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Abstract

This work addresses the parasitic motion of high-precision rotation mechanisms based on flexural pivots subjected to lateral loads.
This case has great importance from the mechanical design point of view, since generally flexural pivots support mechanical elements of
considerable weight and their rotation is obtained by loading the pivot with a force instead of a pure couple.

From an analytical point of view, the problem is approached by studying the large deflections of an elastic frame. The equilibrium
equations are considered and a solution based on the Newton–Raphson method is proposed. This approach is compared with other
theoretical approaches. An experimental assessment performed by using laser interferometric techniques is presented. It is shown that the
proposed solution allows the influence of lateral loads to be clearly established and proves to be adequate when the most common cases
of limited lateral loads and rotations are considered.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Flexural pivots (Fig. 1) are mechanical devices charac-
terised by a high compliance with respect to the “in-plane”
rotational degree of freedom (ϑ) and high stiffness in all
other degrees of freedom. Usually such devices are referred
to as cross-spring pivots, as they have a bi-symmetrical
geometry and contain two leaf springs of equal dimensions
crossing at their midpoints and forming an angle 2α. Gener-
ally, for stability, stiffness and ease of construction reasons,
it is adopted 2α = π /2 [1].

Flexural pivots are commonly used in metrology as dy-
namometers and in seismometers, in pressure transducers,
in the aerospace and motor fields, in optical instrumentation
and in gyroscopes[2–11]. They are also used for several
applications where particular working conditions (high
or cryogenic temperatures, aggressive, dirty, ultra-clean
and radiation environments[3,5,7,8,10–12]) do not allow
conventional sliding and rolling bearings to be used. In
these cases, the mechanical design of the pivots involves
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the evaluation of the leaf springs strength and stiffness
as well as a stability analysis of the overall mechanism
[9,10,13].

Recently, such devices have also been used in precision
engineering[11,12,14,15]. In fact, in flexural pivots the main
sources of errors are systematic[1–3,5,6,9,16–18], since
they are free from backlash, wear, stiction and friction—
thereby resulting in a hysteresis that is generally well below
1% [13]. Hence, such drives permit a high rotational accu-
racy to be obtained via a rather simple, compact, reliable
and maintenance-free design with limited production costs
[11,19].

However, in high precision applications, a careful struc-
tural analysis has to be performed since, as shown inFig. 1,
the rotationϑ is associated with a parasitic translationOO′.
As a consequence, the “geometrical” centre O of the pivot
(which is defined as the intersection of the tangents to
the elastic lines of the leaf springs at their movable joints
and corresponds to the original centre of rotation of the
pivot) moves to O′. This parasitic displacement, also termed
centre-shift, can be characterised by establishing the varia-
tion of the amplituded and the phaseϕ of the displacement
OO′, versus the rotation angleϑ .
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Fig. 1. Flexural pivot.

Several methods have been proposed in the literature to
evaluate the parasitic motionOO′. In [20], the exact ex-
pression of the leaf spring curvature is used and a solution
in terms of elliptic integrals is obtained for the case of the
pivot loaded by a pure coupleC. In this case the problem
is symmetric and therefore the values of the reactions can
be evaluated analytically. Other authors have obtained ap-
proximated solutions based on geometrical[7] or kinematic
[18,21] considerations. However, all the above approaches
do not account for the effects of the horizontal loadH and of
the vertical loadV and yield results characterised by a wide
scattering. The experimental results available in[1,17,21]
do not make it possible to validate the reported theories, as
the employed measurement techniques were characterised
by a high uncertainty in the experimental techniques used
(in fact, styluses, pointers or measuring and toolmakers’
microscopes were used for the evaluation of the centre-shift
[1,9,13,17,18]).

In this work an analytical method is presented that per-
mits an evaluation of the parasitic motions even when the
effects of the lateral loadsH andV have to be considered. In
order to establish the limits of applicability of the proposed
method, an experimental assessment is then performed by
using high-precision laser interferometric techniques.

2. Analytical model

The parasitic motion of the pivot can be evaluated follow-
ing the approach suggested in[10]. In that case, however,
the analysis was aimed mainly at the determination of the
stiffness of the device in the vicinity of the undeflected po-
sition (ϑ = 0), and therefore terms of the order smaller than
ϑ2 were neglected. In this work the overall working range of
angular motions will be considered so that, even if the for-
malism given in[10] is followed, the assumptions of small

Fig. 2. Displacements and reactions.

deflections no longer hold and, taking into account the smal-
ler order terms, the problem becomes strongly non-linear.

