded also. In any quest for accuracy, stability is essential; therefore we seek to ensure stability first, and subsequently
concentrate on improving the accuracy of an algorithm. As a consequence, we will deal exclusively with implicit schemes,
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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since explicit algorithms are known to be only conditionally stable [3,7]. For monogenic systems, we can formulate the def-
inition of stability in terms of the change in energy within a single time-step, as was first done by Belytschko and Schoeberle
[5]. Specifically, the internal energy of the system must not be allowed to increase beyond the amount of work done by the
external forces during the time-step. It is possible to design algorithms that satisfy this condition for all time-step sizes; such
algorithms are thus unconditionally stable for general non-linear problems.

For Hamiltonian systems, it is also possible to design algorithms that preserve the symplectic nature of the system: a
detailed discussion of the construction of symplectic algorithms is given by Simo and Tarnow in Appendix II of [8],
and also by Marsden and West [9]. It has been shown by Zhong and Marsden, however, that an algorithm cannot be sym-
plectic and simultaneously conserve energy for a general non-integrable system, assuming the time-step size to be constant
[10]. Also, algorithms which are spectrally stable and dissipate energy for linear problems cannot be symplectic, as dem-
onstrated by Simo and Tarnow [8]. A choice must therefore be made, between the properties of symplecticity and energy
conservation or dissipation, from the outset. Given the fact that a definition of stability is readily available in terms of
energy growth, we elect to design algorithms based on energy criteria. In support of this decision, Simo and co-workers
have shown that for stiff problems of non-linear elasticity, energy-conserving algorithms tend to perform better than sym-
plectic algorithms [8,11,12].

Unconditional stability alone is not enough to ensure the overall accuracy of an algorithm. An extreme example of this
was given by Ortiz [13], where a convergent, energy-conserving algorithm is shown to give completely inaccurate results
after only a small number of time-steps. In the case of systems with symmetries, however, we have more information. These
systems furnish two other constants of motion, namely the total linear momentum L and the total angular momentum J,
each of which gives information about the qualitative (as well as quantitative) nature of the solution. Algorithms can also
be designed to conserve these momenta for such systems, in conjunction with energy conservation, with a view to achieving
better accuracy. The importance of angular momentum conservation in regard to accuracy was noted by Betsch and Stein-
mann [14], and classic examples of such algorithms are given by Simo and co-workers [8,15].

As a consequence of having constant linear and angular momenta, an additional property of systems with symmetries is
the existence of families of fully integrable solutions, each induced by a particular combination of initial conditions. These
are known as relative equilibrium states (or steady states), and give further information about the stability of the system: see
[16,17] for a detailed account. Algorithms that conserve momenta can be designed to preserve these relative equilibrium
states (when the initial conditions arise): those that do give solutions to a steady-state problem that physically resemble
the exact solution, and thus may have enhanced stability and accuracy properties for problems of approximately steady-
state motion. An analysis of two popular time-integration schemes in this regard is given by Gonzalez and Simo [12]
and further discussion on the importance of preservation of relative equilibrium orbits is provided by Armero and Romero
[18]. Examples of algorithms designed to preserve relative equilibria include the energy–momentum algorithm of Simo and
Tarnow [8], and subsequent algorithms that dissipate energy by Armero and co-workers [18–20].

One further property of dynamical systems in physics that we touch upon briefly is that of time-reversibility [21], which
is closely related to the uniqueness of a dynamic response. In the discrete case, however, it is not certain that, at any given
point on the solution, negating the time-step would recover the solution given at the previous point in time. Algorithms
that guarantee this are described as time-reversible. An early citation of the importance of this property in the engineering
context is due to Argyris et al. [1], and further examples of such algorithms relevant to our work are the energy-conserving
algorithm proposed independently by Simo and Gonzalez [11] and Reich [22], as well as the symplectic mid-point rule
[8,15,23,24] and the so-called assumed distance method [25].

It is widely accepted that an algorithm should be at least second-order accurate (e.g. [4]), and the energy–momentum
algorithms of Simo et al. mentioned earlier all satisfy this requirement. Various ways to increase the order of accuracy have
been proposed. These include composition methods, whereby greater accuracy is achieved by computing intermediate results
at additional points within a single time-step; example algorithms include those given independently by Yoshida [21],
Forest [26] and Tarnow and Simo [27]. A disadvantage is that the procedure involves stepping backwards in time, using
a larger time-step size than the original algorithm; this makes the principle less attractive for algorithms that are not
time-reversible, and increases the risk of instability or divergence during the non-linear iteration process. Another
approach to enhancing accuracy can be taken by discretising the equations of motion using finite elements in time, where
the accuracy can be prescribed by the degree of the polynomial basis functions chosen; example algorithms include those
of Betsch and Steinmann [28] for non-linear dynamics. These schemes bear close resemblance to Gauss Runge–Kutta
methods, as described in the Appendix of [28].

Both of these strategies to improve accuracy entail additional computation cost, due to the calculation of intermediate
results or the presence of extra degrees of freedom in the temporal domain of the problem. A third approach, aimed at
avoiding this additional cost, is based on Taylor series expansions of the state variables; for linear dynamics, this method
is equivalent to using Padé approximations to the exact solution. Early work was done along these lines for non-linear
analysis by Argyris et al. [1,29], who presented arbitrarily accurate algorithms that are time-reversible, although not con-
servative. They were followed by LaBudde and Greenspan, who produced arbitrarily accurate schemes that also conserve
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energy and angular momentum for a central-force problem [30], and similar energy-conserving schemes for the N-body
problem [31]. These algorithms are not time-reversible, however, and do not preserve the orbits of relative equilibria when
higher than second-order accurate. In both cases, small time-step sizes were necessary to ensure convergence of the non-
linear solution procedure.

To achieve our goal of designing algorithms with desirable accuracy characteristics, we will follow this approach of
using Taylor series expansions. Firstly, however, we aim to equip the algorithms with the properties of energy and momen-
tum conservation, preservation of relative equilibrium states and time reversibility, when the relevant physical principles
apply. Subject to retaining these properties of the system, we seek to maximise the order of accuracy of the algorithms
we design, and present criteria by which it may be achieved.

In [32], we developed a framework for designing higher-order accurate, conservative algorithms for the central-force
problem that did not entail additional computational effort in the manner described above. This work extends [32] to
the realm of multi-body problems, and discusses the extra complexity involved. Specifically, we deal with non-linear elas-
ticity of multi-element truss structures, with the view that any progress made in this area will highlight avenues of research
for time integration involving problems of two- and three-dimensional continua. Also, specific to elastic structures are cer-
tain types of strain-energy potential, which in principle may be substituted with a different potential and thus make the
present framework entirely applicable to the problems of multi-particle dynamics. The background theory is presented
in Section 2, and in Section 3 we establish a general framework in which higher-order algorithms with the required prop-
erties exist, that does not entail intermediate calculations or additional degrees of freedom. The conservation and accuracy
criteria are derived in Sections 4 and 5, and in Section 6 we take a brief look at some new and existing algorithms that fit
into the framework, which are tested on a couple of model problems in Section 7.

2. Equations of motion

Let rðX ; tÞ; _rðX ; tÞ 2 R3 be the position and velocity at time t of a point x 2 B, where B0 � R3 is the initial volume of the
continuum; let q(X, t) represent the current density of the material, with q0(X) � q(X, 0) the initial density; and let X be the
position vector of x in the reference configuration. Using the conservation of mass, we have the following definitions (e.g. [33]):

M :¼
Z
B0

q0 dV ; ð2:1Þ

L :¼
Z
B0

q0 _rdV ; ð2:2Þ

J :¼
Z
B0

r� q0 _rdV and ð2:3Þ

T :¼ 1

2

Z
B0

q0 _r � _rdV ; ð2:4Þ

for the mass M, linear momentum L, angular momentum J and the kinetic energy T of the continuum. We also define U
to be the total potential energy function from which the forces are derived, which is independent of velocities. Furthermore,
we will require knowledge of the centre of mass of the continuum, which is defined as

rc :¼ 1

M

Z
B0

q0rdV ð2:5Þ

(using the conservation of mass).
Introducing spatial discretisation of the position vector, we have

rðX ; tÞ ¼ NðXÞRðtÞ; ð2:6Þ
where NðXÞ 2 R3�3N is a matrix of shape functions and

RðtÞ ¼ h r1ðtÞ � � � rN ðtÞ i 2 R3N

a vector of nodal positions, with N the number of spatial nodes used in the discretisation. (Here and throughout the paper
we use the notation hÆi to describe a column vector thereby enabling such expressions to be contained within a line of text.)

Thus €rðX ; tÞ ¼ NðXÞ€RðtÞ and, by defining the mass matrix M 2 R3N�3N to be

M :¼
Z
B0

q0NTN dV ; ð2:7Þ

we can express the general semi-discrete equation for undamped motion of a continuum as

M €RþrRU ¼ 0. ð2:8Þ
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For the problems we consider in this work, the potential function U(R, t) can be written as

UðR; tÞ ¼ /ðRÞ � UðR; tÞ; ð2:9Þ

where / denotes the strain energy of the system, and U is the function from which the externally applied force is derived.
Thus we have

rRUðR; tÞ ¼ FðR; tÞ

for an external force F, and hence we may express (2.8) as

M €Rþr/ ¼ F; ð2:10Þ

which describes the dynamic equilibrium of the continuum.
For a single linear (two-noded) bar element of initial length l0 and cross-sectional area A0 (assumed constant along the

length of the bar), we have the position vector R ¼ hr1 r2i 2 R6 and shape function matrix

NðsÞ ¼ ½N 1ðsÞI3 N 2ðsÞI3 � 2 R3�6; N 1ðsÞ ¼
l0 � s

l0

; N 2ðsÞ ¼
s
l0

ð2:11Þ

for s 2 [0, l0], with I3 the three-dimensional identity matrix. We also have the mass and the stiffness of the bar as

m :¼ A0q0

Z l0

0

ds � A0q0l0 and k :¼ EA
�l

for constant density q0, where �l and A represent the natural (undeformed) length and cross-sectional area, respectively, and
E is Young’s modulus of the material. For an elastic, homogeneous bar with assumed linear interpolation given by (2.6)
and (2.11), the strain energy function /(Æ) is dependent only on the length l :¼ kr2 � r1k of the bar, as it is in the equivalent
central-force problem [32]. Thus we have

r/ðlÞ ¼ /0ðlÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � r1Þ � ðr2 � r1Þ

pn o
¼ /0ðlÞ

l
eI R; where eI :¼

I3 �I3

�I 3 I3

� �
.

Using the abbreviation

f ðlÞ :¼ /0ðlÞ
l

the equation of motion becomes, for a single bar element,

M €Rþ f ðlÞeI R ¼ F. ð2:12Þ
In general, we consider systems comprising many bar elements. Applying Hamilton’s principle to the whole structure, the
equilibrium equation (2.10) becomes an assembly of elemental force contributions in the form of (2.12) (e.g. [4], Section
7.2). Therefore we have

M €R :¼
XN

i¼1;
j>i

M ij
€Rij; r/ :¼

XN

i¼1;
j>i

r/ij ¼
XN

i¼1;
j>i

fijðlijÞeI Rij and F :¼
XN

i¼1;
j>i

F ij

for M 2 R3N�3N ; R; €R;F;r/ 2 R3N ; M ij 2 R6�6; and Rij; €Rij;F ij;r/ij 2 R6, where (Æ)ij denotes a quantity pertaining to the
element connecting nodes i and j, with

Rij :¼ h ri rj i. ð2:13Þ

(Note that the summation symbol
P

here conveys an assembly of elemental contributions.) Thus

mij :¼
Aij;0qij;0lij;0 : 9 an element connecting nodes i and j; and

0 : otherwise

�
denotes an elemental mass; similarly, kij and /ij denote the stiffness and strain energy of the element connecting nodes i and
j if it exists, respectively, with kij :¼ 0 and /ij :¼ 0 otherwise. We also have the total mass of the whole structure as

M ¼
XN

i¼1;
j>i

mij. ð2:14Þ
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In addition, we have the centre of mass for the whole system as

rc ¼ 1

M

XN

i¼1;
j>i

mij

2
ðri þ rjÞ ¼ 1

M
IN MR; ð2:15Þ

where the matrix IN 2 R3�3N is defined as

IN :¼ ½ I3 � � � I3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N times

�.
ð2:16Þ

We define the symmetric global matrix F with submatrices Fij 2 R3�3 such that

Fij :¼
XN

k¼1

fikðlikÞ
 !

