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Abstract. In this work, an approach is made towards improving the global accuracy and also
the order of accuracy in implicit time-stepping procedures for stiff mechanical problems. In
principle, higher-order accuracy can be achieved without compromising any of the conservation
properties of an underlying (second-order) algorithm, and without introduction of additional
integration stages or splitting of the original time step. Alternatively, it may be preferable to
keep the order of accuracy of the underlying algorithm and focus on reducing the global error
of the solution. The key to this is in the formulation of time-stepping procedure that utilise non-
constant integration parameters. For 3D beams with standard joint types, a somewhat related
technique may be used to address some of the complexities typical of beam elements. For more
complex joint types, however, this approach may not be immediately applicable. As an example,
the sliding joint is analysed in detail.

1 INTRODUCTION

Numerical time integration of dynamical systems may be performed using either explicit or
implicit time-stepping procedures. The latter are particularly suitable for problems with a wide
spectrum of natural frequencies in the cases when it is reasonable to assume that only the am-
plitudes associated with the lower part of the frequency spectrum contribute significantly to the
time response of the system. In order to improve the numerical stability properties of implicit
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time-stepping procedures in the non-linear regime, it is important to design these procedures in
such a way as to make the integrals of motion (total energy for Hamiltonian systems and the total
translational and angular momentum for the systems with spatial symmetries) algorithmically
conserved1−11. Additionally, the conserved quantities in mechanical systems with symme-
tries imply the existence of families ofrelative equilibrium states. It is becoming increasingly
accepted that competitive time-integrators should be capable of 192.168.0.42preserving these
states1, 3, 11.

In Section 2 of this paper we will show how to improve the accuracy properties of some
existing conserving time-stepping procedures, by introducing a set of configuration-dependent
scalar integration parameters. This is done whilst maintaining all of the conservation properties
of the underlying algorithm. We will build on the ideas outlined in [11] (which were presented
for a central-force problem) and analyse to what extent they may be applied to (i) a single bar
element and (ii) an assembly of bar elements. The use of configuration-dependent integration
parameters allows for improved accuracy to be achieved within asingle-step time-advancing
framework, which is in contrast with more costly multi-stage and time-splitting techniques12.
The additional computational overhead will thus be almost completely contained in the for-
mation of the Jacobian matrix within the Newton-Raphson iterative solution procedure. The
approach we use here is motivated by [6], although we demand not only conservation of the
integrals of motion, but also preservation of the physical states of relative equilibria. The im-
proved accuracy properties will be shown to reduce the absolute position and momentum errors
when the time step is large, or improve the order of convergence towards the exact solution
when the time step is sufficiently small.

In Section 3 we turn our attention to time integration in more practical problems of motion
of flexible multibody systems. In these structures, we need to consider a variety of additional
complexities, which are mainly related to the existence of 3D rotations as additional unknowns
of the problem. Firstly, the rotational degrees of freedom in 3D space make the configura-
tion space of the problem a non-linear manifold rather than a (linear) vector space; this more
elaborate algebraic structure requires a more sophisticated process of time integration7, 9, 10, 13.
Additionally, the mathematical model of the structure also requires the spatial discretisation of
the rotational degrees of freedom; unless handled properly, this discretisation is known to be
detrimental to objectivity of the algorithmic strain measures14, 15, 16, 17. Finally, multibody sys-
tems may contain different types of kinematic releases, translational as well as rotational, which
require a specially designed procedure within a finite-element setting18, 19, 20, 21, 22. In this pa-
per, we will embed the kinematic releases within a minimum-set method2, 20, 21, 22and address
some of the difficulties related to constraint violation and conservative integration in the case of
sliding joints23.

2 IMPLICIT INTEGRATION USING NON-CONSTANT PARAMETERS

In dynamic numerical analyses of elastic continua, it is standard to perform the spatial dis-
cretisation of the continuum using a finite-element-based interpolation of the displacement and
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the velocity (and sometimes also the acceleration) fields, while simultaneously employing a
finite-difference based time integration of these fields. In order to do so, we normally define the
time-integration process by specifying a set ofconstant integration parameters24.

In this section, we will present a generalisation of this approach, whereby the integration
parameters are allowed to be configuration-dependent, and apply the new method to problems
of one-dimensional elastic continua – bar elements and truss structures.

2.1 Application to a single bar element

Let us consider a bar element of unstrained lengthl̄ and constant cross-sectional areaA, and
define its position with respect to the origin of an inertial system0 by specifying the position
vectors of its end-pointsr1, r2 ∈ R3.

