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Abstract. Contact problems are usually analysed by adding constraint equations to the equilib-
rium equations of an unconstrained problem. This can be performed by resorting to Lagrange
multipliers or penalty methods, or a combination of both (augmented Lagrange method). In
order to avoid the time-integration of the differential-algebraic system of equations, we will
use the master-slave approach, where the contact conditions are embedded into the equilib-
rium equations. These can be then integrated using the standard methods employed for un-
constrained systems. However, any conservation properties of the algorithms as applied to the
unconstrained system may not carry over to the modified master—slave equations with sliding
joints.

The description of the master-slave approach for sliding conditions in 3D beams has been
reported in [L6]. We will extend this work by writing the master-slave relationship in the in-
cremental form, and then constructing robust conserving time-integration methods for the same
kind of problems. It is shown in the paper that, in the present master—slave context, the si-
multaneous conservation of energy and momenta without violating the sliding conditions is not
possible. As a result, we propose an energy conserving algorithm which satisfies the sliding
kinematic conditions exactly. Particular situations where contact transition occurs are treated
in detail and analysed in the numerical examples.

We note that the approach is applicable to general problems of 3D elastodynamics. In this
case, the rotational degrees of freedom are not present, and therefore the related complexities
are avoided.
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1 INTRODUCTION

Although the study of contact mechanics has attracted great attention in the literature, no
accepted optimal method exists for its treatment and it still stands as a challenging field. Most
of the works employ two basic routes to solve the contact problem: Lagrange multipliers and
the penalty method3] 4, 22] (or alternatively, augmented Lagrangian, which is a combination
of both). However, the former leads to differential-algebraic equations in dynamics, whereas the
latter depends on a suitable choice of the penalty parameter and only approximates the contact
conditions.

In this paper we develop an alternative method, the master—slave approach, in order to anal-
yse permanent sliding contact of beams. The essence of the method lies in using the relative
coordinatesrgleased displacementsf the node in contacs(ave nodgwith respect to a set of
contacted nodesr{aster nodes amaster elemeht The method uses a minimum set of degrees
of freedom, and preserves the differential character of the resulting equilibrium equations. We
note that the master—slave approach has strong similarities with projection me3hgdsf
coordinates in10Q], or constraint elimination22]. However, in our approach, the master—slave
relationship is used in the construction of the equilibrium equations, but the global coordinates
and velocities are retained in the unmodified time-integration strategy.

Penalty methods or augmented Lagrangian in conjunction with conserving algorithms can
be found for instance inlf 11] in the context of general elastodynamics, and2hfpr 3D
beams. On the other hand, the master-slave approach has been used in node-on-node contact
for beams with joints in%, 6, 13], and adapted to conserving algorithms 8). [ An exten-
sion of the method for node-on-element contact for sliding joints has been introduckg],in [
and a similar technique to the node-on-element master-slave approach has been recently used
in [12] in the context of a 2D spring onto a rod, although no reference to conserving time-
integrators was done. We will here extend the worklif] py designing an energy-conserving
algorithm for beams with sliding spherical joints. The underlying algorithm is based on the
energy-momentum conserving algorithm for geometrically exact 3D beams developed by Simo
et al. 20]. We show that the sliding contact conditions impose some restrictions in the con-
servation of momenta, and that the satisfaction of the contact constrains and the conservation
of energy and angular momentum is not possible. As a result, we concentrate on the conser-
vation of energy. Momentum-conserving algorithms for sliding joints within the master-slave
approach can be found i%], where non-released rotations, and joints with dependent released
degrees of freedom as the screw joint and the rack-and-pinion joint are also modelled.

The outline of the paper is as follows. We will first briefly describe the underlying beam
kinematics and the energy-momentum conserving scheme in S2ctibine derivation of the
master-slave relationship in incremental form, needed for this kind of algorithm is introduced in
Sectiori3. Sectiord describes the topology of the coupling element that encapsulates the master
and released variables upon the finite element discretisation. The analysis of the conserving
properties is studied in Secti@ Cases where the contact point moves to an adjacent element
are investigated in Sectidh A set of numerical examples are given in Sectfomand finally,
the performance and properties of the proposed algorithm are discussed in 8ection

