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Introduction

The tremendous growth of data traffic, primarily Internet traffic, in the past several years

has created an ever increasing need for high-speed communication networks. As a result

of the huge potential bandwidth of optical fibers, optical networks have been established as

the enabling technology for future long-haul high-speed backbone networks.Wavelength

Division Multiplexing(WDM) makes the utilization of the tremendous bandwidth of optical

fibers possible by multiplexing data onto different wavelengths.

The development of future backbone optical networks is aimed towards a fully transpar-

ent all-optical network based on optical burst and packet switching. However, this goal is far

from being realized. The high-speed backbone networks currently deployed are based on op-

tical circuit switching and are commonly referred to as wavelength routed WDM networks.

Nodes in these network can be configured to set up all-optical connections, calledlightpaths,

between pairs of nodes. These connections can traverse multiple links in the physical topol-

ogy and yet transmission via a lightpath is entirely in the optical domain, i.e. there is no

opto-electronic conversion at intermediate nodes. Establishing a set of lightpaths creates a

virtual topology over the physical topology. Packet switched traffic is then routed over the

virtual topology, completely independent of the underlying interconnection of optical fibers.

If nodes in the network are equipped with mechanisms which support multicasting (point-

to-multipoint communication) on the WDM layer, a set oflight-treescan be established. A

light-tree is a generalization of a lightpath which optically connects a subset of nodes in the

network, i.e. forms an all-optical tree which enables one-to-many communication entirely

in the optical domain. A virtual topology composed of a set of light-trees is better suited to

support multicast and broadcast traffic than a set of lightpaths.

In order to establish a set of lightpaths/light-trees, it is necessary to find corresponding

routes in the physical topology and assign wavelengths to them. This problem is known as

the Routing and Wavelength Assignment (RWA) problem. The most common objective is to

minimize the number of wavelength used. The unicast RWA problem deals with establishing

of a set oflightpaths, while the multicast RWA problem deals with establishing of a set of
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light-trees. Demands to set up lightpaths/light-trees can be static, scheduled or dynamic. Sta-

tic demands are knowna priori and the virtual topology is established semi-permanently. For

scheduled demands, the set-up and tear-down times of each lightpath/light-tree are knowna

priori . Dynamic demands are the case when requests for lightpaths/light-trees arrive unex-

pectedly with random holding times. Successful solvability of the RWA problem is crucial

to efficiently utilizing resources in optical networks. Since this problem is NP-complete,

efficient heuristic algorithms are needed to help solve it. This thesis is concerned with the

problems of routing and assigning wavelengths to static and scheduled lightpath demands

and static light-tree demands.

The successfuldesignof virtual topologies is also crucial to utilizing the potential of

wavelength routed optical networks. Designing and establishing a virtual topology com-

posed of a set of lightpaths and/or light-trees is a complex problem. This problem, known as

the Virtual Topology Design problem, consists of determining the set of lightpaths/light-trees

which are to be established, solving the RWA problem for that set and, finally, routing packet

switched traffic over the established virtual topology. Upon solving the Virtual Topology De-

sign problem, several objective criteria can be considered. Objectives include minimizing the

number of wavelengths used, minimizing the congestion and average hop distance of packet

switched traffic through the virtual topology, minimizing the number of optical devices (e.g.

transmitters and receivers) needed to establish a virtual topology with good performance

measures, etc. This thesis investigates the design of virtual topologies consisting of a set of

lightpaths considering various objective criteria.

The specific contributions of the thesis are the following.

• Greedy and meta-heuristic algorithms for the Routing and Wavelength Assignment of

static and scheduled lightpath demands;

• A meta-heuristic algorithm for multicast routing, and greedy algorithms for the prob-

lem of static Multicast Routing and Wavelength Assignment;

• An additional objective criterion for the Virtual Topology Design problem and heuris-

tic algorithms for virtual topology design considering various objectives;

• New analytical lower bounds to help asses the quality of the proposed heuristic algo-

rithms.

