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Abstract. Contact problems are usually analysed by adding constraint equations to the equilib-
rium equations of an unconstrained problem. This can be performed by resorting to Lagrange
multipliers or penalty methods, or a combination of both (augmented Lagrange method). In
order to avoid the time-integration of the differential–algebraic system of equations, we will
use the master-slave approach, where the contact conditions are embedded into the equilib-
rium equations. These can be then integrated using the standard methods employed for un-
constrained systems. However, any conservation properties of the algorithms as applied to the
unconstrained system may not carry over to the modified master–slave equations with sliding
joints.

The description of the master-slave approach for sliding conditions in 3D beams has been
reported in [16]. We will extend this work by writing the master-slave relationship in the in-
cremental form, and then constructing robust conserving time-integration methods for the same
kind of problems. It is shown in the paper that, in the present master–slave context, the si-
multaneous conservation of energy and momenta without violating the sliding conditions is not
possible. As a result, we propose an energy conserving algorithm which satisfies the sliding
kinematic conditions exactly. Particular situations where contact transition occurs are treated
in detail and analysed in the numerical examples.

We note that the approach is applicable to general problems of 3D elastodynamics. In this
case, the rotational degrees of freedom are not present, and therefore the related complexities
are avoided.
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1 INTRODUCTION

Although the study of contact mechanics has attracted great attention in the literature, no
accepted optimal method exists for its treatment and it still stands as a challenging field. Most
of the works employ two basic routes to solve the contact problem: Lagrange multipliers and
the penalty method [3, 4, 22] (or alternatively, augmented Lagrangian, which is a combination
of both). However, the former leads to differential-algebraic equations in dynamics, whereas the
latter depends on a suitable choice of the penalty parameter and only approximates the contact
conditions.

In this paper we develop an alternative method, the master–slave approach, in order to anal-
yse permanent sliding contact of beams. The essence of the method lies in using the relative
coordinates (released displacements) of the node in contact (slave node) with respect to a set of
contacted nodes (master nodesin amaster element). The method uses a minimum set of degrees
of freedom, and preserves the differential character of the resulting equilibrium equations. We
note that the master–slave approach has strong similarities with projection methods [3], joint
coordinates in [10], or constraint elimination [22]. However, in our approach, the master–slave
relationship is used in the construction of the equilibrium equations, but the global coordinates
and velocities are retained in the unmodified time-integration strategy.

Penalty methods or augmented Lagrangian in conjunction with conserving algorithms can
be found for instance in [1, 11] in the context of general elastodynamics, and in [2] for 3D
beams. On the other hand, the master-slave approach has been used in node-on-node contact
for beams with joints in [5, 6, 13], and adapted to conserving algorithms in [8]. An exten-
sion of the method for node-on-element contact for sliding joints has been introduced in [16],
and a similar technique to the node-on-element master-slave approach has been recently used
in [12] in the context of a 2D spring onto a rod, although no reference to conserving time-
integrators was done. We will here extend the work in [16] by designing an energy-conserving
algorithm for beams with sliding spherical joints. The underlying algorithm is based on the
energy-momentum conserving algorithm for geometrically exact 3D beams developed by Simo
et al. [20]. We show that the sliding contact conditions impose some restrictions in the con-
servation of momenta, and that the satisfaction of the contact constrains and the conservation
of energy and angular momentum is not possible. As a result, we concentrate on the conser-
vation of energy. Momentum-conserving algorithms for sliding joints within the master-slave
approach can be found in [15], where non-released rotations, and joints with dependent released
degrees of freedom as the screw joint and the rack-and-pinion joint are also modelled.

The outline of the paper is as follows. We will first briefly describe the underlying beam
kinematics and the energy-momentum conserving scheme in Section2. The derivation of the
master-slave relationship in incremental form, needed for this kind of algorithm is introduced in
Section3. Section4 describes the topology of the coupling element that encapsulates the master
and released variables upon the finite element discretisation. The analysis of the conserving
properties is studied in Section5. Cases where the contact point moves to an adjacent element
are investigated in Section6. A set of numerical examples are given in Section7, and finally,
the performance and properties of the proposed algorithm are discussed in Section8.