For an elastic, homogeneous bar, with a constant strain, the strain energy functionφ depends
only on the lengthl = ‖r2 − r1‖ of the bar, and, for a constant loadF acting at the two
end-nodes, the potential of the applied loadsU is a function of the vector of nodal positions
Rt = 〈rt

1 rt
2〉 such thatU = R·F . The total potential energy and the total kinetic energy of the

bar are then

Φ(R) = φ(l) − R·F and T (Ṙ) =
1

2

∫ l̄

0

Aρṙ(x) · ṙ(x)dx, (1)

wherer(0) = r1, r(l̄) = r2 andρ is the density of the bar material in its undeformed state.

2.1.1 Spatially- and fully discrete equations of motion

By assuming a linear interpolation of the displacement vector along the bar viar(x) =
N(x)R with N(x) = 1

l̄

[
(l̄ − x)I xI

]
, whereI is the identity matrix inR3 × R3, the La-

grangian function becomes

L(R, Ṙ) ≡ T (Ṙ)−Φ(R) =
1

2
Ṙ ·MṘ−φ(l)+R·F where M =

Aρl̄

6

[
2I I
I 2I

]
. (2)

The equation of motion for a semi-discrete dynamical system containing a single bar finite
element then follows fromd

dt
∇

Ṙ
L −∇RL = 0, where

∇RL = −φ′(l)∇R l + F = −φ′(l)
l

ĨR + F with Ĩ =

[
I −I

−I I

]
. (3)

By writing V = Ṙ we arrive at the coupled first-order system

MV̇ = −φ′(l)
l

ĨR + F and Ṙ = V . (4)

We now propose a family of algorithms that mimic the above differential equations by sat-
isfying the following discrete equations of motion
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1

∆t
(MV d + γB−1ĨMV 1/2) = −ξB−1ĨR1/2 + F

1

∆t
(Rd − γB−1ĨR1/2) = B−1V 1/2,

(5)

where for any given quantity(·) we define(·)d ≡ (·)n+1− (·)n and(·)1/2 ≡ 1
2
[(·)n +(·)n+1];

Rk andV k are the discrete approximations to the displacementsR(tk) and velocitiesV (tk) at
time tk ≥ 0; and∆t = tn+1 − tn is the time-step length. The parametersγ andξ and matrixB
are real-valued functions ofRn andRn+1, andB is assumed to have the block structure

B =

[
β1I β2I
β2I β1I

]
. (6)

2.1.2 Conservation criteria and local accuracy analysis

We now state without proof the conditions for algorithm (5) to conserve energy and mo-
menta, and also to preserve the relative equilibria of the underlying physical system.

Proposition Algorithm (5) conserves translational and angular momentum when F = 0
for any β1, β2, γ and ξ ∈ R such that det(B) �= 0 and also conserves energy provided that

ξ =
φd − γ(B−1ĨR1/2 ·F + 1

∆t2
R∗

d ·B−1ĨMR∗
d)

R∗
d ·B−1ĨR1/2

, (7)

where R∗
d = BRd − γĨR1/2. Algorithm (5) additionally recovers the exact relative equi-

librium solution for a free-flying bar provided that

γ = 0, ξ =
φ′(l0)

l0
, β1 − β2 =

1
2
w0∆t

tan(1
2
θ)

, and β1 + β2 = 1 (8)

where l0 denotes the initial length of the bar, w0 its initial angular velocity about one of
the principal axes of inertia and θ = arccos

(r2,n−r1,n)·(r2,n+1−r1,n+1)

lnln+1
is the incremental angle of

rotation, whenever the appropriate initial conditions for such a solution exist. It also recovers
the exact trajectory rotational relative equilibrium solution for a bar pinned at one of its ends
provided that

γ = 0, ξ =
φ′(l0)

l0
, and β1 =

1
2
w0∆t

tan(1
2
θ)

, (9)

whenever the appropriate starting conditions for such a solution exist.
Thus incorporating conditions (7)-(9) into algorithm (5) results in an energy-momentum

algorithm that exactly recovers the solutions along trajectories of relative equilibria, while still
allowing for different choices ofβ1, β2 andγ (which then determineξ). The algorithm of Simo
and Tarnow8, as applied to a single bar element, is recovered whenβ1 = 1, β2 = 0 andγ = 0.
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We now investigate the local accuracy of algorithm (5). We first define thelocal error vector
as

ε := Zn+1 − Z(tn+1) when Zn = Z(tn) (10)

whereZt = 〈Rt V t〉. The local error represents the departure from the exact solution at a
given time after one time-step assuming the solution at time-stepn to be exact, i.e.Z n = Z(tn).
We next define theresidual vector gt(X) = 〈g1t