2 ENERGY-MOMENTUM ALGORITHM FOR GEOMETRICALLY EXACT BEAMS
2.1 Geometrically exact beam theory

We will first briefly describe the geometrically exact beam theory. The reader is referred
to [18, 19] for a more complete exposition of the theory. We will consider a homogeneous
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undeformed straight beam with lengthin the reference initial configuration. Let us denote
by X € [0, L] the arc-length coordinate of the point in the centroid axis of this undeformed
beam, and by;,i = 1,2, 3 a spatially fixed triad. At each timee R, , the deformed beam

is described via the following two maps: (i) the position vector of the centroid&Xis¢) :

[0, L] x R, — R? and (ii) the orientation of the undeformable cross-secfdiX, ¢) : [0, L] x

R, — SO(3), whereSO(3) is the special orthogonal group, i.650(3) = {A|det A =
+1,A™" = A"}, Let us also define the moving triggl(X,¢),i = 1,2,3 as attached to the
cross section. The initial configuration is such tgatX,0) = ey, and matrixA (X, ¢) rotates
gi(X,t) as follows: g;(X,t) = A(X,t)e;. We will denote byG;(X) the triadg(X,t) in the
initial configuration, i.eG;(X) = g;(X,0).

With this definitions at hand, it can be deduced that A"r’ — G; and K are the ma-
terial strain measures, conjugate to the axial and rotational material stress resiMtaimids
M, respectively19]. (Here and henceforth the dash symloldenotes differentiation with
respect to the arc-length parameiél) The vectorK is the material curvature, and is such that
A’ = AK, where a hate) onto a vectom € R? denotes a skew-symmetric matrix such that
ab is the vector produat x b = —ba.

In addition, we introduce the material tensor of inedtia= diag[Ix Iy Ix + Iy], and the
material angular velocit§¥ such thatA = AW, where the dot) stands for time differenti-
ation. With this notation, and the assumption of undeformability of the cross-section, the total
strain and kinetic energy of the beam can be writter28§ [

1
Vint = —/(N-I‘+M~K)dX,
2 L
| (1)
T= 5/p(Ark-fi~+W-JW)dX,
L
whereA andp are the cross-section area and the density of the beam, respectively, and the
material is assumed to be linearly elastic. The total enér@y the beam is obtained frord)
ask =V, + T — W, with W,,, the work done by the external loads.
Applying the kinematic constraints of the geometrically beam theory to the three-dimensional

continuallL9), the following differential beam equilibrium equations can be derived:

d
= (pAT) = (AN)' + 1y,
dt

d

a(AJW) = (AM) + 7 AN + m,,;.

Heren.,; andm,,; are the distributed external force and torque vectors, respectively. From
these equations, it can be verified that, for conservative external loads, the variation of the total
energy is zero, i.edE = 0V;,; + 0T — 6W,,; = 0. In addition, the vectors dinear andangular
momenta, defined by

L = / pArdX,
L

m— /p(A?’i‘+AJW)dX,
L
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are both constant if no external loads exB][ We will describe next a spatial- and time-
discretisation that algorithmically conserves energy and the vectors of linear and angular mo-
menta.

2.2 Energy-momentum conserving algorithm for unconstrained beams2[()]

Let us consider a deformed configuration of a beam at tingefined by the position vector
r,(X) and the rotation matrix\,,(X) at each point of the centroid line, where here and in
the remainder of the papefs}, denotes quantities computed at timg , and{o}n+% =

s({e}.+{®}n11). Letus also introduce thiacrementabisplacement; and the tangent-scaled
spatialand material incremental rotation vectorsy and{2 between time-steps, andt,., in
the following way,

U = Tpy1 — Ty (2)
An—H = CaY(w)An :Ancay<9) (3)

The rotation matrixay(w) € SO(3) is the Cayley transformation, defined by,

1 1, 1\ 1.
4

wherew is the tangent-scaled rotation vector such thafiw|| is the unit vector along the
fixed axis and|w| = 2tan(#/2), with § the rotated angle. Note that fror)(and the fact
thatcay(2)Q2 = Q, it follows thatw = A,Q = A,1Q2. Moreover, by inserting the second
expression otay in (4) into A,,,; = cay(w)A,, and after differentiating with respect 6
both sides ofA,,,; = cay(w)A,, the following relations can be obtained [L4]:

Anir — A, =BA, .