2 ENERGY-MOMENTUM ALGORITHM FOR GEOMETRICALLY EXACT BEAMS

2.1 Geometrically exact beam theory

We will first briefly describe the geometrically exact beam theory. The reader is referred
to [18, 19] for a more complete exposition of the theory. We will consider a homogeneous
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undeformed straight beam with lengthL in the reference initial configuration. Let us denote
by X ∈ [0, L] the arc-length coordinate of the point in the centroid axis of this undeformed
beam, and byei, i = 1, 2, 3 a spatially fixed triad. At each timet ∈ R+, the deformed beam
is described via the following two maps: (i) the position vector of the centroid axisr(X, t) :
[0, L]× R+ → R3 and (ii) the orientation of the undeformable cross-sectionΛ(X, t) : [0, L]×
R+ → SO(3), whereSO(3) is the special orthogonal group, i.e.SO(3) = {Λ| detΛ =
+1,Λ−1 = ΛT}. Let us also define the moving triadgi(X, t), i = 1, 2, 3 as attached to the
cross section. The initial configuration is such thatg1(X, 0) ≡ e1, and matrixΛ(X, t) rotates
gi(X, t) as follows:gi(X, t) = Λ(X, t)ei. We will denote byGi(X) the triadg(X, t) in the
initial configuration, i.e.Gi(X) = gi(X, 0).

With this definitions at hand, it can be deduced thatΓ = ΛTr′ − G1 andK are the ma-
terial strain measures, conjugate to the axial and rotational material stress resultantsN and
M , respectively [19]. (Here and henceforth the dash symbol(′) denotes differentiation with
respect to the arc-length parameterX.) The vectorK is the material curvature, and is such that
Λ′ = ΛK̂, where a hat(•̂) onto a vectora ∈ R3 denotes a skew-symmetric matrix such that
âb is the vector producta× b = −b̂a.

In addition, we introduce the material tensor of inertiaJ = diag[IX IY IX + IY ] , and the
material angular velocityW such thatΛ̇ = ΛŴ , where the dot(̇) stands for time differenti-
ation. With this notation, and the assumption of undeformability of the cross-section, the total
strain and kinetic energy of the beam can be written as [20],

Vint =
1

2

∫

L

(N · Γ + M ·K) dX,

T =
1

2

∫

L

ρ (Aṙ · ṙ + W · JW ) dX,

(1)

whereA andρ are the cross-section area and the density of the beam, respectively, and the
material is assumed to be linearly elastic. The total energyE of the beam is obtained from (1)
asE = Vint + T −Wext, with Wext the work done by the external loads.

Applying the kinematic constraints of the geometrically beam theory to the three-dimensional
continua [19], the following differential beam equilibrium equations can be derived:

d

dt
(ρAṙ) = (ΛN)′ + next,

d

dt
(ΛJW ) = (ΛM)′ + r̂′ΛN + mext.

Herenext andmext are the distributed external force and torque vectors, respectively. From
these equations, it can be verified that, for conservative external loads, the variation of the total
energy is zero, i.e.δE = δVint +δT −δWext = 0. In addition, the vectors oflinear andangular
momenta, defined by

L =

∫

L

ρAṙdX,

Π =

∫

L

ρ (Ar̂ṙ + ΛJW ) dX,
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are both constant if no external loads exist [20]. We will describe next a spatial- and time-
discretisation that algorithmically conserves energy and the vectors of linear and angular mo-
menta.

2.2 Energy-momentum conserving algorithm for unconstrained beams [20]

Let us consider a deformed configuration of a beam at timetn defined by the position vector
rn(X) and the rotation matrixΛn(X) at each point of the centroid line, where here and in
the remainder of the paper,{•}n denotes quantities computed at timetn, , and{•}n+ 1

2
=

1
2
({•}n +{•}n+1). Let us also introduce theincrementaldisplacementu and the tangent-scaled

spatialandmaterial incremental rotation vectors,ω andΩ between time-stepstn andtn+1 in
the following way,

u = rn+1 − rn (2)

Λn+1 = cay(ω)Λn = Λncay(Ω). (3)

The rotation matrixcay(ω) ∈ SO(3) is the Cayley transformation, defined by,

cay(ω) = I +
1

1 + 1
4
ω · ω

(
ω̂ +

1

2
ω̂2

)
=

(
I− 1

2
ω̂

)−1 (
I +

1

2
ω̂

)
, (4)

whereω is the tangent-scaled rotation vector such thatω/‖ω‖ is the unit vector along the
fixed axis and‖ω‖ = 2 tan(θ/2), with θ the rotated angle. Note that from (3) and the fact
that cay(Ω)Ω = Ω, it follows thatω = ΛnΩ = Λn+1Ω. Moreover, by inserting the second
expression ofcay in (4) into Λn+1 = cay(ω)Λn, and after differentiating with respect toX
both sides ofΛn+1 = cay(ω)Λn, the following relations can be obtained [7, 14]:

Λn+1 −Λn = ω̂Λn+ 1
2

Kn+1 = Kn + ΛT

nS(ω)−Tω′,
(5)

whereS(ω)−1 = 1
1+ 1

4
ω·ω

(
I + 1

2
ω̂

)
.