(X) g2t
(X)〉 whereX t = 〈Xt

R X t
V 〉 with

g1(X) :=
1

∆t

[
BM (XV − V n) +

γ

2
ĨM(XV + V n)

]
+

ξ

2
Ĩ(XR + Rn) − BF ,

g2(X) :=
1

∆t

[
B(XR − Rn) − γ

2
Ĩ(XR + Rn)

]
− 1

2
(XV + V n),

(11)

and make use of the fact thatg1 andg2 are related to the local error vector in such a way
as to make it sufficient to analyse the errors ing1 andg2 in order to analyse the local error25.
We proceed by inserting the exact solutionX = Z(tn+1) into the residual expression (11) and
examining the coefficients of the powers of∆t that arise. We assume thatZ(t) is analytic in a
neighbourhood oftn, and thatβ1, β2, γ andξ are also analytic functions oft within the same
neighbourhood. This enables us to write

βj[Z(tn+1)] =

∞∑
i=0

βj,i∆ti, γ[Z(tn+1)] =

∞∑
i=0

γi∆ti and ξ[Z(tn+1)] =

∞∑
i=0

ξi∆ti (12)

where the coefficientsβ1,i, β2,i, γi andξi are fully defined at timetn. By further substituting
(12) into (11), we can derive conditions for obtaining a given order of accuracy in terms of the
β1,i, β2,i, γi andξi. Table 1 lists the criteria up to and including4th-order accuracy.

It can be shown that the conservation criteria (7)-(9) do not conflict with the conditions given
in Table 1. Thus the new family contains4th-order accurate energy-momentum algorithms that
exactly recover the trajectories of relative equilibria.

2.1.3 Numerical example – motion in a central force field

Let us analyse the pendulum example shown in Figure 1, as used by many others1, 3, 5, 11,
with the potential function representative of the St. Venant-Kirchhoff material3

Ṽ (l) =
1

2
k

(
l2 − l̄2

2l̄

)2

(13)

for constantsk (stiffness) and̄l.
The top of the pendulum is fixed at the origin(0, 0) with the mass starting at positionq t

0 =

〈0 l0〉 with initial length l0 = l̄ = 1. The mass used ism = Aρl̄
3

= 1, and the pendulum is
fired with an initial horizontal velocityvt

0 = 〈10 0〉. The stiffness is chosen to bek = 108,
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k conditions needed
0 B0 �= 0, γ0Ĩ = 0

1 B0 = I6, ξ0 = fn, γ1Ĩ = 0

2 B1 = 0, ξ1 =
1

2
ḟn, γ2Ĩ = 0

3 B2 = − 1

12
fnM−1Ĩ, ξ2 =

1

6
f̈n, γ3Ĩ =

1

12
ḟnM−1Ĩ

4 B3 = − 1

24
ḟnM−1Ĩ, ξ3 =

1

24
f (3)

n , γ4Ĩ =
1

24
f̈nM−1Ĩ

Table 1: Cumulative conditions forkth-order accuracy, wheref(s)
n ≡ ds

dts

{
φ′[l(t)]

l(t)

}
t=tn

.

2e

1e1e

l0

t = t State atState at 0t = t : n:

k

m

ln

v

vn

0

Figure 1: Pendulum of massm and stiffnessk with initial length l0 and velocityv0.

which creates a large disparity between the two natural frequencies of motion, thus making the
problemstiff.

Each of the algorithms under consideration will be used with a range of time-step sizes, and
the relative errors in the positionsq and momentap will be taken at 0.6 seconds. The relative
errors are calculated as

||qn − q(tn)||
||q(tn)|| and

||pn − p(tn)||
||p(tn)||

respectively, where{qn, pn} denotes the approximate solution and{q(tn), p(tn)} the ref-
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erence solution – the solution obtained by running a scheme several times with decreasing
time-step sizes, until the two consecutive solutions match up to 15 digits. With the aid of
quadruple precision arithmetic, we are able to use an extremely tight convergence tolerance for
the Newton-Raphson iteration:10−26.