I3 : i ¼ j;

�fijðlijÞI3 : i 6¼ j;

8><>: ð2:17Þ

where fij ¼ /ij0 ðlijÞ
lij

. (Recall the notational difference between an elemental matrix M ij 2 R6�6 and a submatrix M ij 2 R3�3.)
Thus we have

r/ ¼FR; ð2:18Þ
and so we can now express (2.10) globally as

M €RþFR ¼ F; ð2:19Þ
where the global mass matrix is symmetric and positive-definite. For linear systems, F is constant, and we have
FR ¼ KU , where K is the stiffness matrix and U is a vector of nodal displacements. Here, we emphasise that F is a func-
tion of R. In view of our forthcoming time-integration schemes, we split (2.19) into a coupled first-order system with
momenta

P ¼M _R ¼ h p1 � � � pN i ð2:20Þ

and positions R as the primary variables. Thus we arrive at

_P þFR ¼ F;

_R ¼M�1P
ð2:21Þ

which gives the equations of motion for an assembly of bar elements.
Turning our attention to the conservation properties of the semi-discrete system, for the linear momentum we have,

from (2.2), (2.5) and (2.15),

L ¼ M _rc ¼
XN

i¼1;
j>i

mij

2
ð_ri þ _rjÞ ¼

XN

i¼1

pi ¼ IN P ð2:22Þ

and from (2.17) we see that
PN

i¼1F
ij ¼ 03 81 6 j 6 N , where 03 is the three-dimensional zero matrix. Hence

_L ¼
XN

i¼1

F i ð2:23Þ

and for systems where the external forces and reactions (due to supports) sum to zero, the total linear momentum is conserved.
With regard to the angular momentum, from (2.3), (2.6) and (2.11), it can be shown that

J ¼
XN

i¼1

ri � pi ð2:24Þ

and hence

_J ¼
XN

i¼1

_ri � pi þ ri � _pið Þ ¼
XN

i¼1

ri � F i; ð2:25Þ

since both M and F are symmetric. Hence for systems where the moments of the external forces and reactions sum to zero,

the total angular momentum is conserved.
The total energy H of the (undamped) system is the sum of the kinetic and potential energies, i.e.

H :¼ T þ U. ð2:26Þ
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We can write the kinetic energy T as

T ¼ 1

2
P �M�1P ð2:27Þ

and from (2.9) we have

UðR; tÞ ¼ /ðRÞ � UðR; tÞ.

The potential function U can be split into conservative and non-conservative components, i.e.

UðR; tÞ ¼ UCðRÞ þ UNCðR; tÞ. ð2:28Þ

Differentiating H with respect to time then gives, from (2.8) and (2.9),

_H ¼ � oUNC

ot
. ð2:29Þ

Thus for (monogenic) systems where U is not explicitly dependent on time, the total energy is conserved.
The conservation of momenta gives rise to a set of relative equilibrium states as solutions to system (2.21) when F = 0.

These are described in detail in [12,16–18] and references therein; here, we describe those characteristics of relative equi-
libria that are relevant to truss structures. We also derive the initial conditions under which these states exist. Correspond-
ing results for 3D continua are given in Chapter 3 of [17].

For each type of momentum conserved by the system, there exists an associated group motion: thus from linear momen-
tum conservation we have the group of translations, and from angular momentum conservation the group of rotations.
Physically speaking, relative equilibria are solutions to system (2.21) when F = 0 that are group orbits; that is, solutions
that differ only by a group motion. Therefore relative equilibrium motion can consist of either uniform translation, uniform
rotation or, more generally, a combination of the two. This motion is a consequence of the invariance of the states of stres-
ses and strains with respect to rigid body motion.

Mathematically speaking, relative equilibria are solutions to system (2.21) (with F = 0) that make the total energy H

stationary for prescribed values of the linear momentum L and angular momentum J [17]. In other words, they are solu-
tions hePðtÞeRðtÞi such that

rHðeP; eRÞ ¼ 0 with constraints LðePÞ ¼ fL and JðeP; eRÞ ¼fJ. ð2:30Þ
Accordingly, we need to solve

rRH � ðrR �JÞx ¼ 0;

rPH � ðrP �LÞg� ðrP �JÞx ¼ 0;
ð2:31Þ

where g;x 2 R3 are the Lagrange multipliers (e.g. [34, Section 4.9]), as shown in [17]. We define the skew-symmetric oper-

ator cð�Þ : R3 ! R3�3 such that

bu :¼
0 �u3 u2

u3 0 �u1

�u2 u1 0

0B@
1CA () ûv � u� v 8u; v 2 R3; ð2:32Þ

and also the global matrix

bX :¼

bx 03 � � � 03

03 bx . .
. ..

.

..

. . .
. . .

.
03

03 � � � 03 bx

0BBBBB@

1CCCCCA 2 R3N�3N . ð2:33Þ

From (2.22) and (2.24), (2.31) becomes, after some algebra,

FRþ bXP ¼ 0;

M�1P �IT
Ng� bXR ¼ 0.

ð2:34Þ

System (2.34), along with the constraints LðPÞ ¼ fL and JðP;RÞ ¼fJ, can now be solved for R(t), P(t), g(t) and x(t),
thus furnishing the relative equilibrium solution hePðtÞ; eRðtÞi.
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More information concerning the physical nature of relative equilibrium solutions is yet available, however, when we
consider that R(t) and P(t) also satisfy (2.21) for F = 0. Summarising the relevant findings of [17], we have the following
important facts regarding the Lagrange multipliers g(t) and x(t):

ðiÞ x� _rc ¼ 0;

ðiiÞ g ¼ _rc � x� rc; and

ðiiiÞ x ¼ x0 8t i.e. x is constant.

ð2:35Þ

From (2.2), (2.5), (2.23) and (2.35) we see that g is also constant. We now define the relative position vectors

�ri :¼ ri � rc; 1 6 i 6 N and R :¼ h�r1 � � � �rN i.

By substituting (2.35)2,3 into (2.34)2, we get

_R� bX0R ¼ 0.

Since
PN

j¼1F
ij ¼ 03 81 6 i 6 N , we have FR ¼FR; furthermore, it can be shown that bX0 commutes with M, and so by

virtue of (2.35)1,3 we can write bXP ¼ bX0M _R. Therefore (2.34) becomes

FRþ bX0M _R ¼ 0;

_R� bX0R ¼ 0.
ð2:36Þ

System (2.36) thus gives necessary and sufficient conditions for the relative equilibrium solution PðtÞ ¼ ePðtÞ and
RðtÞ ¼ eRðtÞ of (2.21) to exist, in terms of the constant vector x and the position and velocity of the centre of mass of
the structure (which are related). Thus the initial conditions for relative equilibrium states are given by

F0R0 þ bX0MV0 ¼ 0;

V0 ¼ bX0R0;
ð2:37Þ

where _Rð0Þ ¼ V0, _rcð0Þ ¼ vc
0, V0 :¼ h v1

0 � vc
0 � � � vN

0 � vc
0 i and F0 �FðR0Þ. Finally, we can obtain the explicit form ofePðtÞ and eRðtÞ from (2.36)2. Introducing the matrix exponential exp(tA) defined by

expðtAÞ :¼
X1
s¼0

ts

s!
As; ð2:38Þ

which is convergent for all A 2 R3N�3N (e.g. [35, Chapter 5]), we have

_R ¼ bX0R () RðtÞ ¼ expðt bX0ÞR0 () �ri ¼ expðtcx0Þ�ri
0;

and _RðtÞ ¼ expðt bX0ÞV0 () _�ri ¼ expðtcx0Þ�vi
0; 1 6 i 6 N

with rcðtÞ ¼ rc
0 þ tvc

0.

ð2:39Þ

It can be shown (e.g. [36]) that the transformation matrix expðtcx0Þ represents a rotation of angle kx0kt about an axis par-
allel to x0. Thus all of the nodes remain fixed in relation to one another, so that the structure rotates as a rigid body, with

(constant) angular velocity x0. Recalling (2.35), we also note that the velocity of the centre of mass is aligned with the axis of

rotation. Therefore the overall motion is a superposition of uniform rotation and uniform translation along the axis of rota-

tion. The two special cases are then pure rotation (when vc
0 ¼ 0) and pure translation (when x0 = 0).
3. Algorithm derivation

Following the approach given in [32], we now describe a family of single-step time-integration schemes to solve system
(2.21) approximately, that can be specialised to conserve various constants of motion. These algorithms are given in terms
of global position and momentum vectors, which implies that these quantities are defined to be continuous across element
boundaries. The general form for such a family is

Rnþ1 ¼ ARn þ BPn þ RF ;

Pnþ1 ¼ CRn þDPn þ PF ;
ð3:1Þ
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where Rk;Pk 2 R3N are the discrete approximations to the positions R(tk) and momenta P(tk) at time tk P 0; A;B;C ;
D 2 R3N�3N are matrices of parameters that depend upon the configuration and the time-step Dt; and RF ;PF 2 R3N are vec-
tors that depend on the external force F. Given the form of the matrices F and M in (2.21), we now restrict matrices A, B,
C and D to have scaled unit submatrices also; therefore

Aij ¼ aijI 3; Bij ¼ bijI3; C ij ¼ cijI3; and Dij ¼ dijI 3; 1 6 i; j 6 N .

Thus in general there are 4N2 unspecified parameters in (3.1), excluding those related to RF and PF.
We now define

Zn :¼
Rn

Pn

� �
and ZF ðZnþ1;Zn;F;DtÞ :¼

RF

PF

� �
and can thus express algorithm (3.1) in matrix form as

Znþ1 ¼ Bnþ1Zn þ ZF ; where Bnþ1 �BðZnþ1;Zn;DtÞ :¼
A B

C D

� �
ð3:2Þ

(with A, B, C, D, PF and RF dependent on Zn+1, Zn and Dt, and PF and RF also dependent on F). We require that Bnþ1 be
non-singular, to prevent the possible occurrence of the solution Zn+1 = 0 when ZF = 0 and Zn 5 0. Thus A, B, C and D are
constrained by the condition detðBnþ1Þ 6¼ 0. An expression for the determinant of a 2 · 2 block matrix in the form of (3.2)2

can be given in terms of its component matrices as

detðBnþ1Þ ¼ detðAÞ½detðD� CA�1BÞ� ð3:3Þ

provided that the upper left matrix A is non-singular (e.g. Chapter 0 of [35]).
3.1. Inherent momentum conservation

We now look at the conditions under which algorithm (3.1) conserves both linear and angular momenta in the absence
of external forces. From (2.22), the total discrete linear momentum Ln at time-step n is computed as

Ln ¼
XN

i¼1

pi
n ¼ IN Pn.

From (3.1), we have

LD ¼ IN PD ¼ IN ½CRn þ ðD� I3N ÞPn þ PF �;

where here and throughout the paper we define (Æ)D :¼ (Æ)n+1 � (Æ)n for any given physical quantity (Æ), and we note that Rn

and Pn are arbitrary. Therefore algorithm (3.1) will conserve linear momentum in general if and only if

IN C ¼ ON ; IN D ¼ IN and IN PF ¼ 0; ð3:4Þ

where the matrix ON 2 R3�3N is defined as

ON :¼ ½ 03 � � � 03|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N times

�.
ð3:5Þ

Thus the columns of C must sum to zero (meaning that C is singular), and those of D to one, whilst the force-related
momentum components pi

F must also sum to zero. This amounts to 2N conditions involving C and D that algorithm
(3.1) must satisfy.

From (2.24), the total discrete angular momentum Jn at time-step n is given as

Jn ¼
XN

i¼1

ri
n � pi

n.
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From (3.1), we have

JD ¼
XN

i¼1

ri
nþ1 � pi

nþ1 � ri
n � pi

n

� 	
¼
XN

i¼1

XN

j¼1

aijrj
n þ bijpj

n

� 	
þ ri

F

" #
�

XN

k¼1

cikrk
n þ dikpk

n

� 	
þ pi

F

" #
� ri

n � pi
n

 !

¼
XN

i¼1

XN

j;k¼1

aijcikrj
n � rk

n þ bijdikpj
n � pk

n þ aijdikrj
n � pk

n þ bijcikpj
n � rk

n

� 	
þ ri

nþ1 � pi
F þ ri

F � pi
nþ1 � ri

F � pi
F � ri

n � pi
n

" #

¼
XN

i¼1

XN

j¼1;
k>j

ðaijcik � aikcijÞrj
n � rk

n þ ðb
ijdik � bikdijÞpj

n � pk
n


 �0BB@
1CCA

þ
XN

i¼1

XN

j;k¼1

ðaijdik � bikcijÞrj
n � pk

n � ri
n � pi

n þ ri
nþ1 � pi

F þ ri
F � pi

nþ1 � ri
F � pi

F

 !
;

where the vectors rj
n � rk

n, pj
n � pk

n and rj
n � pk

n are unrelated for all j, k > j; 1 6 j, k 6 N. Therefore algorithm (3.1) will con-
serve angular momentum in general if and only ifXN

i¼1

ðaijcik � aikcijÞ ¼ 0;

XN

i¼1

ðbijdik � bikdijÞ ¼ 0

9>>>>=>>>>; 8j; k > j;
XN

i¼1

ðaijdik � bikcijÞ ¼ dij 8j; k

and ri
F ¼ pi

F ¼ 0 8i; 1 6 i; j; k 6 N ;

where dij is the Kronecker delta such that dij = 1 if i = j and 0 otherwise. This amounts to a further 2N2 � N conditions on
A, B, C and D which, when expressed in matrix form, become

ATC ¼ CTA; BTD ¼ DTB and ATD� CTB ¼ I3N ; ð3:6Þ

along with RF = PF = 0. Now, from (3.3) we see that

detðBnþ1Þ ¼ detðATÞ½detðD� CA�1BÞ� ¼ detðATD� ATCA�1BÞ

and when incorporating conditions (3.6), this becomes

detðBnþ1Þ ¼ detðI3N þ CTB � CTAA�1BÞ ¼ detðI3N Þ ¼ 1. ð3:7Þ
Hence angular momentum conservation automatically assures that Bnþ1 is non-singular, as required, with unit deter-

minant. Thus any family of single-step algorithms that conserves both linear and angular momenta can have at most

2N2 � N free parameters, excluding those related to the external force. Note that in linear dynamics, Bnþ1 is a constant
amplification matrix; thus (3.7) implies preservation of the phase space (Liouville’s theorem) for any angular momen-
tum-conserving algorithm in linear dynamics.
3.2. Choice of parameters

We wish to express our algorithms in a form that will relate to our previous work on the central-force problem [32]; thus
we choose

1

Dt
PD þGP1=2

� 	
¼ �XR1=2 þ Fa;

1

Dt
RD �GTR1=2

� 	
¼M �1P1=2 � Va;

ð3:8Þ

where G, X and M are the parameter matrices (with M necessarily non-singular), Fa and Va are algorithmic force and
velocity vectors that pertain to the external force; here and throughout the paper we define ð�Þ1=2 :¼ 1

2
½ð�Þn þ ð�Þnþ1�. As be-

fore, each matrix will consist of unit submatrices:

Gij ¼ gijI3; Xij ¼ xijI3 and M ij ¼ lijI3. ð3:9Þ
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We will refer to this family of momentum-conserving algorithms collectively as Algorithm MC. Note that for the specific
case where G :¼ 03N , M :¼M, Fa :¼ F and Va :¼ 0, we have

1

Dt
PD ¼ �XR1=2 þ F;

1

Dt
RD ¼M�1P1=2;

ð3:10Þ

which is the form of several familiar time-integration schemes (e.g. [8,15,37]), each distinguished by its definition of X.
We can relate this set of parameters to the canonical set {A, B, C, D, PF, RF} by forming the equation

ZD ¼ Cnþ1Z1=2 þ Za

from (3.8), where

Cnþ1 :¼ GT DtM �1

�DtX �G

 !
and Za :¼ Dt

�Va

Fa

� �
. ð3:11Þ

This in turn gives us

Znþ1 ¼ I6N �
1

2
Cnþ1

� ��1

I6N þ
1

2
Cnþ1

� �
Zn þ Za

� 

;

and thus from (3.2)1 we have

Bnþ1 ¼ I6N �
1

2
Cnþ1

� 
�1

I6N þ
1

2
Cnþ1

� 

and ZF ¼ I6N �

1

2
Cnþ1

� 
�1

Za. ð3:12Þ

Combining (3.11) and (3.12) leads to {A, B, C, D, PF, RF} in terms of fG;X;M ;Fa;Vag, provided all the relevant inverses
exist.