When the equilibrium conditions of a pivot in which the
undeflected spring-strips cross at their midpoints are consid-
ered (Figs. 1 and 2), 11 variables define its behaviour:e1,
e2, δ1, δ2, P1, P2, F1, F2, MB1, MB2 andϑ . A system of 11
equations is thus needed to solve the problem. Five of these
are given by the equilibrium equations of the forces acting
in theX andY directions, the respective torque equilibrium,
and the compatibility equations for the edges A1 and A2 of
the leaf springs:

V = (P1 + P2)cosα + (F1 − F2)sinα (1)

H = (P1 − P2)sinα − (F1 + F2)cosα (2)

C = MB1 − F1L 1
2 + MB2 − F2L 1

2

= MA1 + F1(L 1
2 − e1) − P1δ1 + MA2

+ F2(L 1
2 − e2) − P2δ2 (3)

(δ1 − δ2)cosα + (e1 + e2)sinα

= L sinα(1 − cosϑ) (4)

(δ1 + δ2)sinα − (e1 − e2)cosα = L sinα sinϑ (5)

The remaining equations are obtained by considering the
equilibrium of the single leaf springs, which can be addre-
ssed by following analytical approaches of different degrees
of approximation. In fact, recently an analytical solution of
the problem of large deflections of straight cantilever beams
loaded at the free end by an axial force, where the exact
expression of the leaf spring curvature is used (know as the
Elastica[22]), was extended to the general case of loading
[23], i.e., that of the spring-strips inFig. 2. In this case the
equilibrium equations of the spring-strips, assuming their
mechanical characteristics (L, I, E) are identical, are:

EI
d2y/dx2

[1 + (dy/dx)2]3/2
= P1(2)y + MB1(2) − F1(2)x

(6)
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where subscripts 1 and 2 refer respectively to leaf spring 1
and leaf spring 2, whilex andy are the local Cartesian co-
ordinate axes referred to the fixed edge of each spring-strip.

Again, as in[20], a solution in terms of elliptic integrals
can be obtained. In this case, however, the computation can
be addressed only through a lengthy iterative procedure with
successive approximations[23]. Therefore, it seemed appro-
priate to pursue, in a first instance, the usage of the approx-
imated expression for the curvature of the beam, where the
influence of the axial load on the flexural behaviour of the
beam is again taken into account, but for which, in the above
curvature formula, the square of the derivative is neglected
[9,10,20,22]. Eq. (6) therefore reduce to:

EI
d2y

dx2
= P1(2)y + MB1(2) − F1(2)x (6′)

It is worth noting here that expressing the elastic line in
the form of Fourier series, as suggested in[22,24], does not
allow the degree of uncertainty induced by the approximated
expression for the curvature to be avoided, and implies an
additional computational effort.

Eqs. (1)–(6′) can now be written in dimensionless form
by introducing the following notation[10]:

λ1(2) = e1(2)

ϑ2L
, ξ1(2) = 2δ1(2)

ϑL
− 1,

h = HL2

EI
cosecα, v = VL2

EI
secα,

f1(2) = F1(2)L
2

EI
, 4β2

1(2) = P1(2)L
2

EI
,

mB1(2) = MB1(2)L

EI

Integrating twice the expression (6′) and imposing the cor-
responding boundary conditions, it follows:

f1(2) = ϑ

(
2β2

1(2) + 2ξ1(2)

β3
1(2)

β1(2) − tanhβ1(2)

)
(7)

mB1(2) = ϑ

(
β1(2) cothβ1(2)+ξ1(2)

β2
1(2) tanhβ1(2)

β1(2)−tanhβ1(2)

)

(8)

The expression for the in-axis deformation of the leaf spring,
calculated considering the variation of its length from the
initially straight form to the deformed shape in the equilib-
rium condition[10,22,24], is now used:

e1(2) =
∫ L

0

1

2

(
dy

dx

)2

dx (9)

By substitutingEq. (6′) in (9) and integrating, it follows:

λ1(2) = 1

16

(
3 − coth2 β1(2) + cothβ1(2)