We will interpolate the incremental quantitiesu andω by using a set of nodal Lagrangian
functionsI i and a set of nodal values as follows (summation over repeated indices forming a
superscript–subscript pair is understood):

ph =

{
uh(X)
ωh(X)

}
= I i(X)pi. (6)

The vectorspT
i = {ui

T ωi
T}, i = 1, . . . , NI are the vectors of nodal displacements and

tangent-scaled rotations, andNI is the number of nodes of elementI. We point out that the
functionsI i satisfy the completeness condition

∑NI

i=1 I i(X) = 1. By using the following time-
stepping discretisation,

ṙn+ 1
2

=
ṙn+1 + ṙn

2
=

u

∆t
, Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω

∆t
, (7)
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definitions (1) and (6), and making use of (5), it is possible to write the increment of energy
∆E = En+1 − En of an elementI over a time step∆t as

∆E = ∆T + ∆Vint −∆Vext = pI · gI , (8)

wherepIT
= {pI

1
T
. . . pI

NI

T} is the elemental vector of incremental kinematics with dimen-
sions6×NI . Each nodal component of the elemental load vectorgIT

= {gI,1T
. . . gI,NI

T} can
be split in its dynamic, elastic and external parts, respectively, given by,

gI,i
d =

1

∆t

∫

L

ρI i

{
u̇

jn+1wn+1 − jnwn

}
dX,

gI,i
v =

∫

L

[
I i′I 0

−I ir̂′n+ 1
2

I i′I

]{
Λn+ 1

2
Nn+ 1

2

S(ω)−1ΛnMn+ 1
2

}
dX,

gI,i
e = −

∫

L

{
I in̄
0

}
dX.

(9)

Here,j = ΛJΛT andw = ΛW are the spatial counterparts ofJ andW, respectively. When
considering a single element, the equation∆E = 0 should be satisfied for arbitrary incremental
kinematics, which leads to the following system of non-linear equations:

gI,i = 0, i = 1, . . . , NI . (10)

For multi-element analysis, a similar system can be obtained after setting∆E for the whole
model, which is equivalent to the standard assembly of all the elemental load vectorsgIT

=
{gI,1T

. . . gI,NI
T}. The resulting algorithm is energy- (by construction) and momentum-

conserving, as demonstrated in [20]. Note that we have considered only the conservative spatial
external force loads in order to simplify the forthcoming expressions (constant external mo-
ments are not conservative). Side effects of the interpolation used in this formulation are studied
in [9] and an alternative formulation, which is free of these effects, is presented in [15].

3 INCREMENTAL MASTER-SLAVE RELATIONSHIP FOR TRANSLATIONS

Let us consider a (slave) elementA with a node sliding onto a (master) elementB (see Figure
1). We will take the end nodeNA as the sliding node in order to ease the forthcoming notation.
The contact points on elementB are denoted byrXn = r(Xn, tn) andrXn+1 = r(Xn+1, tn+1).
We will confine our attention to a situation where all the rotations of the slave node are fully
released (spherical joint) and whererXn andrXn+1 are located in the same master element.
Situations where the contact pointrn+1 is located in an adjacent element will be studied in
Section6.

Using the Lagrangian nodal interpolating functionsIj on the master elementB, the sliding
kinematic conditions are written as follows:

Time tn : rNA,n = rXn = Ij
Xn

rj,n

Time tn+1 : rNA,n+1 = rXn+1 = Ij
Xn+1

rj,n+1

(11)

with rNA,n = r(XNA
, tn), rNA,n+1 = r(XNA

, tn+1), Ij
Xn

= Ij(Xn), andIj
Xn+1

= Ij(Xn+1).
Figure 2 illustrates the position of the contact point in the two sliding situations mentioned

5
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Figure 1: Simplified model of a sliding node. Master and slave nodes are represented by the symbols◦ and•,
respectively.

above by representing the deformed configurations where no horizonal displacements of the
master nodes exist. In this case, thex axis of the figure is representative of the arc-length
coordinateX. The deformed configuration at a mid-timetn+ 1

2
, which for the master nodes is

given byrn+ 1
2

= Ijrj,n+ 1
2
, is also depicted in the figure.

Figure 2:Translational increments over one time-step within one element

Note first that two different paths fromrXn to rXn+1 can be distinguished in Figure2, one
through pointP and another through pointQ. We will weight both routes via a parameterγ,
which leads to the following general expression of the incremental slave displacement:

uNA
= (1− γ)

(
utn + uXn+1

)
+ γ

(
uXn + utn+1

)

=
(
(1− γ)utn + γutn+1

)
+

(
γuXn + (1− γ)uXn+1

)
, (12)

where the meaning ofutn, utn+1, uXn anduXn+1 is also illustrated in Figure2, and defined
as follows:

utn = ∆Ij
Xrj,n, uXn = Ij

Xn
uj,

utn+1 = ∆Ij
Xrj,n+1, uXn+1 = Ij

Xn+1
uj,

(13)

with ∆Ij
X = Ij

Xn+1
− Ij

Xn
. Forγ = 0 andγ = 1 the paths via pointsQ andP are recovered,

respectively. Also, by setting
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Ij
Xγ = Ij