4. Properties of the algorithm

We will now derive conditions for parameters G, X, M , Fa and Va under which the algorithm will conserve linear and
angular momenta, conserve the total energy, preserve relative equilibria and be time-reversible.

4.1. Conservation of linear momentum

Proposition 1. Algorithm MC gives the discrete linear momentum derivative as

1

Dt
LD ¼

XN

i¼1

F i
a ð4:1Þ

provided thatXN

i¼1

Gij ¼
XN

i¼1

Xij ¼ 03 81 6 j 6 N . ð4:2Þ

Thus linear momentum is conserved whenever
PN

i¼1F i
a ¼ 0.

The proof is given in Appendix A.1; note the similarity between (4.1) and (2.23). Eq. (4.2) therefore imposes 2N con-
ditions on matrices G and X.

4.2. Conservation of angular momentum

Proposition 2. Algorithm MC gives the discrete angular momentum derivative as

1

Dt
JD ¼

XN

i¼1

ri
1=2 � F i

a þ pi
1=2 � vi

a

� �
ð4:3Þ

provided that

X ¼XT and M ¼M T. ð4:4Þ
Thus angular momentum is conserved whenever Fa = Va = 0.
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The proof is given in Appendix A.2; note the similarity between (4.3) and (2.25). Eq. (4.4) imposes a further N2 � N

conditions on matrices X and M . The total number of free parameters remaining in G, X and M after conservation
of momenta has been secured is 2N2 � N. This tallies with the amount given in Section 3 for A, B, C and D; hence Algo-

rithm MC is a fully general form for single-step momentum-conserving algorithms, provided that (4.2) and (4.4) are satisfied.
Note that this means G and X are singular, and that X and M are symmetric.

4.3. Conservation of energy

From (2.9), (2.26) and (2.27), the discrete total energy at time-step n is given as

Hn ¼
1

2
Pn �M�1Pn þ /n � U n. ð4:5Þ

For Algorithm MC to be energy-conserving, we therefore require

Hnþ1 ¼ H n ð4:6Þ

to hold for all n under the appropriate conditions.
4.3.1. A single, global condition for energy conservation

Proposition 3. Algorithm MC gives the discrete energy derivative as

1

Dt
HD ¼ �

U NC
D

Dt
ð4:7Þ

if X :¼ jX for an arbitrary matrix X, where j is defined by

Ajþ B ¼ 0 for

A ¼ �DtXR1=2 �M�1P1=2 and B ¼ /D � UC
D þ ðDtFa �GP1=2Þ �M�1P1=2;

ð4:8Þ

with UC and UNC denoting the conservative and non-conservative parts of the potential function U as defined in (2.28). Thus

energy is conserved whenever UNC = 0.

The proof is given in Appendix A.3, and we see the similarity between (4.7) and (2.29). Eq. (4.8) therefore fixes one more
of the free parameters; thus families of single-step energy–momentum algorithms can have up to 2N2 � N � 1 free para-

meters, excluding those related to the external force.
Algorithms that do not conserve energy can be converted to energy-conserving algorithms by transforming X 7! jX,

with j as defined in (4.8). This leaves any momentum-conserving attributes of the algorithm intact, since the structure of X
is unaltered. For example, the symplectic-momentum mid-point algorithm (e.g. [15,23,24,38]), which is an instance of (3.10)
with X defined such that XR1=2 :¼ rR1=2

/ðR1=2Þ, can be made to conserve energy with j defined by (4.8); this becomes

½rR1=2
/ðR1=2Þ � RD�j ¼ /D ð4:9Þ

for constant F, which matches Eq. (2.27) of [15], where this algorithm was first proposed. The property of symplecticity is
not present in the new algorithm, however. A similar conversion can be performed on another instance of (3.10) known as
the assumed distance method [37,25], which preserves relative equilibria but does not conserve energy in general; defining j
according to (4.8) generates an energy-conserving algorithm, but the property of preserving relative equilibria is lost, as will
be explained in Section 4.5.

There are serious flaws in using a single scalar condition to establish energy conservation, however. Firstly, (4.8) admits
a solution for j only when A 5 0 or limA!0{�B/A} exists. Except for the particular case of a single bar element fixed at
one end with no external force (thereby equivalent to a central-force problem), this cannot be guaranteed; hence a draw-
back with this method of energy conservation is the fact that, for typical G, M and X, it does not guarantee an energy-
conserving solution for all possible configurations and time-step sizes, since j cannot always be defined by (4.8). (This issue
was also raised in [15].) Another objection is that it introduces a global coupling between all of the degrees of freedom; this
cannot be motivated physically, as mentioned in [22], and it destroys any sparsity in the tangent stiffness matrix used during
the non-linear solution procedure. Furthermore, adding energy conservation to a non-conserving algorithm does not nec-
essarily enhance its performance: results have shown that in cases where a non-conserving scheme fails due to a large
increase in the total energy, its conserving counterpart invariably fails to provide a solution (i.e., the non-linear solution
procedure does not converge) [39,40]. In the case of the assumed distance method, adding energy conservation in this
way can actually degrade its performance [40].
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In summary, it does not seem as though algorithms should be designed to conserve energy in this way, since there are
many undesirable side-effects. An alternative approach to energy conservation [8,11,22,41] will now be presented.

4.3.2. Elemental conditions for energy conservation

From Appendix A.3 we see that

HD ¼ �U NC
D () ðDtFa �GP1=2Þ �M�1P1=2 þ /D � UC

D ¼ DtXR1=2 �M�1P1=2;

and thus using (3.8)2 to substitute for P1/2 we arrive at the condition

XR1=2 �M�1M ðRD �GTR1=2Þ ¼ /D � UC
D � DtXR1=2 �M�1M Va þ DtFa �GM

1

Dt
ðRD �GTR1=2Þ þ Va

� 
� �
�M�1M

1

Dt
RD �GTR1=2

� 	
þ Va

� 

ð4:10Þ

for energy conservation.
For algorithms of the form (3.10), (4.10) reduces to

XR1=2 � RD ¼ /D � UC
D þ F � RD ¼ /D; ð4:11Þ

since F � RD ¼ UC
D. Given that these algorithms conserve both momenta, X must be symmetric with rows and columns that

sum to zero. Here and throughout the paper we will use the shorthand notation hBiji to denote symmetric block matrices
A 2 Rnm�nm of the form

Aij ¼
XN

k¼1

Bik : i ¼ j;

�Bij : i 6¼ j;

8><>:
for some Bij 2 Rm�m; note that each row (and column) sums to zero. Hence we can write

X � hnijI3i ð4:12Þ

for some nij (to be defined). It can easily be shown that, as a consequence of the form of X,

XR1=2 � RD ¼
XN

i¼1;
j>i

nijr
ij
1=2 � r

ij
D 8Rn;Rnþ1 and nij;

where rij :¼ rj � ri. Recalling the definition of /D, (4.11) becomesXN

i¼1;
j>i

nijr
ij
1=2 � r

ij
D ¼

XN

i¼1;
j>i

/ijD. ð4:13Þ

This equation can clearly be satisfied by defining

nij :¼
/ijD

rij
1=2 � r

ij
D

8i; j; ð4:14Þ

implying nij = nji and nii = 0. The resulting algorithm is known as the energy–momentum mid-point algorithm [8,11,22,41],
and does not require a global energy condition of the form (4.8). (This equation is satisfied by j :¼ 1.) Since the nij � nij(r

ij)
depend only on the element connecting nodes i and j (if it exists), we call these elemental conditions for energy conservation.
The energy–momentum algorithm suffers none of the drawbacks mentioned in conjunction with global energy conserva-
tion, being well-defined when rij

1=2 � r
ij
D ¼ 0, and has been shown to perform well for a wide range of problems [8,11,32,40].

We now look at the conditions for general G;X and M under which elemental energy conservation—that is, energy con-
servation through satisfaction of simultaneous elemental equations—can be achieved alongside conservation of momenta.
Elemental energy conservation is a much more stringent requirement than global energy conservation, with a far greater
number of conditions to be satisfied. These amount to balancing each individual /ijD term in (4.10) with an algorithmic
quantity wholly defined by rij (the relative position vector for the element joining nodes i and j), i.e.

/ijD ¼ aijðrijÞ 8i; j;

for some aij. Note that this is tantamount to stipulating that (4.10) consist entirely of elemental terms (i.e. those that are
functions of some rij only), except for those pertaining to the external force: if other terms were to appear, a further (non-
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elemental) condition would be required to ensure that they sum to zero. Given the form of X, we have the left-hand side of
(4.10) as

XR1=2 �M�1M ðRD �GTR1=2Þ ¼
XN

i¼1;
j>i

nijr
ij
1=2 � ð�r

ij
D � �rij

1=2Þ;

where �R ¼M�1M R and �R ¼M�1MGTR. Elemental energy conservation then requires �rij ¼ aijr
ij and �rij ¼ bijr

ij, and
hence we must have M :¼ aM and G :¼ b

a I n for scalars a and b (not necessarily constant), i.e. aij = a, bij = b "i, j. Given
that G is singular (from Proposition 1), however, we must have G :¼ 03N , meaning b = 0. So the whole of (4.10) now
becomes

aXR1=2 � RD ¼ /D � UC
D � aDtXR1=2 � Va þ aFa � RD þ aDtFa � Va. ð4:15Þ

For problems without external forces, we have Fa = Va = 0 from Proposition 2, which requires that X :¼ 1
a hnijI3i for nij

defined by (4.14). For the general conservative case, then, (4.15) becomes

�U C
D � DthnijI3iR1=2 � Va þ aFa � ðRD þ aVaÞ ¼ 0;

which is satisfied by Fa :¼ 1
a F;Va :¼ 0. Therefore the only instances of Algorithm MC that give rise to elemental energy con-

servation are scaled variations of the energy–momentum mid-point algorithm, i.e.

G :¼ 03N ; X :¼ ahnijI 3i; M :¼ 1

a
M ; Fa :¼ aF and Va :¼ 0 ð4:16Þ

for some aðZnþ1;Zn;DtÞ 2 R, with nij defined by (4.14).

4.4. Preservation of relative equilibria

From (2.39), we have the exact solution of a relative equilibrium problem as

RðtÞ ¼ expðt bX0ÞR0;
_RðtÞ ¼ expðt bX0ÞV0 and rcðtÞ ¼ rc

0 þ tvc
0

with expðt bX0Þ � diag½expðtbx0Þ�, where R0 and V0 are given by

R0 ¼ R0 � Rc
0; Rc

0 :¼ h rc
0 � � � rc

0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N times

i; V0 ¼ V0 � Vc
0 and Vc

0 :¼ h vc
0 � � � vc

0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N times

i.

We note from Section 2 that x0 � vc
0 ¼ 0, and that R0 and V0 are defined by (2.37). We now define a relative equilibrium

path as the discrete solution

Rk ¼ Rc
k þ expðkrkDt bX0ÞR0; Pk ¼M Vc

0 þ expðkrkDt bX0ÞV0

� �
and Rc

k ¼ Rc
0 þ ktkDtVc

0 8k; ð4:17Þ

where kr and kt are constants. Solution (4.17) describes a combination of uniform rotation about an axis of inertia and
uniform translation along it, as does the exact solution. However, the angular velocity of the discrete solution is krx0,
and the translational velocity is ktv

c
0. The exact solution is evidently captured if kr = kt = 1; for kr = kt 5 1, the trajectory

of the exact solution is recovered (with different velocities). In general, the discrete solution need not necessarily produce
points along the orbit of the exact solution, as was the case for the central-force problem in [32].