The simplest type of fourth-order algorithm to test is that which hasβ1 andγ defined as
truncated versions of the power series in∆t given in (12), with coefficients matching the re-
quirements for accuracy given in Table 1. Note that due to the boundary conditions used in
this example,β2 vanishes. Thusβ1 andγ are defined entirely at time-stepn, which means that
algorithms of this typecannot be time-reversible. The remaining parameterξ is then obtained
from (7) to ensure energy conservation. We call this algorithm EM4. A more sophisticated
approach to designing higher-order algorithms involves finding closed-form expressions for the
parametersβ1 andγ which, when expanded in a power series in∆t, match the criteria given
in Table 1. These would now involve quantities at time-stepn + 1, thus requiring a more com-
plicated linearisation for the Newton-Raphson procedure. In this way, however, one can design
algorithms which are time-reversible; by way of example, we take

β1 =

√
f1/2

m
∆t
2

tan

(√
f1/2

m
∆t
2

) , γ =
∆t2

12m
f∆ and ξ given by (7). (14)

Expandingβ1 andγ abouttn (with f(tn+1) in place offn+1) and comparing terms with
Table 1 shows that the scheme is fourth-order accurate and preservation of relative equilibria
implies recovery of theexact solutions at all time-step sizes for steady-state problems, withβ1

satisfying (9). We call this algorithm EMTR4. Given that the trajectory of the stiff pendulum
closely resembles that of a steady-state example, we would expect such an algorithm to provide
solutions to the stiff problem with minimal error in the angle of rotation. For a bench-mark
against which to assess the performance of the new algorithms, we will also test the algorithm
of Simo and Tarnow8, referred to here as EMM, wherebyβ1 = 1 andγ = 0 with ξ obtained
from (7). Finally, we propose a second-order algorithm designed to solve stiff problems at large
time-steps. Such an algorithm corresponds to (5) with

β1 =
1
2
θ

tan(1
2
θ)

, γ = 0 and ξ given by (7) (15)

whereθ is the incremental angle betweenqn andqn+1. We call this algorithm EM2β.
Figure 2 contrasts the performance of EM4, EMTR4, EM2β and EMM at timetn = 0.6

seconds. We see immediately that EM4 provides a converged solution for only the two small-
est time-step sizes. In contrast, the time-reversible fourth-order accurate algorithm EMTR4 is
notably more robust, but still not as robust as EMM. It should be noted, however, that when-
ever EMTR4 converges, it outperforms EMM. When EMTR4 does not converge, the results of
EMM can still be improved by using EM2β instead. This algorithm gives much more accurate
results than EMM at larger time-steps, despite the order of accuracy being the same for each.
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Figure 2: Relative errors in position and momentum.

This is becauseβ1 in (15) has been specifically designed to eliminate the error in the period of
rotation, hence the errors for EM2β should always be smaller than those for EMM.

2.2 Multi-element formulation

There are hidden subtleties when extending Algorithm (5) to cater for more than one ele-
ment. For such an algorithm to conserve both energy and momenta, the velocities at the nodes
must be common across all elements, as one might expect. However, when pursuing accuracy
higher than second order, the forces from all elements adjacent to a given node contribute to
the velocity at that node25. This means that for higher-order accuracy with multi-element for-
mulations, the assembly process cannot be done solely on an element by element basis, as is
conventional for finite-element methods.

For a structure assembled of a number of bars joining inN nodal points, the analogue of (4)
becomes

MV̇ = −HR + F , and Ṙ = V , (16)

where nowR, V , F ∈ R3N , M ∈ R3N×3N is a global mass matrix andH ∈ R3N×3N is
defined as

H =


∑

j �=1 h1jI −h12I · · · −h1NI

−h21I
∑

j �=2 h2jI · · · −h2NI
...

...
. . .

...
−hN1I −hN2I · · · ∑

j �=N hNjI

 with hij =
φ′

ij

lij
. (17)

whereφij �= 0 only if there exists a bar between nodesi andj. The multi-element equivalent
of (5) can now be written as
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1

∆t
(MV d + GMV 1/2) = −αXR1/2 + F ,

1

∆t
(Rd − GtR1/2) = Y MV 1/2.

(18)

Let us mention without proof that this algorithm conserves the total translational momentum
for F = 0 provided the sum of all the entries in any column of bothG andX is equal to zero.
Furthermore, the algorithm conserves the total angular momentum forF = 0 provided matrices
X andY are symmetric. The conditions necessary for the preservation of relative equilibria
are currently under investigation.

The conditions necessary for the algorithm to provide fourth-order accuracy are summarised
in Table 2 for anyα = 1+O(∆t4). Note that such an algorithm must also be energy-conserving
up to the same order of accuracy. The full energy conservation in the remaining powers of∆t
can then be added in a projection-like manner described in [9]. Details are given in [25].

k conditions needed
0 G0 = 0

1 G1 = 0, X0 = Hn, Y 0 = M−1

2 G2 = 0, X1 = 1
2
Ḣn, Y 1 = 0

3 G3 =
1

12
ḢnM−1, X2 =

1

12
HnM−1Hn +

1

6
Ḧn, Y 2 =

1

12
M−1HnM−1

4 G4 =
1

24
ḦnM−1, X3 =

1

24

(
ḢnM−1Hn + HnM−1Ḣn

)
+

1

24
H(3)

n

Y 3 = 1
24

M−1ḢnM−1

Table 2: Cumulative conditions forkth-order accuracy.