The outline of the thesis is as follows. In Chapter 1, we provide a general introduction

to optical networks to ease understanding of the problems and issues discussed in the thesis.

Chapter 2 discusses optimization problems that arise in wavelength routed optical networks.
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In Chapter 3, we investigate the problem of routing and assigning wavelengths to static light-

path demands. We propose greedy heuristic algorithms developed by applying the concepts

of bin packing, and discuss lower bounds. Bin packing is a classical NP-complete optimiza-

tion problem which, to the best of our knowledge, has not yet been used in the context of

the RWA problem. In Chapter 4, we consider the Routing and Wavelength Assignment of

scheduled lightpath demands. Two approaches are proposed. The first applies a tabu search

meta-heuristic while the second is based on greedy algorithms. An analytical lower bound

on the number of wavelengths needed for successful solvability is presented. In Chapter 5

we investigate the problem of Multicast Routing and Wavelength Assignment. The chapter

is divided into two parts. The first considers the problem of multicast routing and a GRASP

meta-heuristic is proposed for the delay-constrained multicast routing problem. The second

part of the chapter deals with the the Routing and Wavelength Assignment of static multi-

cast (light-tree) demands. Greedy algorithms based on bin packing, which incorporate the

GRASP algorithm proposed for multicast routing, are presented. In Chapter 6, virtual topol-

ogy design is investigated and several objectives are considered. A new objective criterion

which aims at improving the connectivity of the virtual topology to help postpone the need

for reconfiguration is proposed. Presented are various algorithms for virtual topology design.

First, an approach based on solving the LP-relaxation of the formally defined optimization

problem and rounding is presented. Greedy algorithms aimed at optimizing various objec-

tive criteria are then proposed, along with lower bounds. A discussion of conclusions and

avenues of future research conclude the thesis.



Chapter 1

Introduction to Optical Networks

1.1 Optical Transmission

The basic building blocks of an optical transmission system are a transmitter, a transmission

medium and a receiver. The transmitter converts data into a sequence of on/off light pulses

which are transmitted over the transmission medium and converted back to the original data

at the receiver. An optical transmitter is essentially a light source. The first generation

systems in the 1970s used LEDs (Light Emitting Diodes) which are based on spontaneous

emission. Today, almost all optical networks use lasers which use stimulated emission to

produce high-powered beams of light. Regarding transmission media in optical communi-

cation, the most commonly used medium is optical fiber. Optical fiber is made primarily of

silica (SiO2) and acts as a waveguide, i.e. it serves as a path which allows the propagation

of electromagnetic waves (e.g. light). Receivers or photodetectors are most commonly pho-

todiodes which convert a stream of photons (the optical signal) into a stream of electrons (a

photocurrent). This current is then amplified for further electronic processing.

Fiber optics is made possible as a result of the phenomenon oftotal internal reflection

which depends on the refractive index of a material. The refractive index of a material

is the ratio of the speed of light in vacuum to its speed in the respective material. When

light travels from one material to another, the angle at which it is transmitted in the second

material depends on the angle at which it approaches the boundary between the two and their

corresponding refractive indices (see Fig 1.1). The relationship between these angles and the

refractive indices is given by Snell’s law which says thatn1 · sin θinc = n2 · sin θref , where

θinc is the incidence angle of the ray of light as it approaches the boundary,θref is the angle

of refraction, i.e. the angle at which the light is transmitted in the second material, andn1 and

n2 are the corresponding refractive indices of the materials. Supposing the second material
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Figure 1.1:Snell’s Law of Refraction.

has a smaller refractive index than the first (i.e.n2 < n1), if a ray of light approaches the

boundary at an angle greater than a ceratin angle, called thecritical angle, the ray of light is

totaly reflected back into the first material. The critical angle is the incidence angle at which

the ray of light is refracted at an angle of 90 degrees, i.e. right along the boundary, which

according to Snell’s law is equal tosin−1 n2

n1
.
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Figure 1.2:The propagation of a ray of light through an optical fiber.