Xn
γ + Ij

Xn+1
(1− γ),

un(1−γ) = (1− γ)utn + γutn+1 ,
(14)

we can recast (12) as,

uNA
= un(1−γ) + Ij

Xγuj. (15)

Let us also introduce the (material) vector ofreleasedincremental translationsuR
T =

{∆X 0 0 } which allows us to express the increment of the contact-arc length coordinate as
∆X = uR · GR, with GT

R = {1 0 0} the material unit vector in the direction of the released
translation. Hence, the vectorun(1−γ) can be written as

un(1−γ) =
un(1−γ)

∆X
∆X =

1

∆X
(un(1−γ) ⊗GR)uR,

which inserted into (15) leads to

uNA
=

1

∆X
(un(1−γ) ⊗GR)uR + Ij

Xγuj. (16)

Whenever∆X = 0, we haveun(1−γ) = 0 ∀ γ ∈ R, and henceuNA
= uXn+1 = uXn. If

∆X = 0 corresponds to a non-converged state, the limit case∆X → 0 must be used in order to
obtain the value of∆X at equilibrium. For this situation, we can resort to the following result:

lim
∆X→0

un(1−γ)

∆X
= (1− γ) lim

∆X→0

utn

∆X
+ γ lim

∆X→0

utn+1

∆X
= (1− γ)r′tn + γr′tn+1

= r′tn ,

and therefore

lim
∆X→0

uNA
= (r′tn ⊗GR)uR + Ij

Xn
uj. (17)

4 COUPLING ELEMENT DEFINITION

Let us define the vectorpT
R = {uA,NA

R

T

ωA,NA
T} which contains the incremental released

translations and the slave tangent-scaled incremental rotations of nodeNA. In addition, we
setpA

Rm as the vector that contains the displacementspR, all the displacements of elementA,
pAT

= {pA,1T
. . . pA,NA

T} and the master displacements of elementB, i.e.

pA
Rm

T
=

{
pR

T pA
1

T
. . . pA

NA

T
pI

1

T
. . . pI

NB

T
}

. (18)

From equation (16), we can construct the transformation matrixN that relatespA andpA
Rm

in the following way

pA = NpA
Rm, (19)
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where

N =




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
.. .

...
...

...
.. .

...
0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R 0̄ . . . 0̄ 0̄ Ī1
X . . . ĪNI

X


 , (20a)

and withĪj
X andR defined as,

R =

[
1

∆X
un(1−γ) ⊗GR 0

0 I

]
,

Īj
X = Ij

Xγ

[
I 0
0 0

]
.

(20b)

Here and henceforth, the matricesĪ and0̄ are the identity and zero6 × 6 matrices, respec-
tively. The element with nodal displacementspA

Rm can be regarded as the displacement vector
of an extended element that couples the master elementB and the slave elementA.

5 MASTER–SLAVE ALGORITHMS

5.1 Equilibrium equations

In order to clarify the construction of the equilibrium equations, we will consider the simpli-
fied two beam model depicted in Figure1. The master–slave relationship (19) can be inserted
in the energy balance in (8), which leads to

∆E = pA
Rm ·NTgA + pB · gB. (21)

The productgA
Rm = NTgA is the extended load vector of the coupling element defined pre-

viously, conjugate to the displacementspA
Rm. From the arbitrariness of the master and released

displacements, we obtain a master–slave form of the energy-conserving algorithm for sliding
joints. After assembling the load vector of the coupling element and the load vector of element
B, the following equilibrium equations are obtained:

RTgA,NA = 0

gA,i = 0 i = 1, . . . , NA − 1 (22)

gB,j + Īj
Xγg

A,NA = 0 j = 1, . . . , NB

When solving this system of non-linear equations, the Jacobian matrixK of the coupling
element load vectorNTgA will be required. Its explicit form is given in AppendixA.

5.2 Definition of the algorithms

Let us first note that if the master–slave relationship (12) is satisfied, the extended algorithm
inherits theenergyconserving properties of the original algorithm. Indeed, by inserting the
master-slave relationship no approximation is introduced, so the identity∆E = 0 still holds.
However, this is by no means so when it comes to conservation of the angular momentum. It is
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shown in AppendixB that the increment of angular momentum over a time-step can be written
as:

∆Π = ∆t
(
γûtn+1 − (1− γ)ûtn

)
gA,NA

f , (23)

wheregA,NA

f is the translational part of the load vector of nodeNA, andutn andutn+1 are
defined in (13) and in Figure2. Therefore, the conservation of angular momentum requires the
conditionγûtn+1 − (1− γ)ûtn = 0, which is equivalent to,

rNA,n+ 1
2
− Ij

Xγr
B
j,n+ 1

2
= 0. (24)

In the particular case whenrj has only one variable component, it is possible to obtain a
value ofγ that satisfies both the kinematic condition (11) and the previous equations. However,
for the general three-dimensional case, a choice between conservation of the angular momentum
and conservation of energy must be done. Since the violation of the contact conditions spoils
the conservation of energy, the clearest choice is to satisfy relation (11). Numerical experiments
not shown here also support this choice.