3 IMPLICIT INTEGRATION FOR 3D BEAMS WITH END RELEASES

Although the extension of the previous technique for beams has not yet been fully devel-
oped, a somewhat related idea may be employed2, 22 in order to address some of the issues
involved in designing fully conserving time-integration schemes for 3D beams10, 26. Briefly,
to provide full conservation of the momenta and energy for a beam structure it has been found
that one needs to perform the update of rotational degrees of freedom using the Cayley trans-
form rather than the standard exponential mapping10. This process involves interpolating the
tangent-scaled rotations26, which exacerbates the already existing problem of non-invariance
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of the strain measures. This problem may be solved by abandoning the interpolation of the
rotational degrees of freedom altogether17. An alternative idea, which retains the rotational de-
grees of freedom in the formulation, has been presented in [2] and extended to cater for beams
with end releases (including those with dependent degrees of freedom) in [22]. For a simple
beam element with no external loads andN nodes we have the following dynamic equilibrium
satisfied at each nodeI:

gI ≡ qI
d(N1/2,M1/2) + qI

k = 0, (19)

whereN andM are the stress and stress-couple resultants. By denoting the derivatives with
respect to the arc-length parameterX of the beam and timet as(•)′ and(•̇), the internal force
vectorqI

s and the kinetic partqI
k of gI are then defined as follows,

qI
s(N1/2,M1/2) =

∫
L

[
I ′i0 0

−r̂′
1/2I

i I ′iI

]{
Λ1/2N1/2

S(α)−1ΛnM1/2

}
dX

qI
k =

1

∆t

∫
L

{
Aρ(ṙn+1 − ṙn)I i

(πn+1 − πn)I i

}
dX,

whereΛ is the rotation matrix,π = ρΛJW is the specific angular momentum,J is
the tensor of mass moments of inertia,W is the (material) angular velocity andS(α)−1 =

1
1+|α|2/4

(
I + 1

2
α̂
)

, whereα is the incremental tangent-scaled rotation, such thatΛn+1 =

cay(α)Λn with cay(α) = I + 1
1+|α|2/4

(
α̂ + 1

2
α̂2
)
. The symbol̂• denotes a skew-symmetric

matrix such that̂wv = w × v for w, v ∈ R3 andI i are the standard Lagrangian interpolation
polynomials. The above definition for the internal and the kinetic force vectors gives the algo-
rithm from [10], provided the approximation of the rotational field is obtained by interpolating
the incremental tangent-scaled rotations. While indeed fully conserving, this interpolation re-
sults in a severe loss of strain invariance26. Using the same definition of the nodal residual
along with interpolatingincremental unscaled rotations reduces the non-invariance problems,
but such an algorithm ceases to be energy-conserving (though it is still momentum-conserving).
The algorithm can be made fully invariant and momentum-conserving by applying the gener-
alised interpolation of rotations16. Although such a definition of the residual does not provide
an energy-conserving algorithm, this property may be recovered by adding an extra term to the
weak form2. This extended version basically uses an alternative residual which, in the absence
of external loads, is given by

gI
β = qI

d(N1/2,M1/2) + qI
k + βqI

d((Nn+1 −Nn, 0).

In this algorithm, the free parameterβ is derived in such a way to make the energy con-
served. Extension of this idea to systems with a variety of different joint types, including those
with dependent degrees of freedom (e.g. screw joint, rack-and-pinion joint or worm gear), is
straightforward22. In the following sections, particular attention is paid to the formulations
involving sliding joints, which require special treatment.

10
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3.1 Master–slave approach

In the present work, the kinematic constraints are dealt with using the master-slave technique
20, 21, 22which uses the minimum set of degrees of freedom (dof). The kinematics of the detached
node of the joint (slave node) is computed from the reference kinematics (master node/s) plus
the released displacements and/or rotations that are added to the total set of degrees of freedom
of the structure.

Before writing the equations of the kinematic relationship, two main types of joints will
be described: prismatic joints (non-sliding) and sliding joints. In the first case, the released
displacement slides alongone of the directions of the body attached frame of the master node
(theinitial contact node), whereas in the second case the sliding node (slave node) always slides
in the directiontangent to the centroidal axis of the beam at thecurrent contact point. Figure
3 depicts both situations, where nodeN (slave node) of elementA slides along elementB.
It is worth noting that the two models use different definitions of the slave and master nodes.
The prismatic joint has a permanent single master node (the node at which the initial contact is
made) while the sliding joint has all theM nodes of the element as the master nodes. We also
point out the fact that the prismatic joint is unrealistic (see Figure 3), but it will be detailed here
for the sake of completeness.