5
K, 1=K, +A'Sw) ", ®)

whereS(w) ! = —1— (I+3).
4
We will interpolate the incremental quantiti@sandw by using a set of nodal Lagrangian
functions/* and a set of nodal values as follows (summation over repeated indices forming a

superscript—subscript pair is understood):

pr={ 4 o, 6)
{560 )

The vectorsp] = {u;," w;"}, i = 1,..., N; are the vectors of nodal displacements and
tangent-scaled rotations, amd is the number of nodes of elemeht We point out that the
functionsI® satisfy the completeness conditif.V:I1 I'(X) = 1. By using the following time-
stepping discretisation,

:M:i . W M:ﬂ (7)

" 2 At nt3 2 At

n+

N |=
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definitions ) and B), and making use oB)}, it is possible to write the increment of energy
AFE = FE,., — E, of an elemenf over a time step\t as

AE = AT + AVjyy — AV = p' - g, (8)

wherep’" = {p{"...p}, "} is the elemental vector of incremental kinematics with dimen-
sions6 x N;. Each nodal component of the elemental load vegtor= {g"'" ... g"""} can
be splitin its dynamic, elastic and external parts, respectively, given by,

A 1 A U
I
= Y (P . dx,
da = xr )P { Jnt1Wni1 — JnWn }

. I' 0 A, 1N, 1
Ii ) ) n+s5- nt;
g, = /L [ _]z/,’::Hr% IZ/I ] { S(w)_fjngi_i_% } dX; (9)

Li Iiﬁ}
g. :—/{ dX.
L 0

Here,j = AJA" andw = AW are the spatial counterpartsbandW, respectively. When
considering a single element, the equatioA = 0 should be satisfied for arbitrary incremental
kinematics, which leads to the following system of non-linear equations:

ght=0, i=1,...,N;. (10)

For multi-element analysis, a similar system can be obtained after sétfinfpr the whole
model, which is equivalent to the standard assembly of all the elemental load vgttoss
{g"'" ... g""M"}. The resulting algorithm is energy- (by construction) and momentum-
conserving, as demonstrated #€]. Note that we have considered only the conservative spatial
external force loads in order to simplify the forthcoming expressions (constant external mo-
ments are not conservative). Side effects of the interpolation used in this formulation are studied
in [9] and an alternative formulation, which is free of these effects, is present&é]in [

3 INCREMENTAL MASTER-SLAVE RELATIONSHIP FOR TRANSLATIONS

Let us consider a (slave) elemettvith a node sliding onto a (master) elemeéhfsee Figure
1). We will take the end nod&/, as the sliding node in order to ease the forthcoming notation.
The contact points on elemeBtare denoted by x, = r(X,,t,) andry, ., = r(X,q1, thi1).
We will confine our attention to a situation where all the rotations of the slave node are fully
released (spherical joint) and wherg, andrx, ., are located in the same master element.
Situations where the contact poin}., is located in an adjacent element will be studied in
Sectiori6.

Using the Lagrangian nodal interpolating functiaidson the master elemef, the sliding

kinematic conditions are written as follows:

Timet, : TN :an:Ij T
" A XnZ (11)

i . _ _ 77
Tlmetn+1 D TNuanHl = TX, 0 — ]Xn+17“j7n+1

With ry, 0 = (X o)y Paamst = P(Xn o), Ik, = (X)), andl, = F(Xpn).
Figurel2 illustrates the position of the contact point in the two sliding situations mentioned
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1 TX, element B
NA N B O N B

Ny

element A
element A

1

Figure 1: Simplified model of a sliding node. Master and slave nodes are represented by the syrabdis
respectively.

above by representing the deformed configurations where no horizonal displacements of the
master nodes exist. In this case, thaxis of the figure is representative of the arc-length
coordinateX. The deformed configuration at a mid-timg, 1, which for the master nodes is

given byrn+% = Ijrm%, is also depicted in the figure.