If the sliding contact conditions hold, the error in the identity (24) is in general reduced by
settingγ = 1

2
. The increment of angular momentum and the slave node position vector will be

computed respectively according to equations (23) and (16), with γ = 1
2
.

6 CONTACT TRANSITION

We have not yet considered the situation where the two contact pointsXn+1 and Xn lie
on two different elements, as depicted in Figure3. The version of Figure2 for situations with
contact transition is illustrated in Figure4. Prior to writing a master–slave relationship, however,
it is important to note that if the kinematics of both master elementsB andC at timetn+1 is
inserted in the resulting coupling element, the linearisation of the equilibrium equations will
couple all three elementsA,B andC. This will not only increase the computational cost but also
modify the topology of the coupling element in unilateral contact. Therefore, we are interested
in relating the incremental kinematics of the slave elementA and the last contacted master
elementC, (but not elementB contacted at timetn). This implies the use ofγ = 0 in equation
(16) (pathrXn−Q−rXn+1 in Figure4), which leads to the following expression of the increment
of the slave translation:

uNA
=

1

∆X
(utn ⊗Gr)uR + Ij

Xn+1
uj. (25)

Figure 3:Simplified model for problems with contact transition.
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Figure 4:Translational increments over one time-step in the presence of contact transition

Note that now, sincerNA,n andrNA,n+1 belong to two different elements,utn is not given by
(13)1, but by (see Figure4)

utn = Ij
Xn+1

rC
j,n − Ij

Xn
rB

j,n. (26)

The increment of the angular momentum in the present case can be expressed as (see Ap-
pendix B, equation (38)):

∆Π = ∆t
(
r̂NA,n+ 1

2
− Ij

Xn+1
r̂C

j,n+ 1
2

)
gA,NA

f . (27)

As in the previous section, the condition̂rNA,n+ 1
2
− Ij

Xn+1
r̂C

j,n+ 1
2

= 0 will be in general in
conflict with the kinematic conditions of a sliding joint. These are now written as

Time tn : rNA,n = rXn = Ij
Xn

rB
j,n

Time tn+1 : rNA,n+1 = rXn+1 = Ij
Xn+1

rC
j,n+1.

(28)

We can either satisfy the kinematic condition in (28) or conserve the angular momentum.
Consistently with the choice given in the previous section, the proposed algorithm will be com-
pleted by usingγ = 0 and satisfying the sliding kinematic conditions in (28). Note that since
the master-slave relationship is exact (in the FE context), the conservation of energy still holds.

The increment of angular momentum is obtained by inserting the kinematic condition (28)
into expression (27), which gives rise to

∆Π =
∆t

2

(
r̂NA,n − Ij

Xn+1
r̂C

j,n

)
gA,NA

f .

Table1 summarises the properties of the algorithm for the two situations, with and without
contact transition.

7 NUMERICAL EXAMPLES

7.1 Free sliding mass

This example models two flexible beams connected through a spherical sliding joint. The ini-
tial configuration and the spatial discretisation of the two beams are shown in Figure5. Except-
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∆E = 0 ∆Π Sliding condition γ

No transition
√ ∆t

2

(
ûtn+1 − ûtn

)
gA,NA

f

√ 1
2

Contact transition
√ −∆t

2 ûtngA,NA

f

√
0

Table 1:Summary of conserving and kinematic properties of the proposed algorithm.

ing their lengths, the two beams have identical geometrical and material properties. A mass of 1
kg is attached to beamBM at pointM and subjected to an initial velocityvT

0 = {0 −10 −10}.
Since there exists no external applied loads, the problem is genuinely energy- and momentum-
conserving.

Z

Y

X

B

M

A v0

A =





0.0
0.0
0.0



 ; B =





0.0
3.0
1.0



 ; M =





1.0
3.0
1.0





EIyy = EIzz = 20.0
ρIyy = ρIzz = 0.016
AE = 100.0 ; ρA = 0.08 ; ν = 0.3

Figure 5: Free sliding mass example.

The simulations are run until the sliding node on beamBM reaches pointA. We tested the
node-to-element approach to model the sliding joint, together with the the trapezoidal rule as
in [16], and the proposed energy-conserving algorithm. A series of deformed configurations at
different times using the latter algorithm are depicted in Figure6.