Figure 3: Master-slave approach for the prismatic and the sliding joints

Denoting byδps the kinematic variation of the slave node (nodeN of elementA), by δpm

the kinematic variation of the master node (node1 of elementB in the prismatic joint, or all the
nodes of elementB for the sliding joint), and byδpR the variations of the released displacement
and rotations, a general transformation rule may be written as follows,

δps = δpA,N = [R Q]

{
δpR

δpm

}
= NδδpRm. (20)

11
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This equation involvesinfinitesimal changes, i.e.δpt =< δr δϑ > whereδϑ stems from
the variation of the rotation matrixδΛ = δ̂ϑΛ. However, an equivalent expression may be
written usingincremental changes, i.e.

∆ps = N∆∆pRm (21)

where∆pt =< rn+1 − rn α >. Some particular forms of matrixN∆ for non-sliding joints
have been derived in references [21, 22] that keep the conserving properties of the algorithm
into which they are embedded.

Equations (20) and (21) allow us to rewrite the discretised virtual work of the formδHI =
δpI

s · gI
δ into

δHI = δpI
Rm · NI

δ

t
gI

δ (22)

or in the case of conserving algorithms, to transform the energy increment of the form
∆HI = ∆pI

s · gI
∆ into

∆HI = ∆pI
Rm ·NI

∆

t
gI

∆. (23)

The matricesNI
δ andNI

∆ in (22) and (23) are the transformation matrices of elementI. The
arbitrariness of the variationsδpRm or ∆pRm lead to the following system ofNT equations,
after assembling the elemental residual vectorsgI

δ or gI
∆ for all NT nodes of the model:∑

I

NI,i
δ

t
gI,i

δ = 0 for nodes i = 1, . . . , NT ,

or in incremental form∑
I

NI,i
∆

t
gI,i

∆ = 0 for nodes i = 1, . . . , NT ,

whereNI,i
δ or NI,i

∆ are the part of the transformation matrix of elementI that is multiplying
the dof of nodei.

We emphasise that since the master node of the prismatic joint belongs to elementA, the
master-slave formulation of this joint can be modelled as an elemental relationship within ele-
mentA and thus elemental condensation may be applied27. In fact, the rotation of the master
node is equivalent to the orientation of the cross-section of elementA at nodeN . For the slid-
ing joint, however, themaster rotation is the rotation of the cross-section of elementB at the
contact point, computed from the rotations of the master nodes. The master-slave relationship
of the sliding joint requires both elements,A andB, and for this reason a new coupling element
will be defined in Section 3.1.2.

12
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3.1.1 Explicit form of transformation matrix Nδ

The matricesR andQ arising from the infinitesimal variation of the kinematic relationship
between master and slave nodes are given in Table 3 for both types of joints. The part of the
table concerning the prismatic joints has been already reported in the literature27 and thus no
details will be given. With regard to the sliding joint, the vectorsrB

C = rB(XC) and the matrix
ΛB

C = ΛB(XC) are the position vector and the rotation matrix of elementB evaluated at point
XC . The constant matrixΛrel denotes the initial relative rotation between the two elements,
i.e. ΛA,N

0 = ΛB,1
0 Λrel. In computing the infinitesimal variation of the kinematics of the sliding

joint, the variation of the contact point coordinateXC must also be taken into account, i.e.

δΛA,N = δ̂ϑ
A,N

ΛA,N = Λ′B
C ΛRΛrelδX + δ̂ϑ

B

CΛA,N + Λ̂B
CδϑRΛA,N

=
[
(G1 · rR)k̂B

C + δ̂ϑB
C + Λ̂B

CδϑR

]
ΛA,N

δrA,N = r′B
C δX + δrB

C = (G1 · rR)r′B
C + δrB

C ,

wherekB
C = kB(XC) is the spatial curvature of the beam at the current contact point and

G1 =< 1 0 0 >t is the unit vector indicating the direction along which the released displace-
ment takes place. The relationsδrB

C = IB,j
C δrB,j andδϑB

C = IB,j
C δϑB,j have been used in order

to derive matrixQ, whereIB,j
C are the interpolation functions for each nodej of elementB

evaluated at pointXC .