β1(2)

+ 4ξ1(2)

)
(10)

The parametersλ1, λ2, ξ1 and ξ2 can now be expressed
as functions ofβ1 andβ2. By substituting the expressions
obtained intoEqs. (1) and (2), taking into accountEq. (7),
and making the assumption that 2α = π /2, it is possible to
write:

4β1(2)(4 + ϑ2)(β2(1) coshβ2(1) − sinhβ2(1))

×
[

1

2
(v ± h) − 4β2

1(2)

]
± β2

2(1)β1(2) coshβ2(1)

×
{

β2(1)

[
∓ 32+ 16ϑ + 16 cosϑ(±2 − ϑ)

+ 16 sinϑ(2 ± ϑ) + ϑ2

×
(

∓ 4 + 2ϑ ± 4 cothβ1(2)

β1(2)

∓ 2 cosech2 β1(2)

× (1 + cosh 2β1(2)) + ϑ cosech2 β2(1)

× (1 + cosh 2β2(1))

)]

− 2ϑ [4 tanhβ2(1)(4 + ϑ2) + ϑ2 cothβ2(1)]

}
= 0

(11)

These expressions hold if the leaf springs are under tensional
loads; if compressive forces have to be considered, the pa-
rameterβ becomes imaginary and therefore inEq. (11)the
substitutionβ = iω (whereω =

√
−PL2/(4EI)) has to be

introduced.
The derived non-linear system of equations with the vari-

ablesβ1 and β2 (ω1 and ω2 in the case of compression)
as unknowns can be solved via a Newton–Raphson method.
The calculation can be arranged according to an iterative
approach: ifV andH are known,v andh can also be eval-
uated; for a certain value ofϑ Eq. (11) is solved and the
values ofβ1 and β2 are computed. The values ofλ1, λ2,
ξ1 and ξ2, as well as of the deflectionse1, e2, δ1 and δ2
can then be obtained. FromEqs. (7) and (8)the values of
f1, f2 and ofmB1, mB2 can also be determined. Finally, by
using Eq. (3), the value of the torque applied to the pivot
can be calculated; this should then be compared with the ac-
tual valueC. The procedure is repeated until convergence is
reached.

Simple geometrical considerations finally allow the values
of the displacements in theX and Y directions, and hence
the amplitude and the phase of the centre-shiftOO′, to be
obtained:

dX

L
= ϑ(ξ1 + 1)

2
cosα + λ1ϑ2 sinα

+ sin(α − ϑ) − sinα

2
(12)

dY

L
= ϑ(ξ1 + 1)

2
sinα − λ1ϑ2 cosα

− cos(α − ϑ) − cosα

2
(13)
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d

L
=
√(

dX

L

)2

+
(

dY

L

)2

, ϕ = arctan

(
dX/L

dY /L

)

(14)

3. Experimental assessment

A cross-spring pivot with the following mechanical char-
acteristics has been built:L = 115 mm, t = 0.5 mm—
spring-strip thickness,b = 15 mm—spring-strip width,α =
π /4. The ratiob2/t has been chosen so as to avoid the oc-
currence of anticlastic curvature even with the largest fore-
seen deflections[25], while a ratiot/L 	 1 was adopted in
order to minimise the effects induced by the compliance of
the constraints and the hysteresis[13,17]. As suggested in
[17], calibrated mounting jigs and gauges have been used
to assure the equality of the lengths of the spring-strips and
avoid their twisting during the assembly. The leaf springs
have been clamped by using U-shaped clamping plates since
these ensure a close contact at the front edge of the fixa-
tion, thus guaranteeing a uniform free working length of the
strips [16]. The non-linearities caused by the mounting in-
accuracies have been furthermore minimised by machining
together both the clamping slits and the respective clamping
parts.

The leaf springs were made of a beryllium–copper alloy
(E = 131 GPa,σR = 1,251 MPa,σ0.2 = 1,124 MPa) as this
material, of those suggested in the literature, has the largest
figure of merit defined as the ratioσ 0.2/E [26]; the other
parts of the mechanism were made in AISI 304 steel. Fol-
lowing the approach suggested in[9,10], where a thorough
analysis of the stability of the pivots was performed and the
conditions when the pivot becomes unstable (i.e., when the
restoring torques become negative) have been determined,
the maximum working range of the angleϑ(±π /6) and the
values of the vertical loadV (−70 N,+12.5 N) defining the
stability range were established.