Figure 6: Motion simulation and energy evolution for the free sliding mass problem.

We applied a constant time-step∆t = 0.002, which allowed the conserving algorithm to
terminate the analysis successfully, whereas the widely used trapezoidal rule develops an energy
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blow-up and eventually fails to converge before the slave node reaches the end A. The evolution
of the total energy in Figure6 confirms these instabilities.

Figure7 shows the evolution of the angular momentum. The trapezoidal rule has pronounced
oscillations, and although the energy-conserving algorithm does not conserve the angular mo-
mentum exactly, its evolution remains stable and apparently bounded. The larger variations are
in general always encountered during the transition of the contact point between the elements.
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Figure 7: Three components of the angular momentum for the free falling mass example.

7.2 Free rotating arm around a vertical beam

A vertical beamAB clamped at the bottom is connected to an horizontal armAC via a
spherical joint. The material and geometrical properties for the two beams are shown in Figure
8. An initial distributed velocity in theX direction and an angular velocity in the negativeZ
direction are applied to the arm. Due to the flexibility of the vertical beam, the arm turns around
and ascends along AB (see Figure9).

Both beams have been discretised using four linear elements each, and the same algorithms
employed in the previous examples have been used in this problem with a constant time-step
size∆t = 0.05. The energy histories given in Figure10show similar tendencies to those of the
previous example. The response of the trapezoidal rule has high oscillations in the energy, which
affect the history of the released displacement of the slave node along the arm AB (see Figure
10). In addition, from timet = 0.8, the trapezoidal rule requires progressive step-halvings in
order to converge.
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Slave node

FE MESH
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Figure 8:Description of the free rotating beam attached to a spherical joint.
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Figure 9:3D view of the deformed configuration of the free rotating arm with a sliding spherical joint.

Figure 10:Evolution of the total energy and released displacement for the free rotating arm problem with a sliding
spherical joint.

8 DISCUSSION AND CONCLUSIONS

The current paper has extended the master–slave approach in sliding contact analysis by
applying to it a robust energy-conserving algorithm. It has been demonstrated that the use of
constraint equations can be avoided by embedding the contact conditions in the equilibrium
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equations. Special attention has been dedicated to the exact satisfaction of the sliding condi-
tions.

The proposed algorithm conserves the total energy for conserving systems and satisfies ex-
actly the kinematic conditions of a sliding spherical joint. The total energy is still maintained if
a contact transition between finite elements is encountered. The numerical results have shown
that the variations in the angular momentum remain comparatively small. However, we point
out that the conservation of energy would be lost if not all the rotational components at the
joint were released. A way of overcoming this problem is proposed in [15], where momentum-
conserving algorithms are designed and employed with non-released rotations and a wider type
of joints within the framework of strain-invariant interpolation. Numerical experiments not
shown here have revealed that discontinuities in the sliding kinematic conditions or conserving
properties adversely affect the robustness of the algorithm. For this reason, preservation of the
contact conditions has been given a high priority here.

We note that many of the concepts encountered in this paper for the treatment of contact
can be transfered and are relevant to general sliding contact conditions in elastodynamics. To
the best of our knowledge, its embedding in the conserving algorithms within the master-slave
approach has not been explored in the literature. Further work along these lines is currently
being carried out.

Finally, let us point out that the transition of contact points along a slideline poses certain
difficulties during the solution process, mainly due to the loss of quadratic convergence and dis-
continuities in the contact forces. These drawbacks affect all the contact techniques mentioned
so far. The inclusion of an integral-averaged contacted area within segment-on-segment contact
instead of pointwise contact has been proved to palliate part of the problem [17, 21, 22]. How-
ever, the mentioned references still make use of Lagrange multipliers for averaging the contact
constraints. The combination of this integral-averaging and the master-slave approach looks
like a promising research avenue in the study of sliding contact conditions.

A LINEARISATION OF THE COUPLING ELEMENT LOAD VECTOR

Let us split the Jacobian matrix into two parts, one stemming from the linearisation of the
elemental load vectorgA, and a second one stemming from the linearisation ofN:

Kcp = NTKANδ + KN .

Matrix KA is the elemental Jacobian matrix of the load vectorgA, andNδ is the matrix
that relates iterative slave displacements and iterative master and released displacements via
δpNA

= NδδpRm. Its explicit expression is given by [14]:

Nδ =




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
.. .

...
...

...
. . .

...
0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

Rδ 0̄ . . . 0̄ 0̄ Ī1
Xn+1

. . . ĪNB
Xn+1


 ,

with

Rδ =

[
r′Xn+1

⊗GR 0

0 0

]
, and Īj

Xn+1
= Ij

Xn+1

[
I 0
0 0

]
.