An optical fiber consists of a cylindrical core made of glass which is completely encased

in cladding with a smaller refractive index than the core. As a result, if light is transmitted

in the core at an angle greater than the critical angle, the ray of light is totaly reflected

within the core and thus the light is guided and can propagate through the fiber (see Fig.

1.2). Unfortunately, several transmission impairments affect the propagation of light. These

include attenuation, dispersion and various non-linear effects.
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Figure 1.3:Attenuation in a standard single mode fiber (SMF) as a function of the wavelength used.

Attenuation Attenuation refers to the loss of signal power as it propagates through the fiber.

This loss of power is primarily due to material absorption, Rayleigh scattering and

waveguide imperfections [91]. Material absorption primarily occurs because of the

impurities in the fiber glass which are mainlyOH− ions (i.e. water vapor). Raleigh

scattering is caused by fluctuations in the refractive index of the fiber since it is not

absolutely uniform and thus causes light to scatter. Waveguide imperfections occur

since the fiber is not geometrically ideal.

Attenuation, denoted asαdB, is usually expressed in terms of decibels per kilometer

according to the following expressionαdB = −10
l

log10
Pr

Pt
, where the optical signal is

transmitted with powerPt and arrives at the receiving end of a fiber span of length

l with powerPr. Attenuation increases with the length of the fiber spanl, but also

depends on the wavelength of the optical signal. There are 3 low-attenuation regions

in the attenuation graphic shown in Fig. 1.3. These low-loss wavelength bands, also

called windows, are centered at 850 nm, 1300 nm and 1550 nm with power losses of

approximately 2 dB, 0.4 dB and 0.2 dB, respectively. Transmission in the first window

ranging from 600 nm to 900 nm was used in early optical networks in the 1970s with

speeds of tens of megabits per second. The second window ranging from 1240 nm

to 1340 nm is used in local, high speed applications, while the third window is used
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for long-haul transmission networks. These networks operate at speeds of gigabits

per second. A fourth window with low attenuation also exists ranging from 2500 to

2600 nm, however this window has not yet been exploited. To enable transmission

using a wider wavelength band, ZWPFs (Zero Water Peak Fiber) have been developed

which flatten the peak in attenuation between the second and third low-loss windows.

However, a large amount of existing fiber from networks deployed years ago is still

being used. Thus, instead of laying down new fiber, regenerators are used between

fiber spans to restore the signal and minimize attenuation.

Dispersion As an optical pulse travels through fiber, the pulse broadens. This phenomenon

is known as dispersion. Dispersion becomes a problem when the pulse spreads out to

the extent that it overlaps with the preceding and/or successive pulse (see Fig. 1.4).

This can lead to the misinterpretation of certain bits in the data sequence and thus

increase the BER (Bit Error Rate). This problem, referred to asinter-symbol interfer-

ence, limits the signal transmission rate, i.e. limits the minimum time interval between

two consecutive pulses of light.

1
 0
 1      
 1
 1
 1      
fiber


Figure 1.4:An example of the effects of dispersion on the optical signal.

The three main types of dispersion areintermodal dispersion, chromatic dispersion

andpolarization mode dispersion. Intermodal dispersion occurs in multi-mode fiber,

where the core of the fiber has a diameter of approximately50µm, allowing light to

propagate in different modes. Since these modes can be reflected internally at differ-

ent angles of incidence at the core-cladding boundary, they propagate along different

trajectories. As a result, modes arrive at the receiving end with different propagation

delays broadening the pulse. One way to overcome this type of dispersion is to is to

use fibers with a graded refractive index. In such fibers, the refractive index of the core

in the region closer to the core-cladding boundary is such that the signal travels faster

in that area. As a result, modes transmitted with a smaller incidence angle which travel

along a longer trajectory (i.e. spend more time close to the core-cladding boundary)

travel faster and thus arrive at the receiving end at the same time as modes travelling
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Figure 1.5:Dispersion as a function of wavelength for SMF, DFF and DSF fibers.

on shorter trajectories at slower speeds.