Tx
+1
" TNp,n+1
r
TN 1
Np,n+s
1‘1,n+1 ’ ?
TNA,VH»%
Tl,n+§
Tin C
TNp,n
>
X

X” AX Xn+1

Figure 2:Translational increments over one time-step within one element

Note first that two different paths fromix, to rx,,, can be distinguished in Figu&; one
through pointP and another through poid. We will weight both routes via a parametegr
which leads to the following general expression of the incremental slave displacement:

uy, = (1=7) (w, +ux,,,)+7 (ux, +u,,,)
= (M =Yug, +yu,,,) + (yux, + (1 —7ux,,,), (12)

where the meaning af, , u,,,,, ux, anduy,,, is also illustrated in Figur@, and defined
as follows:

_ J 7]
w, = AT, uy, = IXn'u,j,

J J (13)
utn«l»l - A]X,r]:n“!‘17 an+1 - IXn+1uj7

with AT = I§  —I%, . Fory = 0 andy = 1 the paths via point§ and P are recovered,
respectively. Also, by setting
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By = ey + Ik, (1 =), (14)
un(lf'y) - (1 - V)U’tn + /yuthﬁl’

we can recasitl) as,

uy, = un(l,v)jtfgﬁuj. (15)

Let us also introduce the (material) vector releasedincremental translationsz™ =
{AX 00 } which allows us to express the increment of the contact-arc length coordinate as
AX = ug - Gg, with G, = {1 0 0} the material unit vector in the direction of the released
translation. Hence, the vectar,,_.) can be written as

Uy (1— 1
Un(1—) = ﬁAX = E(un(l—w) ® GRr)ug,

which inserted into15) leads to

1 .
uy, = E(’u,n(l_w X GR)UR + ]g(v’ulj. (16)
WheneverAX = 0, we haveu,;_,) = 0V vy € R, and hencewy, = ux,,, = ux,. If
AX = 0 corresponds to a non-converged state, the limit ca§e— 0 must be used in order to
obtain the value oA X at equilibrium. For this situation, we can resort to the following result:

utn utn+1 _

. Un(1—y) _ . . . / / o
AmoTax — U dim Ryt lim Ry = e Fm =
and therefore
dm = (r, ® Gr)ug + I u;. (17)
4 COUPLING ELEMENT DEFINITION

Let us define the vectgy, = {ué’NAT wANa"} which contains the incremental released

translations and the slave tangent-scaled incremental rotations ofYipdén addition, we
setps, . as the vector that contains the displacementsall the displacements of element
p" = {p*"" ... p»N4"} and the master displacements of elem@ni.e.

T T T T T
Phm Z{pRTpf ...DN, Pl -..DPh, } (18)

From equation16), we can construct the transformation mafNxthat relatep” andp4
in the following way

p* = Npp.., (19)
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where
0 I 00 O 0
N=| > : Do S (20a)
0 0 I 0 O 0
RO . 00T .. 1V
and withT’, andR defined as,
1
_ | axUn0-y ®Gr 0
i R
(20D)

1o
non, L 0]

Here and henceforth, the matriceand0 are the identity and zer® x 6 matrices, respec-
tively. The element with nodal displacemept$, . can be regarded as the displacement vector
of an extended element that couples the master elemantd the slave element.

5 MASTER-SLAVE ALGORITHMS
5.1 Equilibrium equations

In order to clarify the construction of the equilibrium equations, we will consider the simpli-
fied two beam model depicted in Figute The master—slave relationshibgj can be inserted
in the energy balance ii8), which leads to

AE = py,, - N'g* + p” - g°. (21)

The produclg4,, = NTg is the extended load vector of the coupling element defined pre-
viously, conjugate to the displacemepts, . From the arbitrariness of the master and released
displacements, we obtain a master—slave form of the energy-conserving algorithm for sliding
joints. After assembling the load vector of the coupling element and the load vector of element
B, the following equilibrium equations are obtained:

RTgA,NA =0
gA7i:0 1=1,...,Ny—1 (22)
9" Ty g = F= 1N

When solving this system of non-linear equations, the Jacobian nistok the coupling
element load vectaN"g“ will be required. Its explicit form is given in Appendi.

5.2 Definition of the algorithms

Let us first note that if the master—slave relationsh) (s satisfied, the extended algorithm
inherits theenergyconserving properties of the original algorithm. Indeed, by inserting the
master-slave relationship no approximation is introduced, so the idekxfity= 0 still holds.
However, this is by no means so when it comes to conservation of the angular momentum. Itis

8
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shown in Appendi:Bl that the increment of angular momentum over a time-step can be written
as:

ATL = At (Y, — (1 —7)d,) g™, (23)

Whereg?’NA is the translational part of the load vector of nadlg, andu,, andw,,,, are
defined in|3) and in Figure2. Therefore, the conservation of angular momentum requires the
conditionyay, ,, — (1 —v)u,, = 0, which is equivalent to,

_ 1) ..B —
TNA,n+% [XfylerH_% =0. (24)

In the particular case wher; has only one variable component, it is possible to obtain a
value of~ that satisfies both the kinematic conditidd) and the previous equations. However,
for the general three-dimensional case, a choice between conservation of the angular momentum
and conservation of energy must be done. Since the violation of the contact conditions spoils
the conservation of energy, the clearest choice is to satisfy reldtipnNumerical experiments
not shown here also support this choice.