We will next give the guidelines for deriving matrixKN , which is generated by the lineari-
sation ofN, i.e.:
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(δNT)gA = KNδpA
Rm.

By expanding the productNTgA and linearising the terms of matrixN, we obtain

(δNT)gA =





(δRT)gA,NA

06×NA

(δĪ1
X)gA,NA

...
(δĪNI

X )gA,NA





, (29a)

with

(δRT)gA,NA =

{
δ
[

1
∆x

(
GR ⊗ un(1−γ)

)]
gA,NA

f

0

}
,

(δĪj
X)gA,NA =

{
(δIj

Xγ)g
A,NA

f

0

}
,

(29b)

and wheregA,NA

f is the translational part of the slave load vectorgA,NA. Let us derive some
of the required terms in the previous expression:

δ∆X = GR · δrR

δutn+1 = δ(r(Xn+1, tn+1)− r(Xn, tn+1)) = r′(Xn+1, tn+1)(GR · δrR) + ∆Ijδrj

δutn = δ (r(Xn+1, tn)− r(Xn, tn)) = r′(Xn+1, tn)(GR · δrR)

δ(un(1−γ)) = (1− γ)δutn + γδutn+1 = ([(1− γ)r′(Xtn , tn) + γr′(Xn+1, tn+1)]⊗GR) δrR

δ

(
1

∆X

)
= − 1

∆X2
(GR · δrR)

δIj
Xγ = (1− γ)I ′jXn+1

(GR · δrR)

The expression for(δNT)gA can be now completed by inserting these results into (29). This
leads to a matrixKN such that(δNT)gA = KNδpA

Rm, and given by

KN =




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NI

KmR 06NB×6NA
06NB×6NI


 .

The explicit forms ofKRm, KRR andKmR are as follows:

KRR =

[
1

∆X

((−un(1−γ)

∆X
+ r′Xn+1,tn

+ γu′Xn+1

) · gA,NA

f

)
GR ⊗GR 0

0 0

]

KRm =
[
K1

Rm . . . KNB
Rm

]

Kj
Rm =

[
1

∆X

(
GR ⊗ gA,NA

f

)
∆Ijγ 0

0 0

]
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KmR =




K1
mR
...

KNI
mR




Kj
mR =

[
I ′jXn+1

(1− γ)gA,NA

f 0

0 0

]
.

B PROOF OF THE CONSERVATION OF MOMENTA

Since we aim to prove the conservation of angular momentum in the absence of applied
loads, we will restrict our attention to the casegI,i

e = 0, i = 1, . . . , NI , I = A,B or C, in the
subsequent derivations.

B.1 No contact transition

By splitting the load vectors into the translational and rotational part, i.e.gI,i = {gI,i
f gI,i

φ },
the equilibrium equations in (22) for the reduced model shown in Figure1 are written as

RTgA,NA = 0 (30a)

gA,i = 0 i = 1, . . . , NA − 1 (30b)

gB,j
f + Ij

Xγg
A,NA

f = 0 j = 1, . . . , NB (30c)

gB,j
φ = 0 j = 1, . . . , NB. (30d)

Consequently, after adding all the nodal load vectors for both elements, and using equations
(30a)-(30d), we get the following preliminary result:

NA∑
i=1

gA,i
f +

NB∑
j=1

gB,j
f = gA,NA

f −
(

NB∑
j=1

Ij
Xγ

)

︸ ︷︷ ︸
=1

gA,NA

f = 0, (31a)

NA∑
i=1

gA,i
φ +

NB∑
j=1

gB,j
φ = 0 + 0 = 0, (31b)

where use of the completeness conditions of the Lagrangian polynomialsIj
Xγ andj

Xn+1
has

been made. The conservation of the total linear momentumL =
∫

L
ρAṙdX can be deduced by

noting that from the definitions of load vectors in (9) we have that

∆L =

∫

LA+LB

ρAu̇dX =

NA∑
i=1

gA,i
f +

NB∑
j=1

gB,j
f = 0,

where the last identity follows from equation (31a). In order to ease the forthcoming deriva-
tions, let us setπ = ρjw as the density of local angular momentum. The conservation of the
total angular momentumΠ =

∫
L
(π + ρAr̂ṙ)dX can be demonstrated by first remarking that

also from the definitions of the load vectors in (9) and equation (31b) we obtain

1

∆t

∫

LA+LB

∆πdX −
∫

LA+LB

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
dX = 0
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or using the FE interpolationr′
n+ 1

2

= I i′ri
n+ 1

2

within each element,

1

∆t

∫

LA+LB

∆πdX =
∑

I=A,B

NI∑
i=1

r̂i,n+ 1
2

∫

LI

I i′Λn+ 1
2
Nn+ 1

2
dX. (32)