In single-mode fibers which are most commonly used in modern long-haul optical net-

works, the core has a diameter of only8− 10µm and thus light travels in only a single

fundamental mode. As a result, there is no intermodal dispersion. However, chromatic

dispersion occurs due to the fact that a transmitter cannot send all the photons of an

optical signal on exactly one wavelength. Since the refractive index of a material is a

function of the wavelength, some wavelengths will propagate faster than others. This

type of chromatic dispersion is referred to as material dispersion. Another source of

chromatic dispersion, called waveguide dispersion, refers to the differences in propa-

gation of different wavelengths depending on the differences in the refractive indices

and shape of the core and cladding.

The third type of dispersion is called polarization mode dispersion which also occurs in

single-mode fibers. Namely, the fundamental mode of a transmitted signal is actually

composed of two orthogonal polarization modes. As a result of the asymmetry of

the fiber, these modes can propagate at different speeds. Consequently, they arrive at

different times at the receiving end and thus broaden the signal.

Dispersion is dependant on the wavelength used. For Standard Single-mode Fibers

(SMF), dispersion is negative for lower wavelengths, zero at around 1300 nm and
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positive for higher wavelengths (see Fig. 1.5). In Dispersion Shifted Fibers (DSF),

the fiber geometry is such that the zero dispersion point is shifted to 1550 nm and

thus overlaps with the lowest attenuation wavelength band. In Dispersion Flattened

Fibers (DFF), the dispersion is close to zero in the range from the second to the third

low-attenuation window. Fig. 1.5 shows the dispersion profile of SMF, DSF and DFF

fibers. Since very low dispersion can lead to non-linear effects as the optical power

increases, Non-Zero Dispersion Fibers (NZ-DSF) have been developed which have

low, but not zero, dispersion profiles in the third low-attenuation window. In addition

to developing new fiber technology, a special pulse shape was discovered, called a

soliton, which retains its shape as it propagates through the fiber and thus greatly

reduces shape distortion.

Non-linear effects Non-linear effects become significant transmission impairments on long

distance fiber spans and as bit rate or signal power increase. These effects include Self-

Phase Modulation (SPM), Cross-Phase Modulation (XPM), Stimulated Raman Scat-

tering (SRS), Stimulated Brillouin Scattering (SBS) and Four-Wave Mixing (FVM).

These effects are out of the scope of this thesis, but a description of these phenomena

can be found in [91].

As a result of these transmission impairments, fiber spans are limited to a few hundred

kilometers for bit rates of gigabits per second. 3R regeneration (regenerate, reshape and re-

time) using repeaters requires optoelectronic conversion. In order to overcome this problem,

optical amplifiers were developed. In the 1980’s, Semiconducter Optical Amplifiers (SOA)

were used but had a number of drawbacks. In 1987, Erbium-Doped Fiber Amplifiers (EDFA)

first appeared and are still most commonly used today. They are made of silica fiber glass

doped with ions of erbium which is a rare-earth metal. For further information on optical

transmission refer to [64], [91], and [93].

1.2 WDM Optical Networks

1.2.1 WDM Technology

As a result of the growth of the Internet, the World Wide Web and several emerging mul-

timedia network applications, there is an ever increasing demand for bandwidth in today’s

communication networks. Optical fiber is the preferred medium for backbone high-speed

networks due to their huge bandwidth, low BER (Bit Error Rate) of 10−12 and low noise
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and interference characteristics. However, although many high speed networks use optical

fibers, some do not fully exploit their tremendous potential bandwidth (up to 50 THz) since

at the end of each link, the optical signal is converted back to the electronic domain. As a

result, data rates are limited to a few Gigabits per second due to end user equipment which

is limited to peak electronic speed.