The measurement of the centre-shiftOO′ can be per-
formed by considering the trajectory of the moveable block
in the X–Y plane. This motion can be characterised by the
values of the coordinates of a single point of the block ver-
sus the rotation angleϑ .

An accurate measurement of the trajectory in three-
dimensional space is generally performed by using laser
tracking trilateration techniques[27–29]. In this way, the
trajectory of a retroreflector connected to the moveable ele-
ment is obtained from a measurement of the variation of its
distance from three laser interferometers; the tracking of the
retroreflector is obtained by using light-sensitive quadrant
detectors.

In the case of flexural pivots, the laser tracking tech-
nique can be considerably simplified. In fact, only a
two-dimensional measurement has to be performed; more-
over, as the overall range of the amplituded is limited, a suit-

Fig. 3. Measurement principle.

able orientation of the retroreflector allows the centre-shift
to be measured without reorienting the laser beams.

The measurement principle is schematically represented
in Fig. 3. Two in-plane laser beams forming an angleγ

are reflected by a corner cube whose optical centre K co-
incides with the geometrical centre of the pivot O. In order
to achieve accurate measurements, the angleγ had to be
carefully calibrated. For this purpose, a highly repeatable
(±0.1�m) motionψ was imposed to a linear stage bearing
a goniometer (Fig. 4a). The imposed motion was measured
with a single laser beam interferometer via a corner cube
mounted on the goniometer. Varying the goniometer rota-
tion, the maximum reading indicates the reached alignment
of the direction of motion with the laser beam. The other
laser beam is then used as well, and the goniometer is
rotated towards the bisector of the angle defined by the
two beams. The condition in which the readings along the
two beam directions are identical and equal to a certain
value χ allows the unknown angle to be determined as
γ = 2arccos(χ /ψ) (Fig. 4b). In this way it was established
thatγ = 24◦47′.

Two single beam interferometers[19] therefore permit the
components of the displacementOO′ alongX′ andY′ to be
measured and thus the values ofdX anddY to be determined.
The correction of the displacement measurements versus the
rotation angleϑ due to the beam path in the rotated corner
cube prism, which is made of glass and therefore has a dif-
ferent angle of refraction than air[30], was also taken into
account (Fig. 5). Concurrently with the displacement mea-
surements, the angleϑ is measured by using a differential
laser interferometric system[19].

Fig. 6 shows the set-up of the measurement system,
which consists of a two frequency laser head, two single
beam interferometers with their receivers, and a differ-
ential interferometer. The values ofX′, Y′ and ϑ were
obtained by using a fringe counting board interfaced to a
PC. The pivot can be loaded with couples and forces by
means of a simple system based on calibrated weights con-
nected by wires to the pivot centre. An increment of the
loading was performed only when the system came to an



S. Zelenika, F. De Bona / Precision Engineering 26 (2002) 381–388 385

Fig. 4. Accurate evaluation of the angleγ between the two laser beams: alignment of the direction of motion with the laser beam alongY ′ = Y (a) and
determination of the bisector of the angle between the laser beams alongX′ and Y′ (b).

almost complete rest since, due to known creeping effects
associated with the adopted loading system, nanometric
level motion is observed even after extended periods of
time. At first the system was loaded by the single force
V, and then the measurement was performed by increasing
the applied torque and simultaneously measuringX′, Y′,
andϑ .

Fig. 5. Correction of the measured displacement due to the rotation of the corner cube.

A resolution of 10 nm for linear displacements and of
0.2�rad for angular displacements was achieved by us-
ing the illustrated measurement arrangement. The resulting
interval of uncertainty is mainly due to systematic errors
(alignment and assembly errors, uncertainty in the evalua-
tion of γ ); random errors (variation of the refractive index
of air, dead-path error, etc.[19]) are negligible.
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Fig. 6. Experimental set-up.