If the sliding contact conditions hold, the error in the ident®d)(is in general reduced by
settingy = % The increment of angular momentum and the slave node position vector will be
computed respectively according to equatid2f) and (L6), with v = %

6 CONTACT TRANSITION

We have not yet considered the situation where the two contact p&ints and X, lie
on two different elements, as depicted in Fig@reThe version of Figur2 for situations with
contact transition is illustrated in Figude Prior to writing a master—slave relationship, however,
it is important to note that if the kinematics of both master eleménedC at timet,,; is
inserted in the resulting coupling element, the linearisation of the equilibrium equations will
couple all three element$, B andC'. This will not only increase the computational cost but also
modify the topology of the coupling element in unilateral contact. Therefore, we are interested
in relating the incremental kinematics of the slave elemérand the last contacted master
elementC, (but not elemenf3 contacted at time,). This implies the use of = 0 in equation
(16) (pathrx, —Q—rx, ., in Figure4), which leads to the following expression of the increment
of the slave translation:

1 .
— J
uNA - AX (utn ® GT‘)uR + ]Xn+1uj' (25)
element B element B
A Nec Na N¢
element A element A
t” t’n-‘rl

1

Figure 3:Simplified model for problems with contact transition.
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element B element C

T X
X” AX'B Xn«:rl

Figure 4:Translational increments over one time-step in the presence of contact transition

Note that now, sincey, , andry, ,+1 belong to two different elementa,, is not given by
(13),, but by (see Figurd)

uy, = I, ¢ —I] (26)

nt1' Jm
The increment of the angular momentum in the present case can be expressed as (see Ap-
pendix B, equation3s)):

A= A1 (7 s = T 7000 ) 977 (27)

n41 ] nti

As in the previous section, the conditiﬁr]},AM% — I M?JCMI = 0 will be in general in

conflict with the kinematic conditions of a sliding joint. These are now written as

Timet,: ry,,=T _IJ in
| T S (28)
Timet, 11 TNynt1 =Tx,p = [X"+lrj7n+1.

We can either satisfy the kinematic condition BB8) or conserve the angular momentum.
Consistently with the choice given in the previous section, the proposed algorithm will be com-
pleted by usingy = 0 and satisfying the sliding kinematic conditions R8|. Note that since
the master-slave relationship is exact (in the FE context), the conservation of energy still holds.

The increment of angular momentum is obtained by inserting the kinematic con@gépn (
into expressiond7), which gives rise to
At <A

AH:7 ’l”'NA7 IJ AC) ANA

Xnt1" Jm gf
Table1 summarises the properties of the algorithm for the two situations, with and without
contact transition.
7 NUMERICAL EXAMPLES
7.1 Free sliding mass

This example models two flexible beams connected through a spherical sliding joint. The ini-
tial configuration and the spatial discretisation of the two beams are shown in Bigtxeept-

10
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AE =0 ATl Sliding condition ~
No transition v & (t,,, — ) gp ™ Y 1
Contact transition ~ / — 4ty g v 0

Table 1:Summary of conserving and kinematic properties of the proposed algorithm.

ing their lengths, the two beams have identical geometrical and material properties. A mass of 1
kg is attached to beafda M at point)/ and subjected to an initial velocity) = {0 —10 —10}.

Since there exists no external applied loads, the problem is genuinely energy- and momentum-
conserving.

0.0 0.0 1.0
B A=< 00 p;B=1¢ 3.0 »;M=< 3.0
0.0 1.0 1.0
M
El,, = FEI,, =20.0
ply, = pI., = 0.016
z , AE =100.0; pA=0.08; v=10.3
A v
QY
X

Figure 5: Free sliding mass example.

The simulations are run until the sliding node on be@M reaches pointl. We tested the
node-to-element approach to model the sliding joint, together with the the trapezoidal rule as
in [16], and the proposed energy-conserving algorithm. A series of deformed configurations at
different times using the latter algorithm are depicted in Figire

109 T T T T T T T T
: Trap.
108 Energ-Cons. i

107 | .
106 | -
105 | -

Total Energy

104 F ]
103 | Y

102 1 1 1 I 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time

Figure 6: Motion simulation and energy evolution for the free sliding mass problem.