WDM (Wavelength Division Multiplexing) is a technology which efficiently overcomes

this optical-electronic mismatch, referred to as the ‘electronic bottleneck’, by partitioning the

fiber bandwidth into a set of disjoint wavelength bands. These non-overlapping wavelength

bands (referred to as wavelengths) most commonly divide up the third low-attenuation loss

region of the optical transmission spectrum (the 1550 nm band). Each wavelength supports

one communication channel corresponding to an end user which can operate at an arbitrary

speed, e.g. peak electronic speed. Since lightbeams on different wavelengths do not interfere

with each other, multiple wavelengths (i.e. channels) can be combined (multiplexed) and

simultaneously transmitted over an optical fiber. The individual channels are then separated

(demultiplexed) at the receiving end to restore the individual data streams.

WDM is attractive since it is a cost-effective method of utilizing the huge potential band-

width of fiber already deployed and thus eliminating the huge investment incurred by lay-

ing down additional fiber. Another key advantage of WDM technology is its transparency.

Namely, each wavelength can carry data flows at different bit rates using different protocol

formats.

Components used in optical WDM networks include transmitters, receivers, optical am-

plifiers and switching devices. As already mentioned, a transmitter is usually a laser, while

a receiver is a filter or photodiode. Transmitters and receivers are commonly referred to as

transceivers. Transceivers can be made dynamically tunable to operate on different wave-

lengths. In such cases, a transmitter is tuned to transmit on a certain wavelength, while a

receiver can be dynamically tuned to receive the appropriate wavelength. A device integrat-

ing the functionality of a transmitter, receiver and electronic regenerator is referred to as a

transponder [49]. To realize signal transmission, transponders modulate signals onto distinct

wavelengths which are multiplexed, amplified and transmitted along the fiber. The signal is

optically amplified about every 100 kilometers. Upon reaching the receiving end, the signal

is pre-amplified, demultiplexed and restored to individual data streams.

Fiber interconnecting devices are critical to optical networking. In point-to-point trans-

mission systems, such as SDH and SONET, the switching equipment used converts the signal

from the optical into the electronic domain and back at every network node. Examples of

electronic switches include Wavelength Add-Drop Multiplexers (WADM) and Digital Cross-
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Connects (DXC). As optical networks are evolving, some routing, switching and intelligence

is handled on the optical layer. Optical switches are those which can switch an optical signal

without performing opto-electronic conversion, although the switch itself may be controlled

by electronic signals. An Optical Add-Drop Mulitplexer (OADM), can forward certain wave-

lengths with no opto-electronic conversion, while letting data streams on other wavelengths

which originate or terminate at the node be ‘added’ or ‘dropped’, respectively. Wavelength

Routing Switches (WRS), also referred to as Wavelength Cross-Connects (WXC), can switch

any wavelength on an incoming port toanyoutput port in the optical domain. This means

that the internal connections can be dynamically reconfigured. If the WRS hasN input ports,

N output ports and can supportW wavelengths, it acts asW individual N × N switches.

Wavelength routing nodes can also be equipped with Wavelength Converters (WC) which

can convert the wavelength of a data stream at the router entirely in the optical domain. Fur-

ther information regarding components of optical networks and enabling technologies can

be found in [64], [91] and [93].

1.2.2 WDM Network Architectures

Broadcast-and-Select WDM Networks

In broadcast-and-select WDM networks, nodes are interconnected by a device called a pas-

sive star coupler [67]. Nodes are equipped with fixed or tunable transmitters which can

transmit signals on different wavelengths. These signals are combined into a single signal

by the passive star coupler. This device then transmits the combined signal to all the nodes

in the network, where the power of transmitted signal is split equally among all the out-

put ports leading to all nodes in the network. Each node can receive information sent on

a certain wavelength by tuning their receiver to the desired wavelength. An example of a

broadcast-and-select network is shown in Fig 1.6. Here, Nodes 1, 3, and 4 are transmitting

data using wavelengthsW1, W2 andW3, respectively, while Node 2 is not transmitting any

information. Node 4 is tuned to receive information carried on wavelengthW1, Nodes 1 and

2 are both tuned to receive information carried on wavelengthW2, while Node 3 is receiving

information carried on wavelengthW3.