4. Results and discussion

Fig. 7 shows the measured trajectory of the geometrical
centre of the pivot in theX–Y plane for the case of a pivot
loaded with a pure coupleC (V = H = 0) whose value
was gradually increased to 0.34 N m. The respective experi-
mentally obtained dependence of the amplituded and of the
phaseϕ of the parasitic motionOO′ on the angleϑ , with
the corresponding intervals of uncertainty, is then shown in
Fig. 8. The measured values are compared here with the
results obtained with the proposed analytical method, with
those achieved by applying the analytical and the experi-
mental methods available in the literature[1,7,17,18,20,21],
as well as those obtainable with a simple geometric model of
a rigid, hinged frame of equal geometry (geometric model).

The results can be compared more easily if the difference
'd/L between the values ofd/L obtained with the differ-

Fig. 8. Thed/L, 'd/L (a) andϕ (b) versusϑ in the caseV = H = 0.

Fig. 7. Trajectory of the geometrical centre of the pivot.

ent methods and those calculated with the method described
in [20] is taken into account. In fact, in the case when the
pivot does not undergo lateral loads, the solution proposed
in [20], where the exact expression of the spring-strip cur-
vature (Eq. (6)) is used, should be the most accurate. There-
fore, in this particular case (H = V = 0), the values of
'd/L correspond to the error introduced by the considered
method.

In Fig. 8 it is noted that the results of the interferomet-
ric measurements are in excellent agreement with those ob-
tained in[20]. The difference between the two methods is
in fact smaller than 2% and this could be due to the resid-
ual compliance of the constrains. The method proposed in
this work gives acceptable results, even if less accurate than
those obtained in[7] and in[18]. This is due to the fact that
the applicability of the adopted approximated expression for
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Fig. 9. The'd/L (a) and'ϕ (b) versusϑ for different values ofV.

the leaf spring curvature (Eq. (6′)) is limited to smaller de-
flections.

When the phaseϕ is considered, it is evident that the
proposed analytical method gives results similar to those
reported in[7] and in [20] that are within the interval of
uncertainty of the experimental measurements which, in
this case, are not as accurate as for the amplitude. All the
other methods result in very large errors, both in amplitude
and in phase.

The validity of the analytical method proposed in this
work is enhanced if the effect of the lateral loads is con-
sidered. In fact, since flexural pivots generally support
mechanical elements characterised by considerable weight
and their rotation is generally obtained by loading the pivot
with a force instead of a pure couple, this case has great
importance from the mechanical design point of view.

Fig. 9 shows the values of'd/L(ϑ) and of'ϕ(ϑ) (same
meaning as'd/L) obtained with the proposed analytical
method as well as experimentally for different values ofV.
In these cases the intervals of uncertainty were not reported,
but they are similar to those given inFig. 8. The proposed
method allows the influence of lateral loads to be clearly es-
tablished. Only in the case of large rotations or when the val-
ues ofV approach the instability conditions, the theoretical
results become significantly different from those obtained
experimentally. This behaviour can again be easily explained
by considering that the approximated expression for the cur-
vature used inEq. (6′) introduces errors that increase with
increasing axial loads and leaf spring deflections[22]. It can
be therefore concluded that the proposed method adequately
describes the mechanical behaviour of the cross-spring pivot,
if the difference between the approximated and the exact
expression of the leaf spring curvature is limited.

5. Concluding remarks

The evaluation of the parasitic motion of a flexural pivot
under lateral loads can be performed only if the non-linear
behaviour of the leaf springs is considered. A first approach,
suggested in this work, is to consider the equilibrium equa-

tions where the contribution of the axial loads is taken
into account, but the approximated expression of the cur-
vature is used. This approach gives an adequate solution if
the most common cases of limited lateral loads and rota-
tions are considered. A more accurate approach could be
obtained by using the exact expression of the leaf spring
curvature; this would, however, give rise to additional com-
putational problems. In fact, in this case an expression in
terms of elliptic integrals is obtained and hence in applying
the Newton–Raphson method the Jacobian would have to
be evaluated following lengthy numerical procedures[23].
Probably in the latter case the obtainable solution would
not exhibit significant advantages with respect to an FEM
approach.

The work on high-precision flexural pivots will continue
by extending it to the case of pre-loaded leaf springs (i.e.,
springs deformed elastically during the pivot assembly)
[31], as well as asymmetrical pivots (i.e., those where, for
a given intersection angle of the strips, the point at which
the undeflected strips cross is varied along their length)
[10,21]. In fact, these configurations should decrease the
variability of the rotational stiffness of the flexural pivot,
thus reducing its centre-shift.
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