For Algorithm MC to produce paths of relative equilibria under initial conditions (2.37), we require that the solution
given in (4.17) be inserted into the algorithm without conflict for k = n and k = n + 1, for certain values of kr and kt. We
now introduce the notation

ð�ÞRE
:¼ ð�ÞjRn;Pn;Rnþ1;Pnþ1 defined by (4.17)

R0;V0 defined by (2.37) and F ¼ 0

for a given quantity (Æ), to denote the value taken when a relative equilibrium solution is in effect. Note that this is equiv-
alent to the notation used in [32] in the case of a central-force problem.

Proposition 4. Under initial conditions (2.37), Algorithm MC produces paths of relative equilibria provided that

XRE � kr

tan 1
2
hRE

� 	
1
2
hRE

F0

 !
R0 ¼ 0; kr

tan 1
2
hRE

� 	
1
2
hRE

M RE �M

 !
V0 ¼ 0;

GRE ¼ 03N ; ðM � ktM
REÞVc

0 ¼ 0 and FRE
a ¼ VRE

a ¼ 0

ð4:18Þ
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for some fixed kr, kt, where hRE :¼ krkx0kDt and �p < hRE < p, and that for all n it gives a unique solution for Rn+1 and Pn+1

given Rn, Pn and Dt.

The proof is given in Appendix A.4. Eq. (4.18) therefore gives criteria that G, X, M , Fa and Va must satisfy under
initial conditions (2.37) for the algorithm to produce a relative equilibrium path. In fact, it is possible to design
algorithms to capture the relative equilibrium solution exactly, with kr = kt = 1; an example of this shall be given in
Section 6.3.
4.5. Conservation of energy and the preservation of relative equilibria

Lemma 1. Any algorithm that produces paths of relative equilibria also conserves energy along those paths.

The proof is given in Appendix A.5; thus no inherent conflict arises from having conservation of energy and preserva-
tion of relative equilibria within the same algorithm.

Lemma 2. Any algorithm that conserves energy globally cannot produce paths of relative equilibria in general, in that an
algorithm conserving energy via (4.8) cannot always be well-defined under relative equilibrium conditions.

This can be argued by contradiction as follows: if an algorithm produces paths of relative equilibria, it satisfies (4.18). It
can then be seen from (A.1) in Appendix A.3 that A and B from (4.8) are such that ARE = BRE = 0, with no obvious value
for

lim
A!ARE;

B!BRE

�B
A

� �

that is uniquely defined regardless of how A! ARE and B! BRE. This is one of those instances where j cannot be eval-
uated via (4.8), as mentioned in Section 4.3.1.

Lemma 3. Any algorithm that conserves energy elementally produces paths of relative equilibria such that

kr ¼
1
2
aREhRE

tan 1
2
hRE

� 	 and kt ¼ aRE; ð4:19Þ

for hRE :¼ krkx0kDt and a given in (4.16).

It is straightforward to show that X defined by (4.12) and (4.14) is such that XRE ¼F0; the result can then be read
directly from (4.16) and (4.18). A corollary of Lemma 3 is that no elementally energy-conserving algorithm can capture
the exact trajectory of a general relative equilibrium problem, given that tan�1 x 6¼ x for x 5 0. (For the special cases of pure
translation and pure rotation, the exact trajectories can be recovered.)

Taken together, these three lemmas imply that instances of Algorithm MC are unlikely to both conserve energy and
produce paths of relative equilibria unless they are scaled variations of the energy–momentum mid-point algorithm, as
given by (4.16).
4.6. Time reversibility

An algorithm is described as time-reversible if, at any given configuration Zn+1, applying a negative time-step of �Dt

recovers the previous configuration Zn [1,21]. From (3.2), an algorithm is thus time-reversible if

Znþ1 ¼ BðZnþ1;Zn;DtÞZn þ ZF ðZnþ1;Zn;DtÞ () Zn ¼BðZn;Znþ1;�DtÞZnþ1 þ ZF ðZn;Znþ1;�DtÞ. ð4:20Þ

We now introduce for any quantity (Æ) the notation

ð�ÞTR
:¼ ð�ÞjZnþ1$Zn;Dt$�Dt.
Proposition 5. Algorithm MC is time-reversible if

XTR ¼X; M TR ¼M ; GTR ¼ �G; FTR
a ¼ Fa and VTR

a ¼ Va. ð4:21Þ

The proof is given in Appendix A.6.
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5. Local accuracy analysis

We now analyse the local accuracy characteristics of Algorithm MC, and investigate its capacity for higher-order accu-
racy when applied to general non-linear problems. We will also derive the series form of the exact solution. This section
takes a very similar approach to that of [32].

We define the local error vector as

� :¼ Znþ1 � Zðtnþ1Þ when Zn ¼ ZðtnÞ; ð5:1Þ
with Z ¼ hR P i as before: throughout this section, we will assume the solution at time-step n to be exact, i.e. Zn = Z(tn).
We also define the residual vector

gðXÞ :¼ BðX ;Zn;DtÞZn þ ZF ðX ;Zn;F;DtÞ � X ; ð5:2Þ
where B and ZF were introduced in Section 3. Consequently we have

gðZnþ1Þ ¼ 0 and hence g½Zðtnþ1Þ� ¼ gðZnþ1 � �Þ ¼ �rgðZnþ1Þ�þ Oðk�k2Þ;
where $g is known as the Jacobian matrix. Given that gðXÞ 2 Oð1Þ (i.e. O½Dt0�) for general X, we have rgðZnþ1Þ 2 Oð1Þ
also; thus the dependence of g[Z(tn+1)] on Dt reveals the size of the local error �.

We begin by introducing the abbreviations

f :¼ hZðtnþ1ÞZðtnÞDti and ~f :¼ hZðtnþ1ÞZðtnÞFDti;
and setting X = Z(tn+1) in (5.2) to get

g½Zðtnþ1Þ� :¼ BðfÞZn þ ZF ð~fÞ � Zðtnþ1Þ. ð5:3Þ
Assuming that Z(t) is analytic in a neighbourhood of tn, we have

Zðtnþ1Þ ¼ Zðtn þ DtÞ ¼
X1
s¼0

ZðsÞðtnÞ
s!

Dts; ð5:4Þ

where ð�ÞðsÞ � ds

dts fð�Þg. We now express (2.21) in matrix form as

_Z ¼ WZ þ eF ; where WðtÞ ¼ 03N M�1

�F 03N

 !
and eF ðtÞ ¼ 0

F

� �
. ð5:5Þ

We now derive the series solution of (5.5)1 for known data at time tn. By repeated differentiation of (5.5)1, we can express
the derivative Z(s+1) in terms of lower-order derivatives of Z and W, i.e.

€Z ¼ _WZ þW _Z þ _eF ; Zð3Þ ¼ €WZ þ 2 _W _Z þW€Z þ €eF ;
Zð4Þ ¼ Wð3ÞZ þ 3 €W _Z þ 3 _W€Z þWZð3Þ þ eF ð3Þ; . . .

and so on. Summarising this procedure, we have

Zðsþ1Þ ¼
Xs

r¼0

s

r

� �
Wðs�rÞZðrÞ þ eF ðsÞ; ð5:6Þ

where
s
r

� �
represents the binomial coefficient s!

ðs�rÞ!r!
. Inserting (5.6) into (5.4) gives

Zðtnþ1Þ ¼ Zn þ
X1
s¼0

Zðsþ1Þ
n

ðsþ 1Þ! Dtsþ1 ¼ Zn þ
X1
s¼0

Dtsþ1

ðsþ 1Þ!
Xs

r¼0

s

r

� �
Wðs�rÞ

n ZðrÞn þ eF ðsÞn

" #

¼ Zn þ
X1
s¼0

Dtsþ1

ðsþ 1Þ! WðsÞn Zn þ eF ðsÞn

� �
þ
X1
s¼0

Dtsþ1

ðsþ 1Þ!
Xs

r¼1

s

r

� �
Wðs�rÞ

n ZðrÞn

¼ Zn þ
X1
s¼0

Dtsþ1

ðsþ 1Þ! WðsÞn Zn þ eF ðsÞn

� �
þ
X1
s¼0

Dtsþ2

ðsþ 2Þ!
Xs

r¼0

sþ 1

r þ 1

� �
Wðs�rÞ

n Zðrþ1Þ
n ;

where
Ps

r¼1ð�Þ :¼ 0 for s < r. Continuing in the same manner, we now substitute for Zðrþ1Þ
n using (5.6) to get

Zðtnþ1Þ ¼ Zn þ
X1
s¼0

Dtsþ1

ðsþ 1Þ! WðsÞn Zn þ eF ðsÞn

� �
þ
X1
s¼0

Dtsþ2

ðsþ 2Þ!
Xs

r¼0

sþ 1

r þ 1

� �
Wðs�rÞ

n WðrÞZn þ eF ðrÞ� �
þ
X1
s¼0

Dtsþ3

ðsþ 3Þ!
Xs

r¼0

sþ 2

r þ 2

� �
Wðs�rÞ

n

Xr

q¼0

r þ 1qþ 1ð ÞWðr�qÞZðqþ1Þ
n .
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The expression for Z(tn+1) can now be seen to consist of a sum of terms of the formX1
s0¼0

Dts0þmþ1

ðs0 þ mþ 1Þ!
Xs0

s1¼0

s0 þ m

s1 þ m

� �
Wðs0�s1Þ

n

Xs1

s2¼0

s1 þ m� 1

s2 þ m� 1

� �
Wðs1�s2Þ � � �

Xsm�1

sm¼0

sm�1 þ 1

sm þ 1

� �
Wðsm�1�smÞ

" #
V ð5:7Þ

for m = 0, 1, 2. . . , where V stands for either WðsmÞZn or eF ðsmÞ. We can write (5.7) more compactly asX1
s0¼0

Dts0þmþ1

ðs0 þ mþ 1Þ!
Ym�1

i¼0

Xsi

siþ1¼0

si þ m� i

siþ1 þ m� i

� �
Wðsi�siþ1Þ

n

" # !
V;

with s�1 :¼ �1 in the case m = 0. Thus we can express the solution to (5.5)1 at time tn+1 in (relatively) compact form as

Zðtnþ1Þ ¼BeZn þ Ze
F ; ð5:8Þ

where

Be :¼
X1
m¼0

X1
s0¼0

Dts0þmþ1

ðs0 þ mþ 1Þ!
Ym�1

i¼0

Xsi

siþ1¼0

si þ m� i

siþ1 þ m� i

� �
Wðsi�siþ1Þ

n

" #
WðsmÞ

n

 !" #
þ I6N and

Ze
F :¼

X1
m¼0

X1
s0¼0

Dts0þmþ1

ðs0 þ mþ 1Þ!
Ym�1

i¼0

Xsi

siþ1¼0

si þ m� i

siþ1 þ m� i

� �
Wðsi�siþ1Þ

n

" #eF ðsmÞ
n

 !" #
.

ð5:9Þ

(Note that for m = 0, we have
Qm�1

i¼0 ð�Þi :¼ I6N .) Eqs. (5.8) and (5.9) thus give the exact solution to the semi-discrete
equations of motion (2.21), to which we can compare the solutions obtained from our algorithms. From (5.3), (5.8) and
(5.9) we can see that the order of g[Z(tn+1)] with respect to Dt is governed by how closely BðfÞ and ZF ð~fÞ match Be

and Ze
F , respectively. Using (5.3), we see that since Zn 2 Oð1Þ,

g½Zðtnþ1Þ� 2 OðDtpþ1Þ () BðfÞ �Be 2 OðDtpþp1Þ; ZF ð~fÞ � Ze
F 2 OðDtpþp2Þ;

where p1; p2 2 Zþ are such that Min{p1, p2} = 1, and thus

� 2 OðDtpþ1Þ () BðfÞ �Be 2 OðDtpþp1Þ; ZF ð~fÞ � Ze
F 2 OðDtpþp2Þ. ð5:10Þ

Eq. (5.10) thus contains the criteria for Algorithm MC to be pth-order accurate. To express this in terms of parameters G,
X, M , Fa and Va, we note from (3.12) that

I 6N �
1

2
CðfÞ

� 

BðfÞ ¼ I6N þ

1

2
CðfÞ

� 

and I6N �

1

2
CðfÞ

� 

ZF ð~fÞ ¼ Zað~fÞ;

with C and Za given in (3.11) (and repeated here for convenience) as

C ¼ GT DtM �1

�DtX �G

 !
and Za ¼ Dt

�Va

Fa

� �
. ð5:11Þ

Therefore pre-multiplying (5.10) by � I6N � 1
2
CðfÞ


 �
gives us

� 2 OðDtpþ1Þ () I6N �
1

2
CðfÞ

� 

Be � I 6N þ

1

2
CðfÞ

� 

2 OðDtpþp1Þ; I6N �

1

2
CðfÞ

� 

Ze

F � Zað~fÞ 2 OðDtpþp2Þ; ð5:12Þ

since the left-hand side is unaffected provided that CðfÞ is bounded as Dt! 0. We assume that these parameter matrices are
also analytic functions of t within the same neighbourhood of tn as Z(t), and thus we can write

CðfÞ ¼
X1
s¼0

CsðtnÞDts and Zað~fÞ ¼
X1
s¼0

Za;sðtnÞDts; ð5:13Þ

where the coefficients are wholly determined at time tn. This implies similar series expansions for G, X, M �1, Fa and Va,
and we can relate the expansion of M �1 to that of M via the formula

M ðfÞ ¼
X1
s¼0

M sDts ¼M 0 I3N þ
X1
s¼0

M �1
0 M sþ1Dtsþ1

 !
) M �1ðfÞ ¼ I 3N þ

X1
s¼0

M �1
0 M sþ1Dtsþ1

 !�1

M �1
0

¼
X1
r¼0

�
X1
s¼0

M �1
0 M sþ1Dtsþ1

 !r

M �1
0 ; ð5:14Þ
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which is derived using the binomial formula (e.g. [34]) and valid for sufficiently small Dt. From (5.9), we also have

Be ¼
X1
s¼0

Be
sðtnÞDts and Ze

F ¼
X1
s¼0

Ze
F ;sðtnÞDts. ð5:15Þ

Therefore (5.12), (5.13) and (5.15) combine to give

� 2 OðDtpþ1Þ () Be
s �

1

2

Xs

r¼0

CrB
e
s�r �

1

2
Cs ¼

I 6N : s ¼ 0;

06N : s ¼ 1; . . . ; p

�
and Ze

F ;s �
1

2

Xs

r¼0

CrZ
e
F ;s�r ¼ Za;s for s ¼ 0; . . . ; p.