We applied a constant time-stepr = 0.002, which allowed the conserving algorithm to
terminate the analysis successfully, whereas the widely used trapezoidal rule develops an energy

11
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blow-up and eventually fails to converge before the slave node reaches the end A. The evolution
of the total energy in Figuré confirms these instabilities.

Figure7 shows the evolution of the angular momentum. The trapezoidal rule has pronounced
oscillations, and although the energy-conserving algorithm does not conserve the angular mo-
mentum exactly, its evolution remains stable and apparently bounded. The larger variations are
in general always encountered during the transition of the contact point between the elements.

2079 F Trap, ‘ B
Energ—Cons.
= =20.8 P —
- o ‘,"‘Y!\f.v/‘
—-20.81 - —
T T T T T
1029 = — 77 Trap. —
Energ—Cons.
10.28 — —
_>\.
10.27 N —
o M LN o SN .," “I
10.26 — —
! ! ! ! !
T T T T T
-10.26 |- Y N
ROV ISI.V NN VU ,:,.‘““'_’Wﬂr‘"‘.. D SV ¥ ¥
-10.27 ST TV Ny /\»y\‘y,\“\_‘.; Vi N —
= -10.28 - =
-10.29 - _
-103 1 ___. Trap. H:‘ -
{3
~10.31 ‘Energ—Con‘s. | | | | | ‘ h: _
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time

Figure 7: Three components of the angular momentum for the free falling mass example.

7.2 Free rotating arm around a vertical beam

A vertical beamAB clamped at the bottom is connected to an horizontal dthvia a
spherical joint. The material and geometrical properties for the two beams are shown in Figure
8. An initial distributed velocity in theX direction and an angular velocity in the negatiwe
direction are applied to the arm. Due to the flexibility of the vertical beam, the arm turns around
and ascends along AB (see Fig9)e

Both beams have been discretised using four linear elements each, and the same algorithms
employed in the previous examples have been used in this problem with a constant time-step
size At = 0.05. The energy histories given in Figut€ show similar tendencies to those of the
previous example. The response of the trapezoidal rule has high oscillations in the energy, which
affect the history of the released displacement of the slave node along the arm AB (see Figure
10). In addition, from timet = 0.8, the trapezoidal rule requires progressive step-halvings in
order to converge.

12
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B
I FE MESH
z
)\ v, =4.0m/s
> ! Slavenode = 8.0rad/s
10 E =2G =10*N/m?
A=1.0m?
x I, = I.=K,=1073m?
" — 3

—EZS R %ﬁ p = 1.0kg/m
vy S e

Vo

Figure 8:Description of the free rotating beam attached to a spherical joint.

Figure 9:3D view of the deformed configuration of the free rotating arm with a sliding spherical joint.

0.8 T

35 T T
Trap.
Energy-Cons.

Trap. ‘
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0.7
0.6 [
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Total Energy
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0
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Figure 10:Evolution of the total energy and released displacement for the free rotating arm problem with a sliding
spherical joint.
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8 DISCUSSION AND CONCLUSIONS

The current paper has extended the master—slave approach in sliding contact analysis by
applying to it a robust energy-conserving algorithm. It has been demonstrated that the use of
constraint equations can be avoided by embedding the contact conditions in the equilibrium
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equations. Special attention has been dedicated to the exact satisfaction of the sliding condi-
tions.

The proposed algorithm conserves the total energy for conserving systems and satisfies ex-
actly the kinematic conditions of a sliding spherical joint. The total energy is still maintained if
a contact transition between finite elements is encountered. The numerical results have shown
that the variations in the angular momentum remain comparatively small. However, we point
out that the conservation of energy would be lost if not all the rotational components at the
joint were released. A way of overcoming this problem is proposeiiih yvhere momentum-
conserving algorithms are designed and employed with non-released rotations and a wider type
of joints within the framework of strain-invariant interpolation. Numerical experiments not
shown here have revealed that discontinuities in the sliding kinematic conditions or conserving
properties adversely affect the robustness of the algorithm. For this reason, preservation of the
contact conditions has been given a high priority here.