Broadcast-and-select networks can be single-hop [62] or multi-hop [63] networks. In

single hop networks, transmitted messages travel from source to destination entirely in the

optical domain. These networks require rapid tuning of transceivers and require synchroniza-

tion protocols to coordinate the transmissions between various nodes. Multihop networks

avoid rapid tuning by using fixed tuned transceivers which are semi-permanently configured
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Figure 1.6:An example of a broadcast-and-select network.

to transmit or receive messages on a certain wavelength and thus form a virtual topology

over the physical one.

An advantage of broadcast-and-select networks is that they can easily support multicast

traffic since multiple receivers at different nodes can be tuned to receive the same wavelength

channel. Drawbacks of broadcast-and-select networks include the need for synchronization

and rapid tuning in single hop networks, the lack of wavelength reuse which creates the

need for a large number of wavelengths, and they cannot span long distances since the signal

power is split among various nodes. These networks are therefore mostly used in high-speed

local area networks and metropolitan area networks.

Wavelength Routed Networks

Wavelength routed networks consist of nodes composed of wavelength routing switches

(WRS) and end users. These nodes are interconnected by optical fiber links, forming an

arbitrary physical topology. Configurable WDM nodes enable all-optical channels, called

lightpaths, to be set up and torn down between pairs of nodes. Lightpaths can traverse mul-

tiple physical links and essentially create a virtual topology on top of the physical topology.
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Figure 1.7:An example of (a) a wavelength routed network with a possible lightpath assignment

and (b) its corresponding virtual topology .

Information sent via a lightpath does not require any opto-electronic conversion at interme-

diate nodes. End nodes of a lightpath tune their transmitters or receivers to the wavelength

on which the lightpath operates in order to access the transmitted signal. Intermediate nodes

forward the message in the optical domain using their WRSs. An example of a wavelength

routed network and its corresponding virtual topology are shown in Fig. 1.7. Problems

and issues regarding the design of wavelength routed networks will be discussed in detail in

Chapter 2.

Wavelength routed networks have several advantages over broadcast-and-select networks.

Since they do not split the power of an optical signal among multiple users, they have bet-

ter scalability properties which are only limited by the physical characteristics of the optical

medium. Furthermore, such networks take advantage ofwavelength reusabilitywhich means

that lightpaths which do not traverse the same physical links can operate on the same wave-

length. This way, wavelength routed networks exploit both the optical capacity of the fiber

using WDM technologyand the capacity due to wavelength reuse. In addition, the manage-

ment cost of wavelength routed networks is lower than that of broadcast-and-select networks

since optical devices have lower maintenance costs. Another key advantage of wavelength

routed networks is that they can be reconfigured on demand. Namely, lightpaths can be set up

and torn down dynamically and thus enable the network to support changing traffic trends.

Wavelength routing further enables the construction of transparent all-optical networks in

which data can be transmitted over the same infrastructure regardless of the bit rate, traffic
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characteristics or protocol used.

Linear Lightwave Networks

In linear lightwave networks, instead of directly multiplexing multiple wavelengths on an

optical fiber, waveband partitioning is used [67]. This means that a set of wavelengths is

grouped together into a waveband and then multiple wavebands are multiplexed onto the

fiber. This type of two-tier partitioning, in which several wavelengths are treated as a single

unit, lowers the network requirements. Namely, a waveband is transmitted and switched

optically using a single port so the number of optical switches needed corresponds to the

number of wavebands used and not individual wavelengths. Two important constraints in

these types of networks are referred to asinseparabilityanddistinct source combining. The

first constraint says that once wavelengths of a single waveband are combined on the fiber,

they cannot be separated in the network. The latter constraint forbids splitting the signal at

one node and recombining it at another node in the network, i.e. only signals from distinct

sources can be combined.

1.3 Next Generation Optical Networks

1.3.1 Optical Circuit, Burst, and Packet Switching

Currently, WDM technology is mainly being used to exploit the large bandwidth of optical

fibers. Point-to-point technology, which converts the signal back into the electronic domain

at the end of each link, is quite mature. However, optical switching is rapidly evolving.