ð5:16Þ

We will now derive cumulative criteria for pth-order accuracy when p = 0, 1, 2.

5.1. Zeroth-order accuracy

For p = 0, we have

Be
0 �

1

2
C0B

e
0 �

1

2
C0 ¼ I6N and Ze

F ;0 �
1

2
C0Ze

F ;0 ¼ Za;0.

From (5.9) we have

Be
0 ¼ I6N and Ze

F ;0 ¼ 0; ð5:17Þ

and so we have zeroth-order accuracy if and only if

C0 ¼ 06N and Za;0 ¼ 0. ð5:18Þ
From (5.11), this equates to

G0 ¼ 03N . ð5:19Þ
Note that this property is not sufficient to assure convergence to the true solution as Dt! 0. An algorithm that is zeroth-
order accurate will in fact give Zn = Z0 "n using an infinitesimal time-step size, which can be considered the most basic
approximation to the true solution.

5.2. First-order accuracy

For p = 1, the conditions include those for p = 0 and also

Be
1 �

1

2
C0B

e
1 �

1

2
C1B

e
0 �

1

2
C1 ¼ 06N and Ze

F ;1 �
1

2
C0Ze

F ;1 �
1

2
C1Ze

F ;0 ¼ Za;1

from (5.16). After incorporating (5.17) and (5.18), these become

C1 ¼ Be
1 and Za;1 ¼ Ze

F ;1.

From (5.9) we see that

Be ¼ I6N þ
X1

s0¼0

Dts0þ1

ðs0 þ 1Þ! W
ðs0Þ
n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m ¼ 0

þOðDt2Þ

and similarly for Ze
F ; thus we have

Be
1 ¼ Wn and Ze

F ;1 ¼ eF n. ð5:20Þ

Therefore we have first-order accuracy if and only if

C1 ¼ Wn and Za;1 ¼ eF n. ð5:21Þ
Using (5.11) and (5.5)2,3, this gives us

G1 ¼ 03N ; M 0 ¼M; X0 ¼Fn; Fa;0 ¼ Fn and Va;0 ¼ 0; ð5:22Þ
after using (5.14). This property is known as consistency, and implies convergence for stable algorithms.
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5.3. Second-order accuracy

For p = 2, the conditions include those for p = 1 and also

Be
2 �

1

2
C0B

e
2 �

1

2
C1B

e
1 �

1

2
C2B

e
0 �

1

2
C2 ¼ 06N and

Ze
F ;2 �

1

2
C0Ze

F ;2 �
1

2
C1Ze

F ;1 �
1

2
C2Ze

F ;0 ¼ Za;2

from (5.16). After incorporating (5.17), (5.18), (5.20) and (5.21), these reduce to

C2 ¼ Be
2 �

1

2
ðWnÞ2 and Za;2 ¼ Ze

F ;2 �
1

2
Wn
eF n.

From (5.9) we see that

Be ¼ I6N þ
X1

s0¼0

Dts0þ1

ðs0 þ 1Þ! W
ðs0Þ
n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m ¼ 0

þ
X1

s0¼0

Dts0þ2

ðs0 þ 2Þ!
Xs0

s1¼0

s0 þ 1

s1 þ 1

� �
Wðs0�s1Þ

n Wðs1Þ
n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m ¼ 1

þOðDt3Þ

and similarly for Ze
F ; thus we have

Be
2 ¼

1

2
_Wn þ

1

2
ðWnÞ2 and Ze

F ;2 ¼
1

2
_eF n þ

1

2
Wn
eF n.

Therefore we have second-order accuracy if and only if

C2 ¼
1

2
_Wn and Za;2 ¼

1

2
_eF n. ð5:23Þ

Using (5.11) and (5.5)2,3, this becomes

G2 ¼M 1 ¼ 03N ; X1 ¼
1

2
_Fn; Fa;1 ¼

1

2
_Fn and Va;1 ¼ 0; ð5:24Þ

after again using (5.14).
It appears as though this process can be continued indefinitely. This is indeed the case, and can be shown inductively as

follows: Suppose Algorithm MC is (p � 1)th-order accurate for p P 0. Since Be
0 ¼ I6N we have, from (5.16),

Cs ¼ Be
s �

1

2

Xs�1

r¼0

CrB
e
s�r and Za;s ¼ Ze

F ;s �
1

2

Xs

r¼0

CrZ
e
F ;s�r ð5:25Þ

as the requirements for pth-order accuracy. Since Cr; 0 6 r 6 s� 1 and ZF,s, Be
s ; 0 6 s <1 are all known, (5.25) can be

immediately solved (in order) to furnish Cs and Za,s. Hence with appropriate choices for G, X, M , Fa and Va, Algorithm

MC can be made arbitrarily accurate. The criteria for accuracy up to fifth order are given in Table 1, and are continued up
to eighth order in [40]. We note the symmetries of the expressions for G and Va, and also for X and Fa.

From Table 1, we see immediately that for time-integration schemes with constant G :¼ G0 or M :¼M 0, the limit is sec-

ond-order accuracy for problems with general strain energy functions /(l), which is consistent with our results in [32]. There-
fore schemes defined by (4.16), that conserve energy elementally, cannot be higher than second-order accurate; in turn, this
means that higher-order schemes are unlikely to conserve energy and preserve relative equilibria, as discussed in Section
4.5. We also note that they will not retain the sparsity of time-integration schemes of the form (3.10), and will thus be com-
putationally more expensive.

We now verify that the accuracy requirements given in this section do not conflict with the conservation conditions from
Section 4 by encapsulating the fact that higher-order accuracy does not hinder conservation of a physical quantity in the
following result:

Proposition 6. Let f[Z(t)] be a constant quantity of the motion governed by (5.5). Then

� 2 OðDtpþ1Þ ) f ðZnþ1Þ � f ðZnÞ 2 OðDtpþqÞ;
where q P 1, assuming Zn = Z(tn). That is to say, any pth-order algorithm will conserve a constant of motion up to order p or

higher.

The proof is given in Appendix A.7. Hence any algorithm that does not conserve one or more of the constants of motion

must be limited in its order of accuracy.



Table 1
Cumulative conditions for pth-order accuracy

p Conditions needed

0 G0 ¼ 03N

1 G1 ¼ 03N ; X0 ¼Fn; M 0 ¼M; Fa;0 ¼ Fn; Va;0 ¼ 0

2 G2 ¼ 03N ; X1 ¼
1

2
_Fn; M 1 ¼ 03N ; Fa;1 ¼

1

2
_Fn; Va;1 ¼ 0

3 G3 ¼
1

12
_FnM�1; X2 ¼

1

6
€Fn þ

1

12
FnM�1Fn; M 2 ¼ �

1

12
Fn;

Fa;2 ¼
1

6
€Fn þ

1

12
FnM�1Fn; Va;2 ¼

1

12
M�1 _Fn

4 G4 ¼
1

24
€FnM�1; X3 ¼

1

24
ðFð3Þ

n þFnM�1 _Fn þ _FnM�1FnÞ;

M 3 ¼ �
1

24
_Fn; Fa;3 ¼

1

24
ðFð3Þn þFnM�1 _Fn þ _FnM�1FnÞ;

Va;3 ¼
1

24
M�1 €Fn

5 G5 ¼
1

80
Fð3Þ

n M�1 þ 1

120
_FnM�1FnM�1 þ 1

240
FnM�1 _FnM�1;

X4 ¼
7

240
_FnM�1 _Fn þ

1

80
ð €FnM�1Fn þFnM�1 €FnÞ þ

1

120
ðFð4Þ

n þFnM�1FnM�1FnÞ;

M 4 ¼ �
1

60
€Fn �

1

720
FnM�1Fn;

Fa;4 ¼
7

240
_FnM�1 _Fn þ

1

80
ðFnM�1 €Fn þ €FnM�1FnÞ þ

1

120
ðFð4Þn þFnM�1FnM�1FnÞ;

Va;4 ¼
1

80
M�1Fð3Þn þ

1

120
M�1FnM�1 _Fn þ

1

240
M�1 _FnM�1Fn
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6. Example momentum-conserving algorithms

We now give a few examples of momentum-conserving algorithms that fit into the general framework provided by Algo-
rithm MC, and discuss their properties.

6.1. Current second-order algorithms

The four momentum-conserving time-integration schemes mentioned briefly in Section 4 all have the form (3.10). To
repeat, the symplectic-momentum mid-point algorithm [15,23,24,38] defines

X :¼
/0ijðkr

ij
1=2kÞ

krij
1=2k

I3

* +
; ð6:1Þ

where rij :¼ rj � ri. This algorithm neither conserves energy nor preserves relative equilibria in general. We will refer to this
algorithm as SM. The energy–momentum mid-point algorithm [8,11,22,41] has

X :¼
/ijD

1
2
ðl2

ijnþ1 � l2
ijnÞ

I3

* +
; ð6:2Þ

for lij = krj � rik. This algorithm conserves energy [8] and also preserves relative equilibria [12,18]. We will refer to this
algorithm as EM. The assumed distance method [37,25] is given by
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X :¼
/0ijðlij1=2Þ

lij1=2

I3

* +
; ð6:3Þ

where lij1=2 ¼ 1
2
ðlijn þ lijnþ1Þ. This algorithm is not energy-conserving in general, but coincides with the energy–momentum

algorithm for quadratic functions /ij [37,42]: it also preserves relative equilibria [42]. Lastly, the energy-conserving algo-
rithm of [15], which can be constructed by applying a global energy condition to the symplectic-momentum algorithm, has

X :¼ j
/0ijðkr

ij
1=2kÞ

krij
1=2k

I3

* +
; ð6:4Þ

with j defined by (4.8), which coincides with (4.9). This algorithm does not preserve relative equilibria in general. Each of
these algorithms is time-reversible, as can be seen from (4.21). They are also second-order accurate. Note that the second-
order accuracy of these algorithms in their given form, with Fa :¼ F, tacitly assumes that the force F is constant. In the case
of a non-constant force, this definition would need to be altered to Fa :¼ F1/2, as can be seen from Table 1.

We now analyse the paths of relative equilibria produced by the energy–momentum (EM) and assumed distance algo-
rithms; in these cases we have, from Lemma 3, kr ¼ 1

2
hRE= tan 1

2
hRE

� 	
and kt = 1. Thus these algorithms will produce paths

of relative equilibria with

kr ¼
tan�1 1

2
x0Dt

� 	
1
2
x0Dt

and kt ¼ 1. ð6:5Þ

These paths do not follow the trajectory of the exact solution in general, as mentioned in Section 4.5. In the case of pure
translation, however, we have x0 = 0 and thus the exact solution is recovered. For general steady-state motion, the trans-
lational part Rc

k is computed exactly, and the overall error in the positions Rn at time-step n is given by

Rn � RðtnÞ ¼ ½expðkrnDt bX0Þ � expðnDt bX0Þ�R0 ð6:6Þ
from (4.17)1. This error is contained entirely in the rotational part of the motion and, owing to its being defined as a dif-
ference in positions between the exact and the numerical solution, is necessarily bounded by the radius of the structure (as
measured from the centre of mass). In other words, while the error in rotation (and consequently the length of the path
traced) will accumulate as t!1, the error in position will stay bounded and only change periodically in time. Given that
tan�1 x < x 8x > 0, (6.5)1 tells us that kr < 1, and thus the rotation of the structure lags behind the exact solution, with the
error in rotation given as (1�kr)nx0Dt = 0 at time-step n.

Note that the local error for kr defined by (6.5) turns out to be

Rnþ1 � Rðtnþ1Þ ¼ ½cayðDtX0Þ � expðDt bX0Þ�Rn;

where the Cayley transform cayðx0DtÞ ¼ I þ 1
1þ1

4kx0Dtk2 Dtx̂0 þ Dt2

2
x̂2

0

� �
[43] in this equation is only a second-order approx-

imation to the exponential mapping expðx̂0DtÞ ¼ I þ sin kx0Dtk
kx0Dtk Dtx̂0 þ 1�cos kx0Dtk

kx0Dtk2 Dt2x̂2
0 [36] and is responsible for the position

error.