We note that many of the concepts encountered in this paper for the treatment of contact
can be transfered and are relevant to general sliding contact conditions in elastodynamics. To
the best of our knowledge, its embedding in the conserving algorithms within the master-slave
approach has not been explored in the literature. Further work along these lines is currently
being carried out.

Finally, let us point out that the transition of contact points along a slideline poses certain
difficulties during the solution process, mainly due to the loss of quadratic convergence and dis-
continuities in the contact forces. These drawbacks affect all the contact techniques mentioned
so far. The inclusion of an integral-averaged contacted area within segment-on-segment contact
instead of pointwise contact has been proved to palliate part of the probi21] 22]. How-
ever, the mentioned references still make use of Lagrange multipliers for averaging the contact
constraints. The combination of this integral-averaging and the master-slave approach looks
like a promising research avenue in the study of sliding contact conditions.

A LINEARISATION OF THE COUPLING ELEMENT LOAD VECTOR

Let us split the Jacobian matrix into two parts, one stemming from the linearisation of the
elemental load vectay?, and a second one stemming from the linearisatioN of

K., = N"K,N; + Ky.

Matrix K, is the elemental Jacobian matrix of the load vegidr andN; is the matrix
that relates iterative slave displacements and iterative master and released displacements via
0py, = Nsopp,,. Its explicit expression is given b 4:

0 I ..oo0o O .. 0
Ny=| - = Sl : ,
0O O I10 0 0
R; 0 00T, .. B TI¥,
with
. ’T'IXn ®GR O =i 7 I 0
R; = +10 E and IXn+1_IXn+1 0ol

We will next give the guidelines for deriving matriX ,;, which is generated by the lineari-
sation ofIN, i.e.:
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(NT)g* = Knops, ..
By expanding the produd® g and linearising the terms of matriX, we obtain

( (5RT)QA’NA )

06><NA

(ONT)gh = { (6Ty)ghM L (29a)

| (OT¥)g™™

with

0

<5RT)QA:NA — { d [ﬁ (GR 02 un(l_v))} g?,NA } |
' (29b)
TJ 51] ANy
w&m“u:{<m§f }7

and whereg;"NA is the translational part of the slave load veqjdr¥4. Let us derive some
of the required terms in the previous expression:

0AX = Gpg-org
oy, = 0(r(Xng1, tns1) — P( X, toi1)) = 7' (Xpt1, tns1) (Gr - 0TR) + AL,
dug, =0 (P(Xpy1,tn) — (X, tn)) = 7 (Xoi1,tn) (Gr - 07R)
5(un(1—"/)) = (1 —)duy, +youy,,, = ([ = )7 (X4, tn) + 97" (Xng1, tni1)] © Gr) 0TR

1 1
5(zx)=—1}ﬂGRﬁ”9

0L, = (1=NI"% (Gg-org)

The expression fofdN™)g“ can be now completed by inserting these results €. (This
leads to a matri¥ y such thatdNT)g* = K dp%,,, and given by

Krr O6x6n, Krm
KN = 06NA><6 OGNAXGNA 06NA><6N]
Kir  Osngxens Osngxen,
The explicit forms ofK y,,,, Krr andK,, r are as follows:

Uy, 1—~ A,N
0 0
Kpm = Ky - Ki2 |
Ki _ | &% (GR ®9}?’NA> AL’y 0
Rm 0 0

15
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K. g
KmR:

N,

Kk

j AN
K . = [/anH( _wgf 40
mR 0 0

B PROOF OF THE CONSERVATION OF MOMENTA

Since we aim to prove the conservation of angular momentum in the absence of applied
loads, we will restrict our attention to the cagel = 0,7 =1,...,N;, I = A, BorC, in the
subsequent derivations.

B.1 No contact transition

By splitting the load vectors into the translational and rotational partgi:e~ {g}" g;'},
the equilibrium equations ir2@) for the reduced model shown in Figutere written as

RTg4NV4 = 0 (30a)

g =0 i=1,...,Nys—1 (30b)

g?iy P gtNi=0 j=1,....N (30c)
f X975 J y-+-51VB

g,’=0 j=1,...,Ng (30d)

Consequently, after adding all the nodal load vectors for both elements, and using equations
(309-(300), we get the following preliminary result:

Ny Np Np

SIS S O OC N IR
i=1 j=1 J=1

Na NpB -

gyt +> gl =0+0=0, (31b)
i=1 j=1

where use of the completeness conditions of the Lagrangian ponno@@@d&nH has
been made. The conservation of the total linear momerfium [, pArdX can be deduced by
noting that from the definitions of load vectors B) (ve have that

Na ' Np '
AL = / pAudX =Y g+ g}’ =0,

where the last identity follows from equatic®1(g). In order to ease the forthcoming deriva-
tions, let us setr = pjw as the density of local angular momentum. The conservation of the
total angular momenturfl = [, (w + pA7#)dX can be demonstrated by first remarking that
also from the definitions of the load vectors ®) &nd equation31k) we obtain

1 Y
AmdX — r'+lAn+%Nn+%dX:O

A+ n
At LAYLB LA4+LB 2
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or using the FE interpolatior  , = I“rfwr within each element,
2

1
2

Ny
1 R }
L AmdX = o AN dx -
At Jpaips T [:ZAB;T“"H /LI ntgt Y ntg (32)

On the other hand, the increment of the the angular momenilihover a time-step is given
by,

Al — / (Amr 4 pATy 171 — pAT i) dX
LA+LB

_ / AmdX + / pA 7y @,y ) X
LA+LB LA+LB 2 2

_ /  Amax+ / pAF, 1 adX. (33)
LA+L

LA+LB

where the last result follows from the time-integration mid-point rig {.e. ur = 0.
Inserting equatior3d?2) into the first integral of33) yields

Na+Np

AT = ) Y Pinil (At/I]i,An—i-éNn—i-;dX—'_/IpAIi’l:bdX)
L L

I=AB i

Ny
= At Y Z@H%gjﬁ, (34)

I=A,B i=1

where the last step follows by recognising that the term in parentheses is the translational part
of g' = g%, + g’ in (9). By using the equilibrium equation8@k) and B0c), and the definitions
in (13), yields,

Np
~ I A, -~ - A,
ATl = At (rNA’nJF% — Zlg(,yrm%) g; Na — At (yuth —(1- y)utn) g; Na
J

It is clear that the kinematic conditioyu,,,, — (1 —~)u, = 0 makes the algorithm angular
momentum conserving.

B.2 Contact transition

We remember that these algorithms use the the value0, and therefore, matri¥, is the
one in 20k but with Iﬁw = Ig'(m. Let us resort to the reduced problem in Fig@Brevhich
contains elementd, B andC'. After performing the nodal assembly, the systems of equations
prior and after the introduction of the master-slave relationpHip= Np4 = are written as

17
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Before m-s After m-s
gA,NA —0 RTgA,NA —0,
gt = g¥'=0 , i=1,...,Ns—1,
g"’ =0 g"’=0 , j=1,...,Ng—1,
g5’ =0 g7+, gy =0, j=2... N, (35)
957 = 957 =0 , j=2...Ng,
g7t +glr =0 g+ Iy gpM g7 =0,
g(?l + gf’NB =0 ggl + gf’NB =0.

Let us first derive an equivalent version of equatiad®) py adding all the nodal contribu-
tions of the load vectors and using the previous equilibrium equations,

Na Np N¢ N¢
A B.j C,j AN BN j AN BN
i=1 j=1 j=1

J=1

=1

N . Ns - Ng _
DR WS S &
i=1 j=1 j=1

From these relations, and using similar manipulations to Segtigint can be then verified
that the increment of angular momentum has the same expressioi34k wug with the integral
and the sum over the three elemendtsB andC, i.e.

Ny
ATl . Li
N D D Tianngyr (37)
I=A,B,C i=1
Thus, by making use of the equilibrium equatioB8)( and the fact thatﬁB il = rfn#
b 2 b 2

(this is the common node to elemeisandC’), the following expression can be derived:

ATI 2l
_ = A,Na ~B B,Np ZAC J ANa _ =C B,Np
AN TNantidr T T TNg e 19y Tintilx, .97 T3 9r
i=1

N¢
~ j ~C AN,
- (rNA,n+§ - Z [§(H,+17'j,n+;> gy
j=1
The angular momentum is thus conserved if the kinematic condttign,, 1 = ]Xn-&-lrj,n—i-%
is satisfied. If instead the sliding conditior8) are imposed, it can be verified that the incre-
ment of angular momentum is equal to

At o i~ A
AIl = 7 (TNAJI — [g(n+1 >gf’NA. (38)

Tin
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