The evolution of optical networks is aimed towards the realization of a fully transparentall-

optical network [80]. In such networks, a single infrastructure can carry data flows using

different protocols, modulation schemes and/or bit rates. Another key development in opti-

cal networking is the design of reconfigurable optical networks in which bandwidth can be

allocated dynamically between users according to changing traffic trends.

Photonic switching technology thus plays the main role in future optical networks. WDM

technology is evolving from circuit to burst and packet switching technology. The main dif-

ference is in the granularity of the switching elements. The evolution of optical communi-

cations [61] is shown in Fig 1.8 and will take place in several phases. While point-to-point

and ring networks employ electronic switching, wavelength routed networks are the first step

in the gradual migration to all-optical switching. This phase is currently underway in high-

speed transport networks. These networks are based onoptical circuit switching(OCS) at
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Figure 1.8:The evolution of optical communication systems.

the granularity of a wavelength. Lightpaths are established between pairs of nodes and data

is transmitted entirely in the optical domain via lightpaths. Although this approach is a big

step towards a transparent and configurable optical network, it has certain drawbacks [80].

One drawback is that channels are reserved regardless of whether data is being transmitted.

Furthermore, to be efficient, traffic must be groomed or statistically multiplexed.

The future optical Internet will rely on photonic switches to transmit IP packets directly

over WDM links eliminating intermediate layers between IP and WDM (e.g. ATM, SONET,

SDH) [61], [23]. This avoids avoids excessive control and management overhead. However,

a control plane is still necessary to ensure that IP packets arrive at their desired destinations.

Photonic inspection or optical processing is currently technologically and economically in-

feasible, so the control of optical switches is processed electronically while the payload is

switched optically with some optical buffering. Optical buffering is usually performed using

Fiber Delay Lines (FDL) which delay the signal for a short time. In order to reduce header

inspection duration, the concept ofoptical burst switching(OBS) was developed. OBS is

aimed at improving the drawbacks of circuit switched networks and is meant to ease the

transition from optical circuit to optical packet switching [61].
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The basic switching entity in OBS networks is a variably sizedburst. A burst is an ag-

gregate flow of data packets with a single burst header. This is usually a group of IP packets

heading for the same destination with the same QoS (Quality of Service) requirements. OBS

is aimed to provide ultra-high throughput and real-time data provisioning. Grouping packets

into bursts with a single burst header reduces header inspection duration and buffering at

intermediate nodes. Control packets are transmitted on a separate wavelength with an offset

time. Bandwidth is used only for the duration of the burst. Optical burst switching technol-

ogy is still in the experimental stage and there are several challenges which need to be faced.

The main challenges include designing fast and cost-efficient switches, burst switching pro-

tocols and signalling mechanisms, and wavelength channel scheduling [67]. For an overview

of OBS refer to [97].

The final stage in the transition from circuit to packet switching leading to a ultra-high

bandwidth, data-centric, flexible and transparent all-optical Internet isOptical Packet Switch-

ing (OPS) ([80], [96]). This technology is still in the experimental stage but is predicted to

be the core of the next generation optical Internet. The basic switching entity is apacket

promising arbitrarily fine switching granularity. Each packet is composed of a header and

payload. At the optical switch, the payload is switched or buffered depending on the infor-

mation in the header. The challenges involved in realizing OPS include the design of fast

and cost-effective switches, packet synchronization, content resolution, and scalable buffer-

ing and packet level parsing.

It is important to note that optical circuit, burst and packet switching technologies all

have different application domains. As a result, it is more likely that all three will coexist in

the next generation optical network instead of replacing one another [80]. Since the control

and transport planes will most likely be separated, label switching will probably be used for

control in the optical domain for all three switching frameworks [61]. This technology is

migrated from the existing IP/MPLS networks and will be discussed in the next section.