6.2. Higher-order accurate algorithms

To illustrate the theory developed in Sections 4 and 5, we now present a sample fourth-order accurate, momentum-con-
serving algorithm that is time-reversible and preserves relative equilibria. We will call this algorithm M4; we acknowledge
that there are many other possibilities. For fourth-order accuracy we require, from Table 1,

G ¼ 1

12
_FnM�1Dt3 þ 1

24
€FnM�1Dt4 þ OðDt5Þ;

X ¼Fn þ
1

2
_FnDt þ 1

6
€Fn þ

1

12
FnM�1Fn

� �
Dt2

þ 1

24
Fð3Þ

n þFnM�1 _Fn þ _FnM�1Fn

� 	
Dt3 þ OðDt4Þ;

M ¼M � 1

12
FnDt2 � 1

24
_FnDt3 þ OðDt4Þ;

Fa ¼ Fn þ
1

2
_FnDt þ 1

6
€Fn þ

1

12
FnM�1Fn

� �
Dt2

þ 1

24
Fð3Þn þFnM�1 _Fn þ _FnM�1Fn

� 	
Dt3 þ OðDt4Þ and
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Va ¼
1

12
M�1 _FnDt2 þ 1

24
M�1 €FnDt3 þ OðDt4Þ ð6:7Þ

We can therefore define

G :¼ Dt2

12
FDM�1; M :¼M M þ Dt2

12
F1=2

� ��1

M;

X :¼fX þ Dt2

12
fXM�1fX; where fX :¼F1=2 �

Dt
12

_FD;

Fa :¼ 1

Dt

Z tnþ1

tn

FðtÞdt þ Dt2

12
F1=2M�1F1=2 and Va :¼ Dt

12
M�1FD

ð6:8Þ

in order to fulfil the respective accuracy criteria, which are verified by taking a Taylor series expansion of each expression.
(The definition of Fa obviously presumes the function F(t) to be integrable.) The term _FD ¼ _Fnþ1 � _Fn in the definition of
X involves dot-product calculations when evaluating the entries _f ijn and _f ijnþ1, which are known to cause numerical dif-
ficulties when dealing with stiff problems [32]. Therefore we do not advocate the use of this algorithm in practice.

Regarding the properties of the algorithm defined by (6.8), we see from the structure of F given in (2.17) that

ING ¼ Dt2

12
INFDM�1 ¼ Dt2

12
ON M�1 ¼ ON ;

and similarly INX ¼ ON . Thus G and X satisfy the requirements for linear momentum conservation given in (4.2), and for
a constant force F, we have

Fa ¼ F þ Dt2

12
F1=2M�1F.

Hence
PN

i¼1F i
a ¼

PN
i¼1F i þ Dt2

12
INF1=2M�1F ¼ 0 whenever

PN
i¼1F i ¼ 0. Therefore linear momentum is conserved forPN

i¼1F i ¼ 0, as desired. Angular momentum conservation is also assured for F = 0 due to the symmetry of M and X. Time

reversibility follows from (4.21), since F
ðsÞ TR
D ¼ �F

ðsÞ
D 8s and FTR

1=2 ¼F1=2.
Under relative equilibrium conditions, we have from (6.8), when F = 0,

GRE ¼ 03N ; M RE ¼M M þ Dt2

12
F0

� ��1

M ; FRE
a ¼ VRE

a ¼ 0 and

XRE ¼F0 þ
Dt2

12
F0M�1F0.

When inserted into conditions (4.18), this leads to, after rearranging,

Dt2

12
F0M�1F0R0 ¼ ða� 1ÞF0R0; aMV0 ¼ M þ Dt2

12
F0

� �
V0

and M þ Dt2

12
F0

� �
Vc

0 ¼ ktMV c
0;

where a :¼ kr

tan 1
2
hRE

� 	
1
2
hRE

and hRE :¼ krx0Dt.

ð6:9Þ

Using (2.37) and the fact that bX3
0 ¼ �x2

0
bX0 from (2.32), it can be shown that

ðM�1F0ÞsR0 ¼ �x2ðs�1Þ
0

bX2
0R0 and ðM�1F0ÞsV0 ¼ x2s

0 V0 8s 2 Zþ.

It follows that M4 produces paths of relative equilibria with

kr ¼
tan�1 1

2
ax0Dt

� 	
1
2
x0Dt

for a ¼ 1þ x2
0Dt2

12
and kt ¼ 1; ð6:10Þ

thus the translational part of any relative equilibrium motion is exactly recovered.
6.3. Angle-preserving algorithms

In this section, we extend to multi-element problems the ideas introduced in Section 8.4 of [32] for central-force algo-
rithms designed to eliminate the error in rotation (or period error) for steady-state problems. It is possible to remove this
error entirely by modifying the definitions of X and M . For GRE :¼ 03N , FRE

a :¼ 0 and VRE
a :¼ 0 we have, from (4.18)
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XRE � kr

tan 1
2
hRE

� 	
1
2
hRE

F0

 !
R0 ¼ 0; kr

tanð1
2
hREÞ

1
2
hRE

M RE �M

 !
V0 ¼ 0 and ðM � ktM

REÞVc
0 ¼ 0. ð6:11Þ

To remove the error in rotation, we need to ensure that kr = 1, which leads to

XRER0 ¼ bREF0R0 and M REV0 ¼
1

bRE
MV0 for bRE ¼

tan 1
2
x0Dt

� 	
1
2
x0Dt

. ð6:12Þ

Thus algorithms that have XRER0 ¼F0R0 and M REV0 ¼MV0, such as EM and the assumed distance method, can be
modified via X 7! bX, M 7! 1

b M to give (6.12), where b is defined as

b :¼
tan 1

2
h

� 	
1
2
h

; with h defined so that hRE ¼ x0Dt. ð6:13Þ

(Note that (6.13) is equivalent to (8.3)2 in [32].) These algorithms will return the exact angle of rotation for general relative
equilibrium problems.

We now define the angle-preserving scheme EMh, arising from EM via the modification

G :¼ 03N ; X :¼ bhnijI 3i; M :¼ 1

b
M ; Fa :¼ aF and Va :¼ 0; ð6:14Þ

with b defined by (6.13)1 and nij by (4.14); the definition of h will follow shortly. Note that EMh retains the property of
elemental energy conservation, being of the form (4.16). From Lemma 3, we have

kr ¼ 1 and kt ¼ bRE ¼
tan 1

2
x0Dt

� 	
1
2
x0Dt

; ð6:15Þ

which may be compared with (6.5). Since tan x > x 80 < x < p
2
, the translational movement with this scheme is faster than

the exact solution. The position errors are given by

Rn � RðtnÞ ¼ ðkt � 1ÞnDtVc
0; ð6:16Þ

as seen from (4.17). This error is not bounded in time; thus for a general relative equilibrium problem, EMh will accumu-
late (translational) errors in positions as t!1. This is in contrast to schemes given by (3.10), where the position error is
bounded in time, but the rotation error accumulates as t!1. From (4.17), however, it can be seen that the error in mo-
menta Pn is zero.

We desire an algorithm that calculates both translational and rotational components of the positions (and also the
momenta) exactly for general steady-state problems: such algorithms are possible, as mentioned in Section 4.4, although
they are unlikely to conserve energy (for they can do so neither globally nor elementally, as seen from Lemmas 2 and 3). By
way of an example, we define the angle-preserving algorithm Ah by

G :¼ 03N ; X :¼ bF1=2; M :¼M þ cDt2F1=2; Fa :¼ F and Va :¼ 0 ð6:17Þ

for some c(h) to be determined, with b and h defined by (6.13). Under relative equilibrium conditions, this algorithm imme-
diately satisfies conditions (4.18)3,5, and (4.18)1,4 are satisfied by kr = kt = 1 given that FRE

1=2 ¼F0, and F0Vc
0 ¼ 0 due to

the form of F0. Eq. (4.18)2 then becomes

ðkrb
RE � 1ÞMV0 þ krb

REcREDt2F0V0 ¼ 0;

which simplifies to

½krb
REð1þ cREx2

0Dt2Þ � 1�MV0 ¼ 0.

(Note from (2.32) that bX3
0 ¼ �x2

0
bX0, and that F0R0 ¼ � bX0MV0 and V0 ¼ bX0R0 from (2.37).) This can be solved for cRE

to give

cRE ¼ 1� krb
RE

krb
REx2

0Dt2
. ð6:18Þ

So for c defined as

c :¼
1
2
h� tan 1

2
h

� 	
h2 tan 1

2
h

� 	 ;

(6.18) is satisfied for kr = 1; hence (4.18)2 is also. Note that Ah does not conserve energy in general, although it does pro-
duce exact solutions to all steady-state problems: a fact that could have relevance when designing algorithms for solving
stiff, approximately steady-state problems at large time-steps.
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We now turn to the requirement on h that hRE = x0Dt. There are several plausible definitions of h that satisfy this. The
simplest involves taking the average of all of the angles moved through by the vectors �ri; i ¼ 1; . . . ;N (representing the posi-
tion of each node relative to the centre of mass) during one time-step. This does not take into account the actual displace-
ment of each node, however, so a better choice would be a weighted average of the angles hi that takes into account the
associated lengths �li

n and �li
nþ1, namely

h :¼

XN

i¼1
�li

1=2hiXN

i¼1
�li

1=2

for hi ¼ cos�1 �ri
n � �ri

nþ1

�li
nþ1

�li
n

� �
and �li :¼ k�rik. ð6:19Þ

For a relative equilibrium problem, we have hi = x0Dt "i from (4.17), and thus hRE = x0Dt.
In summary, both algorithms EMh and Ah are designed to eliminate the rotational error in a general steady-state prob-

lem. Linear and angular momenta are conserved by these schemes, since the form of X and M are unchanged. Energy is
conserved by EMh but not by Ah. Each is time-reversible, since hTR = h, and also second-order accurate, since

tan 1
2
h

� 	
1
2
h

¼ 1þ 1

12
h2 þ Oðh4Þ

with h 2 OðDtÞ.

7. Numerical results

We will now test the new algorithms described in the previous chapter on a couple of model problems, to verify the
properties discussed in Sections 4 and 5. We will run each experiment with a range of time-step sizes, and assess the relative
errors in the positions R and velocities V at two different sampling times, in order to verify the results. These errors are
calculated as

kRn � RðtnÞk
kRðtnÞk

and
kVn � VðtnÞk
kVðtnÞk

respectively, where {Rn, Vn} denotes the approximate solution and {R(tn), V(tn)} the reference solution. The reference solu-
tion for each problem was obtained by running the established energy-conserving scheme EM at a suitably low time-step
size, as will be fully described in each case. In order to minimise the effects of round-off error, quadruple precision arith-
metic was used when generating the reference solutions, and in some cases for the tests themselves, as will be mentioned.

7.1. Spring-mass system

Our first pair of examples is based on the spring-mass system described in Section 5.1 of [15], shown on the left-hand side
of Fig. 1. This consists of four separate masses, with each pair of masses connected by a spring. The strain energy function
for each pair is

/ijðlijÞ :¼ 1

2
kijðlij � �lijÞ2; ð7:1Þ

where kij and �lij represent the spring stiffness and undeformed distance between masses i and j, respectively. This strain
energy function gives rise to the Engineering strain measure (e.g. [44, Section 3.1.1]). The model parameters are kij = 1,
Fig. 1. Spring-mass system at rest and in motion.
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mi = 1 and �lij ¼ 1 8i; j from [15], thus each spring has a natural length of unity. We note that the problem is non-stiff.
The initial position and momentum vectors ri

0 and pi
0 were randomly generated by the authors as

r1
0 ¼ h0:2340;�0:2166;�0:0109i; p1

0 ¼ h0:04095;�0:01483; 0:04325i;
r2

0 ¼ h0:0772; 0:7605; 0:0061i; p2
0 ¼ h�0:02980; 0:04400;�0:02959i;

r3
0 ¼ h0:8054; 0:6466;�0:1059i; p3

0 ¼ h�0:02328;�0:01432;�0:03716i;
r4

0 ¼ h0:3903; 0:6187; 0:9678i and p4
0 ¼ h0:04152; 0:00114; 0:02621i.

We will analyse two versions of this problem: a force-free case (giving a fully conservative system, as used in [15]), and an
asymptotically conservative case with a decaying external force F: note that this second version involves a time-dependent

force. The total response time in each case is 30 s, and we measure the relative errors in the solutions obtained at t = 10 and
t = 30 s accordingly. The reference solutions for all versions were run using algorithm EM with a time-step size of
Dt = 10�5 and convergence tolerance of 10�18 for the Newton–Raphson iteration. The image on the right-hand side of
Fig. 1 depicts the trajectories of the masses during the initial seconds of the motion in the force-free case, as given by
the reference solution, with the darkest colour denoting the initial configuration.

This problem is used to show the theoretical properties of the fourth-order accurate algorithm M4: we will therefore test
this algorithm alongside the established algorithms SM and EM, for comparison. (Given the nature of the strain energy
function in (7.1), the scheme EM and the assumed distance method are equivalent, as was proved in [42].) Each algorithm
will be run using the following time-step sizes: Dt = 1,0.25, 0.0625 and 0.015625. All tests will be carried out using double
precision arithmetic, with a convergence tolerance of 10�10.

7.1.1. Force-free case

Our first version of the spring-mass system has no external force, and is thus identical to that in [15] (and subsequently
[42]). Note that the total response time was 50 s in [15]: in all other respects, our results may be compared to those given
there. Both energy and momenta are constant, as given in Fig. 2; the small values of the momenta reflect the fact that this
problem is dominated by axial vibration. The amount of rotational and translational movement is tiny in comparison, so
the group motions are very small. From Fig. 8 of [15] we can estimate the period of axial vibration for each pair of masses
to be approximately 5 s: thus all of the time-steps used are small enough to resolve this mode approximately.