On the other hand, the increment of the the angular momentum∆Π over a time-step is given
by,

∆Π =

∫

LA+LB

(∆π + ρAr̂n+1ṙn+1 − ρAr̂nṙn) dX

=

∫

LA+LB

∆πdX +

∫

LA+LB

ρA
(
r̂n+ 1

2
u̇ + ûṙn+ 1

2

)
dX

=

∫

LA+LB

∆πdX +

∫

LA+LB

ρAr̂n+ 1
2
u̇dX. (33)

where the last result follows from the time-integration mid-point rule (7), i.e. ûṙ = 0.
Inserting equation (32) into the first integral of (33) yields

∆Π =
∑

I=A,B

NA+NB∑
i

r̂i,n+ 1
2

(
∆t

∫

LI

I i′Λn+ 1
2
Nn+ 1

2
dX +

∫

LI

ρAI iu̇dX

)

= ∆t
∑

I=A,B

NI∑
i=1

r̂i,n+ 1
2
gI,i

f , (34)

where the last step follows by recognising that the term in parentheses is the translational part
of gi = gi

d + gi
v in (9). By using the equilibrium equations (30b) and (30c), and the definitions

in (13), yields,

∆Π = ∆t

(
r̂NA,n+ 1

2
−

NB∑
j

Ij
Xγ r̂j,n+ 1

2

)
gA,NA

f = ∆t
(
γûtn+1 − (1− γ)ûtn

)
gA,NA

f

It is clear that the kinematic conditionγutn+1− (1−γ)utn = 0 makes the algorithm angular
momentum conserving.

B.2 Contact transition

We remember that these algorithms use the the valueγ = 0, and therefore, matrix̄Ij
X is the

one in (20b) but with Ij
Xγ = Ij

Xn+1
. Let us resort to the reduced problem in Figure3 which

contains elementsA, B andC. After performing the nodal assembly, the systems of equations
prior and after the introduction of the master-slave relationshippA = NpA

Rm are written as
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Before m-s After m-s

gA,NA = 0 RTgA,NA = 0,

gA,i = 0 gA,i = 0 , i = 1, . . . , NA − 1,

gB,j = 0 gB,j = 0 , j = 1, . . . , NB − 1,

gC,j
f = 0 gC,j

f + Ij
Xn+1

gA,NA

f = 0 , j = 2, . . . , NC ,

gC,j
φ = 0 gC,j

φ = 0 , j = 2, . . . , NC ,

gC,1
f + gB,NB

f = 0 gC,1
f + I1

Xn+1
gA,NA

f + gB,NB

f = 0,

gC,1
φ + gB,NB

φ = 0 gC,1
φ + gB,NB

φ = 0.

(35)

Let us first derive an equivalent version of equations (31) by adding all the nodal contribu-
tions of the load vectors and using the previous equilibrium equations,

NA∑
i=1

gA,i
f +

NB∑
j=1

gB,j
f +

NC∑
j=1

gC,j
f = gA,NA

f + gB,NB

f −
(

NC∑
j=1

Ij
Xn+1

)

︸ ︷︷ ︸
=1

gA,NA

f − gB,NB

f = 0

N∑
i=1

gA,i
φ +

NB∑
j=1

gB,j
φ +

NC∑
j=1

gC,j
φ = 0. (36)

From these relations, and using similar manipulations to SectionB.1, it can be then verified
that the increment of angular momentum has the same expression as in (34), but with the integral
and the sum over the three elementsA, B andC, i.e.

∆Π

∆t
=

∑
I=A,B,C

NI∑
i=1

r̂i,n+ 1
2
gI,i

f . (37)

Thus, by making use of the equilibrium equations (35), and the fact thatrB
NB ,n+ 1

2

= rC
1,n+ 1

2

(this is the common node to elementsB andC), the following expression can be derived:

∆Π

∆t
= r̂NA,n+ 1

2
gA,NA

f + r̂B
NB ,n+ 1

2
gB,NB

f −
NC∑
j=1

r̂C
j,n+ 1

2
Ij
Xn+1

gA,NA

f − r̂C
1,n+ 1

2
gB,NB

f

=

(
r̂NA,n+ 1

2
−

NC∑
j=1

Ij
Xn+1

r̂C
j,n+ 1

2

)
gA,NA

f ,

The angular momentum is thus conserved if the kinematic conditionrNA,n+ 1
2

= Ij
Xn+1

rC
j,n+ 1

2

is satisfied. If instead the sliding conditions (28) are imposed, it can be verified that the incre-
ment of angular momentum is equal to

∆Π =
∆t

2

(
r̂NA,n − Ij

Xn+1
r̂C

j,n

)
gA,NA

f . (38)
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