Prismatic joints Sliding joints
Displacements rA,N = rm + ΛmrR rA,N = rB

C

Rotations ΛA,N = ΛmΛR ΛA,N = ΛB
CΛRΛrel

R

[
Λm 0
0 Λm

] [
r′B

C ⊗ G1 0
kB

C ⊗ G1 0

]

Q

[
I −Λ̂mrR

0 I

] [
IB,1
C I 0 . . . IB,M

C I 0
0 IB,1

C I . . . 0 IB,M
C I

]

Table 3: Master–slave infinitesimal relationships for displacements and rotations

3.1.2 Coupling element definition of the sliding joint

As has been pointed out, the master–slave relationship for the sliding joint includes the
kinematics of both elements,A andB. In order to permit the transition of the contact point
through a slide-line formed by a set of elements, a generic coupling element will be defined by
the slave elementA and the element in which the contact point is currently situated. Although
the initial common node to both elements is no longer active once the contact node has jumped
to another element, it will be also be included in the coupling element as Figure 4 shows.

13
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Figure 4: Coupling element definition

Using the matricesR andQ defined in Table 3 for the sliding joint, and bearing in mind
that the sliding node is theN node of elementA, the transformation matrixN for the coupling
element is given by

Ncp =


0 I 0 . . . 0 06×6M
...

...
. . .

...
...

0 0 . . . I 0 06×6M

R 0 . . . 0 0 Q6×6M


6N×6(1+N+M)

(24)

where the matricesI and0 are the unit and zero6 × 6 matrices. Further details of the
linearisation and the joints with dependent degrees of freedom will be given in [23].

3.2 Momentum-conserving algorithm for flexible mechanisms in the presence of sliding
joints

When extending the momentum-conserving algorithm (19) to systems with sliding joints
we need to preserve the conserving properties for any change of the contact position within one
element and also when element jumping occurs. An algorithm that satisfies these conditions
will be briefly described. The proof of the conservation of the angular momentum and details
about the linearisation can be found in [23].

In order to establish the conditions for the conservation of the angular momentum, the kine-
matic relations of the sliding joint in Table 3 must be rewritten in an incremental form. Further-
more, the conditionrA,N = rB

C will be relaxed, sorB
C will be seen as an approximation of the

position of the sliding noderA,N . Considering that at timestn+1 andtn the contact point co-
ordinates areXC2 andXC1, on elementsB andD respectively (see Figure 5) , the incremental
displacement of the sliding node may be obtained as follows,

uA,N = rA,N
n+1 − rA,N

n ≈ rB
C,n+1 − rB

C,n = ID,j
C2 rD,j − IB,j

C1 rB,j , (25)

14
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whereID,j
C2 andIB,j

C1 stand for the interpolation functions of elementsD andB evaluated
at contact pointsXC2 andXC1. It is shown in [23] that the expression obtained on the right
of (25) may be approximated in two different ways. The first one will be termedAppx1 and
assumes that the contact point remains within one element. The second will be calledAppx2
and involves element jumping (see Table 4). Without going into the details of the algebraic
manipulations, the resulting relations between the incremental degrees of freedom give rise to
two different matricesN∆ = [R Q], which are denoted byN∆1 andN∆2. Table 5 gives both
matrices for the two approximations, whereIB,j

C 1
2

= 1
2
(IB,j

C2 + IB,j
C1 ), I ′B,j

C 1
2

= 1
2
(I ′B,j

C2 + I ′B,j
C1 ),

ID,j
Cγ = I ′D,j

C2 − γ∆XI ′D,j
C2 , andγ is a constant parameter. The incremental rotationαBD is the

tangent-scaled rotation that transformsΛB
C1,n (rotation of elementB at timetn at the contact

point XC1) into ΛD
C2,n+1 (rotation of elementD at time tn+1 at the contact pointXC2), i.e.

ΛD
C2,n+1 = cay(αBD)ΛB

C1,n.

Figure 5: Simplified mesh for the case of element jumping

In fact, the two transformation matrices give rise to different conditions for the conservation
of angular momentum when used in conjunction with the residual given in equation (19). The
matrixN∆1 leads to the condition

rA,N
1/2 = IB,j

C 1
2

rB,j
1/2, (26)

whereas matrixN∆2 implies the kinematic condition,

rA,N
1/2 = ID,j

Cγ rD,j
1/2 . (27)

In (26), the sliding condition is satisfied in the middle of the time-step. Because ofI D,j
Cγ ,

condition (27) is only an approximation to the sliding condition at timet1/2; the error in this
approximation is minimal forγ = 1

2
. Consequently, the time-integration strategy suggested is

to use matrixN∆1 whenever the contact point remains within an element at timestn andtn+1,
and to applyN∆2 when the contact point jumps from one element to another. This strategy is
used in the the following numerical example.