Fig. 3 shows the corresponding energy and momenta given by algorithm M4 at the largest time-step size. We can see
that, in accordance with the properties listed in Section 6, this scheme conserves linear and angular momenta. (The estab-
lished algorithms SM and EM also conserve momenta, and EM additionally conserves energy.)
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Fig. 2. Reference data for the force-free spring-mass system.
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Fig. 3. Energy and momenta as given by M4.
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Fig. 4. Relative errors in R and V for the force-free spring-mass system.
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From Fig. 4; we see that the respective second- and fourth-order accuracy characteristics of these three algorithms are
borne out by the error graphs. In particular, the scheme M4 has now demonstrated fourth-order accuracy as well as con-
servation of momenta. The actual errors in the positions at Dt = 1 are acceptably small, being roughly 12–15% for the sec-
ond-order schemes and 2% for M4. The velocities are not accurately represented by the second-order schemes at this time-
step size, however, with errors of over 100% incurred.

7.1.2. Decaying force

For this version of the problem, we add an arbitrary constant force Fi (acting on mass i) for each of the four masses,
multiplied by a damping factor in each coordinate direction. The constant components are

bF 1 ¼ h0:0025; 0:01; 0:005i; bF 2 ¼ h0:005; 0:0075; 0:005i;bF 3 ¼ h0:0075; 0:005; 0:005i and bF 4 ¼ h0:01; 0:0025; 0:005i;

and the actual forces F i � hF i
x; F

i
y ; F

i
zi are

F i :¼ he�t=5bF i
x; e
�2t=5bF i

y ; e
�3t=5bF i

zi

for each mass i, producing a different effect in each of the three directions. All the other data remain the same as for the
force-free case. Therefore the system becomes conservative in the limit t!1, with energy and momenta tending to con-
stant values as shown in Fig. 5, where P.A.L. stands for the potential of the applied loads.

Fig. 6 shows the corresponding energy and momenta given by M4. Indeed, the values of the momentum components
calculated at the end of the analysis, using the coarse time-step size Dt = 1, are remarkably close to the reference values.
The differences in linear momentum are roughly 3% for each of the second-order algorithms; this similarity can be antic-
ipated given that the velocity update for each algorithm is the same. The fourth-order scheme M4 gives the same linear
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Fig. 5. Reference data for the spring-mass system with a decaying force.
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momentum data as the reference solution to nine significant digits. The differences in angular momentum vary, at approx-
imately 1% for EM and 0.06% for M4.

Fig. 7 shows that the relative errors in positions and velocities for the problem with a time-dependent decaying force are
actually very similar to those in the force-free case shown in Fig. 4, and thus all observations made previously also apply
here. Thus the time-dependence of the forcing term had no effect on accuracy here, and fourth-order accuracy can be

observed for M4 in the case of a non-constant force. The other algorithms exhibit second-order accuracy, using the mid-
point definition Fa :¼ F1/2 for the algebraic force.

7.2. Truss structure in relative equilibrium

This example concerns the motion of a truss structure under relative equilibrium conditions, as shown in Fig. 8. It con-
sists of eight bar elements that connect each of the five nodes at (0, 1, 0), (1, 0, 0), (0, �1, 0), (�1, 0, 0) and (0, 0, 0) to one
another. The structure is therefore two-dimensional, existing entirely within the plane z = 0. The natural length of the ele-
ments is consequently �lij ¼ 1 for those aligned with the coordinate axes, and �lij ¼

ffiffiffi
2
p

for the rest. The mass per unit length
of each bar is equal to unity, hence the element masses are equal in magnitude to their natural lengths. Each element has
the strain energy function

/ijðlijÞ :¼ 1

2
kij

l2
ij � �l2

ij

2�lij

 !2

; ð7:2Þ

which gives rise to Green’s strain (e.g. [44, Section 3.1.2]). Young’s modulus of the material is such that EijAij = 102

throughout the structure, and so the stiffness of the elements is kij � EijAij
�lij
¼ 102 for those along an axis and kij ¼ 102ffiffi

2
p for

the others.
The initial position and momentum vectors for relative equilibria are obtained from (2.37). In this example, the centre of

mass has initial position rc
0 = 0, and we set its constant velocity to be vc

0 = h0, 0, 0.75i, which is orthogonal to the plane of
the structure, and thus aligned with an axis of inertia. The constant angular velocity is x0 = h0, 0, �1i, thereby giving
x · vc = 0 as specified in Proposition 2.1. Therefore the initial vectors ri

0 and vi
0 are calculated as

r1
0 ¼ h0; 0; 0i; v1

0 ¼ h0; 0; 0:75i;
r2

0 ¼ h0; 1:0052720575; 0i; v2
0 ¼ h1:0052720575; 0; 0:75i;
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r3
0 ¼ h�1:0052720575; 0; 0i; v3

0 ¼ h0; 1:0052720575; 0:75i;
r4

0 ¼ h0;�1:0052720575; 0i; v4
0 ¼ h�1:0052720575; 0; 0:75i;

r5
0 ¼ h1:0052720575; 0; 0i and v5

0 ¼ h0;�1:0052720575; 0:75i
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Fig. 7. Relative errors in R and V for the spring-mass system with a decaying force.
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Fig. 8. Truss structure in its initial configuration under relative equilibrium conditions.
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to 11 significant digits, with P0 = MV0. This amounts to the structure being stretched by a distance 0.0052720575 along
both of its coordinate axes (with unit vectors e1 and e2 in the diagram). In the absence of an external force, these starting
conditions imply that the structure will undergo uniform in-plane rotation, with simultaneous uniform translation in the
direction of e3. The image in Fig. 9 depicts this motion during the first few seconds, as given by the reference solution, with
the darkest colour denoting the initial configuration.

We will analyse this problem for a total response time of 9 s, and measure the relative errors in the solutions obtained at
t = 3 and t = 9 s. The reference solution was run using EM with a time-step size of Dt = 10�6 and Newton–Raphson con-
vergence tolerance of 10�15. We note that this system is fully conservative. In addition, the relative equilibrium starting
conditions mean that the individual components of energy remain constant for this problem, as does the length of each ele-
ment. This fact is illustrated in Fig. 10, which shows the total energy and the distance kr2(t) � r1(t)k as given by the ref-
erence solution. Note that the kinetic energy comprises almost all of the total energy, and is thus hidden in the graph.

For the strain energy function given in (7.2), the energy–momentum and assumed distance method of Section 6 are dis-
tinct in general. For steady-state problems, however, they coincide [42]. The purpose of this example is to show the accu-
racy characteristics of the angle-preserving algorithms EMh and Ah, so we will run tests with SM and EM for comparison.
The time-step sizes remain as given in Section 7.1, and the experiments are conducted using double precision arithmetic,
with a convergence tolerance of 10�10.

Fig. 11 shows the relative errors in positions and velocities for each of the algorithms tested. The errors are significantly
larger for SM than the other second-order schemes, reflecting the fact that this algorithm does not preserve relative equi-
libria. A surprising aspect of these results is the similarity between the position errors from EM and EMh. This is to a large
Fig. 9. Truss structure in motion under relative equilibrium conditions.
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Fig. 10. Reference data for the truss structure in relative equilibrium.
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extent coincidental, given that the errors are from different sources, although representative of the fact that both modes of
motion will be present in a general problem.

Table 2 shows that the overall position error for EMh consists entirely of translational error: the angle of rotation is
reproduced exactly, as expected. Conversely, SM and EM incur some error in the rotational mode, but maintain the exact
translation of the structure. We see that both sets of errors (where non-zero) increase linearly with the sampling time, thus
confirming that the translational and angular velocities returned by each algorithm are constant. Note that the non-zero
period errors indicate that the algorithmic solutions from SM and EM lag behind the true solution, whereas the non-zero
translational errors show that the solution obtained from EMh is ahead of it.

We also note the absence of any results for EMh in the velocity graphs, as this quantity is calculated exactly (to within
machine precision) by this algorithm, as explained in Section 6.3; hence the errors are zero. On the other hand, the error in
positions with EMh depends on both vc

0 and x0, and is unbounded, whereas for EM it depends on x0 only, from (6.5)1 and
(6.6), and stays bounded in time as a consequence of the fact that it is entirely caused by the (unbounded) rotational error.
Only algorithm Ah reproduces both aspects of the motion exactly.
Table 2
Period and translation errors in positions at Dt = 0.25 for the truss structure in relative equilibrium

Algorithm Period error Translation error
Sampling time (s) Sampling time (s)

3 6 9 3 6 9

SM 0.0567 0.114 0.172 0 0 0
EM 0.0155 0.031 0.0464 0 0 0
EMh 0 0 0 0.0118 0.0236 0.0354
Ah 0 0 0 0 0 0
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8. Conclusions

In this work, the design of conservative algorithms with higher-order accuracy was investigated for multi-element truss
structures (or, equivalently, multi-particle dynamics), and conditions under which they can be developed were given that
follow on from our earlier work on the central-force problem [32]. A general framework for algorithms that conserve linear
and angular momenta was presented, and conditions for energy conservation were also given. Criteria for the preservation
of relative equilibrium states and also for higher-order accuracy were elaborated in detail, and the exact solution to a gen-
eral non-linear problem was derived (in power-series form).

Time-reversible algorithms that conserve linear and angular momenta can be designed to have arbitrarily high orders of
accuracy; these algorithms retain their accuracy properties in the presence of non-conservative external forces. This can be
achieved without recourse to extra stages or calculation or additional degrees of freedom in a manner proposed by Argyris
et al. [1,29] and LaBudde and Greenspan [30,31], although the resulting systems of equations will no longer be as sparse for
higher-order schemes.

Momentum-conserving algorithms in this framework can be designed to conserve energy or preserve relative equilib-
rium states, although they are unlikely to do both unless they meet the far more restrictive criteria for elemental energy
conservation, satisfied only by a small group of algorithms based on the second-order energy–momentum algorithm of
Simo et al. [8]. However, it is possible to design algorithms that capture relative equilibrium solutions exactly and, in future,
we intend to explore the numerical properties of algorithms that can reproduce exact relative equilibrium solutions, in
regard to achieving numerical stability and non-linear iterative convergence when solving stiff problems at large time-steps.
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Appendix A. Proofs of algorithmic properties

A.1. Proposition 1 (linear momentum conservation)

From Algorithm MC, we have

LD ¼ IN PD ¼ IN ðDtFa � DtXR1=2 �GP1=2Þ.
Since R1/2 and P1/2 are arbitrary, we have 1

Dt LD ¼ IN Fa in general if and only if

INX ¼ ING ¼ ON .

Therefore we must have
PN

i¼1G
ij ¼

PN
i¼1X

ij ¼ 03 81 6 j 6 N , as given in (4.2). h

A.2. Proposition 2 (angular momentum conservation)

We first note that, for any vectors r; p 2 R3, we have the identity

rnþ1 � pnþ1 � rn � pn ¼ rD � p1=2 þ r1=2 � pD;

which can be verified directly. We also note that since M comprises unit submatrices, the same is true for M �1, i.e.

ðM �1Þij ¼ ~lijI3.

From Algorithm MC and (3.9), we have

JD ¼
XN

i¼1

ri
D � pi

1=2 þ ri
1=2 � pi

D

� �
¼
XN

i¼1

XN

j¼1

Dt~lijpj
1=2 þ gjirj

1=2

� �
� Dtvi

a

" #
� pi

1=2 � ri
1=2 �

XN

j¼1

Dtxijrj
1=2 þ gijpj

1=2

� �
� DtF i

a

" # !

¼
XN

i¼1

XN

j¼1

Dt~lijpj
1=2 � pi

1=2 þ gjirj
1=2 � pi

1=2 � gijri
1=2 � pj

1=2 � Dtxijri
1=2 � rj

1=2

� �
þ Dt ri

1=2 � F i
a þ pi

1=2 � vi
a

� �" #

¼
XN

i¼1

XN

j¼1

Dt~lijpj
1=2 � pi

1=2 � Dtxijri
1=2 � rj

1=2

� �
þ Dt ri

1=2 � F i
a þ pi

1=2 � vi
a

� �" #
;
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where the vectors pj
1=2 � pi

1=2 and ri
1=2 � rj

1=2 are unrelated for all i and j. Thus we have

1

Dt
JD ¼

XN

i¼1

ri
1=2 � F i

a þ pi
1=2 � vi

a

� �
in general if and only if ~lij ¼ ~lji; xij ¼ xji. Thus M �1 and X are symmetric, and since

M �1M ¼ I3N ¼ ðM �1ÞTM T;

we see that M ¼M T ()M �1 ¼ ðM �1ÞT; hence M itself must be symmetric. h

A.3. Proposition 3 (energy conservation)

We first note the identity

1

2
Pnþ1 �M�1Pnþ1 �

1

2
Pn �M�1Pn ¼ PD �M�1P1=2;

which can also be easily verified. Algorithm MC then gives

HD ¼ PD �M�1P1=2 þ /D � UD ¼ ðDtFa � DtXR1=2 �GP1=2Þ �M�1P1=2 þ /D � UD; ðA:1Þ

from which it can be seen that

HD ¼ �U NC
D () ðDtFa �GP1=2Þ �M�1P1=2 þ /D � UC

D ¼ DtXR1=2 �M�1P1=2.

Writing X ¼ jX now furnishes the result given in (4.8). h

A.4. Proposition 4 (preservation of relative equilibria)

We first require a preliminary lemma:

Lemma A.1. Let A 2 Rm�m be an arbitrary real square matrix, and t, t1, t2 be arbitrary real scalars. Define

B :¼ diagðAÞ 2 Rmn�mn and let C 2 Rmn�mn be a real matrix with arbitrary unit submatrices C ij :¼ cijIm 2 Rm�m. Then the

following statements are true:

(i) A commutes with expðtAÞ,
(ii) exp½ðt1 þ t2ÞA� ¼ expðt1AÞ expðt2AÞ,

(iii) expðtAÞ is non-singular, with expðtAÞ�1 ¼ expð�tAÞ, and

(iv) B commutes with C.
Proof. From (2.38), we have

A expðtAÞ ¼ A
X1
s¼0

ts

s!
As ¼

X1
s¼0

ts

s!
Asþ1 ¼

X1
s¼0

ts

s!
As

 !
A ¼ expðtAÞA

which establishes (i). Also from (2.38), we have

expðt1AÞ expðt2AÞ ¼
X1
q¼0

ðt1Þq

q!
Aq

 ! X1
r¼0

ðt2Þr

r!
Ar

 !
¼
X1
s¼0

X
qþr¼s

ðt1Þq

q!

ðt2Þr

r!

 !
As ¼

X1
s¼0

1

s!

Xs

r¼0

s!
ðs� rÞ!r!

ðt1Þs�rðt2Þr
 !

As

¼
X1
s¼0

ðt1 þ t2Þs

s!
As ¼ exp½ðt1 þ t2ÞA�

which establishes (ii), and (iii) follows by putting t1 = t and t2 = �t, since exp(0m) :¼ Im. Finally, for B and C as given, we
have

ðBCÞij ¼
Xn

k¼1

BikC kj ¼ cijA since Bij ¼ 0m for i 6¼ j;

and also

ðCBÞij ¼
Xn

k¼1

C ikBkj ¼ cijA;

hence BC = CB as given in (iv). h
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We will also make use of the identity

expðĥÞ � I3 ¼
tan 1

2
h

� 	
h

½expðĥÞ þ I 3�ĥ for h :¼ khk; ðA:2Þ

which can be established using the formula

expðĥÞ ¼ I3 þ
sinðhÞ

h
ĥþ 2

sin2 1
2
h

� 	
h2

ĥ2 ðA:3Þ

given in [36]. From (2.32) we note that ĥ3 ¼ �h2ĥ, and so using standard trigonometric identities we get

½expðĥÞ þ I3�ĥ ¼ 2 1� sin2 1

2
h

� �� 

ĥþ sinðhÞ

h
ĥ2 ¼

cos 1
2
h

� 	
sin 1

2
h

� 	 2 sin
1

2
h

� �
cos

1

2
h

� �
ĥþ 2

sin2 1
2
h

� 	
h

ĥ2

" #

¼ h

tan 1
2
h

� 	 sinðhÞ
h

ĥþ 2
sin2 1

2
h

� 	
h2

ĥ2

" #
¼ h

tan 1
2
h

� 	 ½expðĥÞ � I3�;

which leads to (A.2).
We can now begin the proof of Proposition 4. First, we define the abbreviation

EðkDtÞ :¼ expðkrkDt bX0Þ � diag½expðkrkDtx̂0Þ�. ðA:4Þ
From (4.17), we then have

Rk ¼ Rc
0 þ ktkDtVc

0 þ EðkDtÞR0 and Pk ¼M ½Vc
0 þ EðkDtÞV0� 8k;

which leads to

RD ¼ ktDtVc
0 þ ðE½ðnþ 1ÞDt� � EðnDtÞÞR0;

R1=2 ¼ Rc
0 þ kt nþ 1

2

� �
DtVc

0 þ
1

2
ðE½ðnþ 1ÞDt� þ EðnDtÞÞR0;

PD ¼MðE½ðnþ 1ÞDt� � EðnDtÞÞV0 and

P1=2 ¼MV c
0 þ

1

2
MðE½ðnþ 1ÞDt� þ EðnDtÞÞV0.

ðA:5Þ

From Lemma A.1(ii), we can write E[(n + 1)Dt] = E(nDt)E(Dt), and from Lemma A.1(iv) we see that E(kDt) and bX0 com-
mute with any matrix composed of scaled unit submatrices, which obviously includes G, X, M and M and their (relevant)
inverses.

Thus by inserting (A.5) into (3.8), we obtain

1

Dt
EðnDtÞ ½EðDtÞ � I3N � þ

1

2
½EðDtÞ þ I3N �GRE

� �
MV0 þ

1

Dt
GREMVc

0

¼ �XRE Rc
0 þ kt nþ 1

2

� �
DtVc

0

� 

� 1

2
EðnDtÞ½EðDtÞ þ I 3N �XRER0;

ktV
c
0 þ

1

Dt
EðnDtÞ ½EðDtÞ � I3N � �

1

2
½EðDtÞ þ I3N �GRE T

� �
R0 �

1

Dt
GRE T Rc

0 þ kt nþ 1

2

� �
DtVc

0

� 

¼ ðM REÞ�1

MV c
0 þ

1

2
EðnDtÞ½EðDtÞ þ I3N �ðM REÞ�1

MV0

ðA:6Þ

if FRE
a and VRE

a are zero. Now from Propositions 1 and 2 (linear and angular momentum conservation) we know thatPN
j¼1X

ij ¼ 03 81 6 i 6 N ; hence

XRERc
0 ¼

PN
j¼1

X1jrc
0 . . .

PN
j¼1

XNjrc
0

� �
¼ 0 and similarly XREVc

0 ¼ 0.

Also, Proposition 1 shows that ING ¼ ON () GTIT
N ¼ OT

N , and hence

GRE TRc
0 ¼ GRE TIT

N rc
0 ¼ 0 and similarly GRE TVc

0 ¼ 0. ðA:7Þ

Now, Lemma A.1(iii) tells us that E(kDt)�1 = E(�kDt), thus we can multiply each equation in (A.6) by E(�nDt) to get,
after rearranging,
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1

Dt
½EðDtÞ � I 3N � þ

1

2
½EðDtÞ þ I 3N �GRE

� �
MV0 þ

1

2
½EðDtÞ þ I3N �XRER0 ¼ �

1

Dt
Eð�nDtÞGREMV c

0;

1

Dt
½EðDtÞ � I 3N � �

1

2
½EðDtÞ þ I 3N �GRE T

� �
R0 �

1

2
½EðDtÞ þ I3N �ðM REÞ�1

MV0 ¼ Eð�nDtÞ½ðM REÞ�1
M � ktI 3N �Vc

0.

ðA:8Þ
We now invoke the relationship

EðDtÞ � I3N ¼
tan 1

2
hRE

� 	
x0

½EðDtÞ þ I3N � bX0 for x0 :¼ kx0k and hRE :¼ krx0Dt; ðA:9Þ

which is easily deduced from (A.2). Substituting (A.9) into (A.8) brings

½EðDtÞ þ I3N �
tan 1

2
hRE

� 	
x0Dt

bX0MV0 þ
1

2Dt
GREMV0 þ

1

2
XRER0

 !
¼ � 1

Dt
Eð�nDtÞGREMV c

0;

½EðDtÞ þ I3N �
tan 1

2
hRE

� 	
x0Dt

bX0R0 �
1

2Dt
GRE TR0 �

1

2
ðM REÞ�1

MV0

 !
¼ Eð�nDtÞ½ðM REÞ�1

M � ktI3N �Vc
0.

ðA:10Þ

Now it can be shown by direct calculation that ½expðkrDtx̂0Þ þ I3��1 exists provided that hRE 6¼ ð2mþ 1Þp; m 2 Z. Hence for
�p < hRE < p we can define

eE ¼ ½EðDtÞ þ I3N ��1
Eð�nDtÞ

and multiply (A.10) by [E(Dt) + I3N]�1 to get

tan 1
2
hRE

� 	
x0Dt

bX0MV0 þ
1

2Dt
GREMV0 þ

1

2
XRER0 ¼ �

1

Dt
eEGREMV c

0;

tan 1
2
hRE

� 	
x0Dt

bX0R0 �
1

2Dt
GRE TR0 �

1

2
ðM REÞ�1

MV0 ¼ eE ½ðM REÞ�1
M � ktI3N �Vc

0.

ðA:11Þ

Pre-multiplying either equation in (A.11) by bX0 makes the right-hand side disappear, and dot-multiplying either by
hx0 � � � x0i makes the V0 (or bX0R0) terms disappear. Hence each of the R0, V0 and Vc

0 terms in (A.11) must be individ-
ually zero, i.e.

tan 1
2
hRE

� 	
1
2
x0Dt

bX0MV0 þXRER0 ¼ 0;
tan 1

2
hRE

� 	
1
2
x0Dt

bX0R0 � ðM REÞ�1
MV0 ¼ 0;

GRE ¼ 03N and ½ðM REÞ�1
M � ktI 3N �Vc

0 ¼ 0;

ðA:12Þ

since eE�1 has been shown to exist. Introducing the initial conditions (2.37) into (A.12)1 and multiplying (A.12)2 by M RE

results in (4.18). Finally, we note as before that (4.18) assures only that (4.17) is a possible solution returned by Algorithm
MC; to guarantee that it will be returned, the algorithm must also give a unique solution for Rn+1 and Pn+1 given Rn, Pn

and Dt, for all n. h

A.5. Lemma 1 (preservation of relative equilibria and conservation of energy)

Along a relative equilibrium path, we have the difference in energy as

HD ¼
1

2
Pnþ1 �M�1Pnþ1 �

1

2
Pn �M�1Pn þ /D

from (4.5), since there is no external force. We also have, from (4.17) and (A.4),

Pk �M�1Pk ¼M½Vc
0 þ EðkDtÞV0� � ½Vc

0 þ EðkDtÞV0� ¼MV c
0 � Vc

0 þ 2MEðkDtÞV0 � Vc
0 þMEðkDtÞV0 � EðkDtÞV0

by symmetry of M. From (A.3) it can be shown, using standard trigonometric identities, that for any ĥ 2 R3�3 we have

expðĥÞ�1 ¼ expðĥÞT;
as is widely known for rotation matrices. Thus E(kDt)�1 = E(kDt)T, and from (Lemma A.1)(iv) we have

MEðkDtÞV0 � EðkDtÞV0 ¼ EðkDtÞTEðkDtÞMV0 � V0 ¼MV0 � V0;
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thus we can now write

Pk �M�1Pk ¼MVc
0 � Vc

0 þ 2MEðkDtÞV0 � Vc
0 þMV0 � V0. ðA:13Þ

Also, from (2.32), (2.35)1 and (A.3) we have

expðax̂0Þvc
0 ¼ I 3 þ

sinðax0Þ
x0

x̂0 þ 2
sin2 1

2
ax0

� 	
x2

0

x̂2
0

" #
vc

0 ¼ vc
0 8a;

and since E(kDt)�1 = E(�kDt), we can write

MEðkDtÞV0 � Vc
0 ¼MV0 � Eð�kDtÞVc

0 ¼MV0 � Vc
0.

Therefore (A.13) becomes

Pk �M�1Pk ¼MVc
0 � Vc

0 þ 2MV0 � Vc
0 þMV0 � V0 ¼ P0 �M�1P0 8k;

and thus 1
2
Pnþ1 �M�1Pnþ1 � 1

2
Pn �M�1Pn ¼ 0.

Finally, since / ¼
PN

i;j¼1/ij is a function of the element lengths lij = krj � rik only, the difference in strain energy is solely

dependent on the differences krj � rikD in the lengths of the bars. From (4.17) we have

ri
k ¼ rc

0 þ ktkDtvc
0 þ expðkrkDtx̂0Þðri

0 � rc
0Þ ) rj

k � ri
k ¼ expðkrkDtx̂0Þðrj

0 � ri
0Þ;

and so

krj
k � ri

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðkrkDtx̂0Þðrj

0 � ri
0Þ � expðkrkDtx̂0Þðrj

0 � ri
0Þ

q
¼ krj

0 � ri
0k 8k.

Hence /D = 0, and thus HD = 0. h

A.6. Proposition 5 (time reversibility)

From (4.20), we see that Algorithm MC is time-reversible if and only if

BTR
nþ1 ¼ B�1

nþ1 and ZTR
F ¼ �B�1

nþ1ZF . ðA:14Þ

Using (3.12), we can write (A.14) as

I 6N �
1

2
CTR

nþ1

� ��1

I6N þ
1

2
CTR

nþ1

� �
¼ I6N þ

1

2
Cnþ1

� ��1

I 6N �
1

2
Cnþ1

� �
and

I 6N �
1

2
CTR

nþ1

� ��1

ZTR
a ¼ � I 6N þ

1

2
Cnþ1

� ��1

Za;

which leads to

CTR
nþ1 ¼ �Cnþ1 and ZTR

a ¼ �Za.

Eq. (4.21) then follows from (3.11). h

A.7. Proposition 6

If an algorithm is pth-order accurate, then (5.1) shows that

� ¼ Znþ1 � Zðtnþ1Þ 2 OðDtpþ1Þ ðA:15Þ

when Zn = Z(tn). Therefore we have

f ðZnþ1Þ ¼ f ½Zðtnþ1Þ þ �� ¼ f ½Zðtnþ1Þ� þ ½f �r�ðtnþ1Þ � �þ Oðk�k2Þ

from Taylor’s theorem, and since f[Z(t)] is a constant of motion, we have f[Z(tn+1)] = f[Z(tn)] = f(Zn). Thus we can
write
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f ðZnþ1Þ � f ðZnÞ ¼ ½f �r�ðtnþ1Þ � �þ Oðk�k2Þ;

where the matrix [f � $](tn+1) is independent of Dt (since it is constant). Hence f(Zn+1) � f(Zn) can be at most OðDtpþ1Þ due
to (A.15). h
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