It is worth noting that approximationsAppx1 andAppx2 imply ∆ps ≈ N∆∆pRm which in
turn transforms the construction of the conserving algorithms as follows
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Appx1: N∆1 Appx2: N∆2

R

[
I ′B,j

C 1
2

rB,j
1/2 ⊗G1 0

0 B

] [
1
2

(
r′B

C1,n + r′D
C2,n

)
⊗ G1 0

0 B

]

Q

 IB,1

C 1
2

I 0 . . . IB,M
Cγ I 0

0 IB,1

C 1
2

I . . . 0 ID,M

C 1
2

I

 [
ID,1
Cγ I 0 . . . ID,M

Cγ I 0
0 ID,1

Cγ I . . . 0 ID,M
Cγ I

]

with B = 1
1− 1

4
αB ·ΛB

C1,nαR
ΛB

C1,n

(
I + 1

2
α̂BD

)
Table 4: MatricesR andQ using approximationsAppx1 andAppx2

∆H = ∆ps · g∆ ≈ ∆pRm · Nt
∆g∆ = 0.

In this sense, the more accurate the approximations are, the smaller the energy increment
obtained. Some attempts in making the algorithm energy conserving by avoiding the approxi-
mations or correcting the energy increment have not yet given satisfactory answers.

3.3 Numerical example

The following example involves two flexible beams connected through a sliding joint with
no released rotations. The initial configuration of beamsAB andBM is depicted in Figure
6, where the geometrical and material properties (the same for both beams) are also shown.
BeamsAB andBM are modelled using four and one quadratic elements respectively. A mass
of 1 kg is attached to beamBM at pointM where an initial velocityv0 is applied. The analysis
terminates when the sliding node reaches pointA. Two time-integration schemes are used, the
Newmark trapezoidal rule24 and the momentum conserving algorithm described in Section 3.2.
The first scheme uses an initial time-step of∆t = 0.0005. During the course of the analysis
this time-step had to be reduced twice in order to provide a converged solution. Eventually,
however, this scheme failed to converge. Figure 7 shows that this occurred when the angular
momentum blew up. The second scheme uses a constant time-step of∆t = 0.0025. The
released displacement of the sliding node is shown in Figure 7. It can be seen that the results
produced by the two schemes are very similar before the occurrence of the momenutm blow-up
in the Newmark algorithm, in spite of the fact that in the momentum conserving algorithm the
contact condition was somewhat relaxed. Figure 7 also confirms the momentum-conserving
properties of the second scheme.

4 CONCLUSIONS

In the first part of this paper, we have presented a method of formulating higher-order ac-
curate and conservative single-step algorithms for the problems of one-dimensional elastic con-
tinua. For a single bar element it has been shown that the method is capable of increasing
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A =


0.0
0.0
0.0

 ;B =


0.0
3.0
1.0


M =


1.0
3.0
1.0

 ;v0 =


0.0

−10.0
−10.0


A = 1.0 × 10−4 ; Iyy = Izz = 2.0 × 10−5

E = 1.0 × 106 ; ν = 0.3 ; ρ = 800

Figure 6: Free sliding mass example

Figure 7: Released displacements and components of the angular momentum

the order of accuracy for sufficiently small time steps or reducing the global error for larger
time steps. Extension of the method to cater for multi-bar truss structures brings additional
complexities, which are largely related to assembly procedure and higher-order accuracy with
energy conservation. Some of these issues are currently under investigation, but we believe that
there exists a scope for applying the present methodology to more complicated problems of
non-linear elastodynamics.

In the second part, we have briefly described a related idea, in which some of the well-known
complexities of invariant and conserving time-integration of beam structures are addressed by
introducing a configuration-dependent parameter. In this way, a fully conserving and invariant
algorithm may be provided for most of the standard joint types including revolute, spherical,
universal, prismatic, cylindrical as well as joints with dependent degrees of freedom (e.g. screw
joints and rack-and-pinion joints). The problem becomes much more involved in the presence
of sliding joints, in particular when the sliding can take place along a series of elements. These
joints can be successfully implemented within the adopted master–slave technique for statics
and non-conserving dynamics, but in order to maintain the conservation of some of the con-
stants of motion it becomes necessary to relax some of the constraint conditions. A momentum
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conserving algorithm for sliding joints has been presented and compared to the standard New-
mark trapezoidal rule.
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[15] A Ibrahimbegović and RL Taylor. On the role of frame-invariance in structural mechanics
models at finite rotations.Comp. Meth. Appl. Mech. Engng., 191:5159–5176, 2002.
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