1.3.2 Control and Management: GMPLS

In wavelength routed (circuit switched) optical networks, control mechanisms are required to

dynamically set up and tear down lightpaths [94]. Research in this field is primarily focused

on developing control mechanisms which minimize the blocking probability of lightpath re-

quests, set-up delay and control message overhead [65]. Several approaches available in

literature include both centralized and distributed schemes [95]. In traditional telecommuni-

cation networks, network control is implemented as part of a layered management system.

However, the approach adopted in IP networks separates control from management focusing
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on the automation of provisioning and control [94]. The future optical Internet is focused on

developing such an automated optical control plane.

One of the motivation factors for optical burst/packet switching is the convergence of

electronic and optical technologies, i.e. of IP and OPS. Running IP directly over WDM is

more efficient than using intermediate layers, but requires an optical control plane. As optical

networking is evolving from SONET/SDH networks to high-speed mesh transport networks,

a control plane is necessary which can supportboth legacy and new traffic types and which

can operate across network boundaries [30]. In other words, flexible control supporting both

circuit and packet switched traffic is needed.

The Internet Engineering Task Force (IETF) and other standardization bodies have been

working on the development of protocols for the control plane of transport networks. The

IETF introduced the first Internet Draft of a collection of protocols, called Generalized Multi

Protocol Label Switching (GMPLS), in the year 2000 and has been updating it ever since.

GMPLS [55] is a framework aimed at satisfying the need for an IP-oriented control plane

in optical networks and can support a variety of services and incorporate traffic engineering

capabilities.

GMPLS is a generalized version of MPLS, while adding features that enable it to work in

optical circuit/burst/packet switched networks. Multi Protocol Label Switching (MPLS) [79]

is a control framework developed to enable fast switching in IP networks. The idea behind

MPLS is that labels are added to IP packets which are used to forward packets along Label

Switched Paths (LSP) traversing multiple Label Switched Routers (LSR). The IP header of

the packet is not examined at intermediate nodes along the LSP enabling fast switching.

Packets with with common parameters (e.g. the same destination) are assigned to the same

LSP.

This idea of tunnelling IP packets along Label Switched Paths is similar to the idea of

tunnelling IP traffic via lightpaths [30]. The wavelength assigned to a particular lightpath

is analogous to the labels used in electronic MPLS networks. Optical cross-connects in a

wavelength routed network could maintain port and wavelength mappings similar to label

forwarding tables at Label Switched Routers. Thus, the concepts of MPLS were extended

giving rise to GMPLS which is aimed at providing a unified control layer for multi-layer

transport networks and thus seamlessly interconnecting new and legacy networks. This

frameworks should allow end-to-end provisioning and control and traffic engineering re-

gardless as to whether the edge nodes belong to different networks. Such a multi-service

framework would provide higher flexibility, lower operational cost and easier management

of different services [17]. For more information on GMPLS refer to [30], [61] and [99], and
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refer to [36] for the current IETF drafts and RFCs regarding the GMPLS architecture.



Chapter 2

Optimization Problems in Wavelength

Routed WDM Networks

In wavelength routed optical networks, complex and diverse virtual topologies can be created

over the same physical optical network by establishing various all-optical communication

channels between nodes. Several optimization problems and issues arise in the design of

such networks. This thesis focuses on the problems of Routing and Wavelength Assignment

and Virtual Topology Design in wavelength routed WDM networks. A description of these

problems and other issues related to wavelength routed networks follows.

2.1 Routing and Wavelength Assignment

Wavelength routed WDM networks are equipped with configurable WDM nodes which en-

able all-optical connections, calledlightpaths, to be set up and torn down between pairs of

nodes. Although these all-optical connections can traverse multiple physical links, infor-

mation sent via a lightpath does not require any opto-electronic conversion at intermediate

nodes. Establishing a set of lightpaths creates a virtual topology on top of the physical

topology. The physical topology represents the physical interconnection of WDM nodes by

actual fiber links in the WDM optical network. The links in the virtual topology represent

all-optical connections or lightpaths established between pairs of nodes. Demands to set up

lightpaths between certain nodes can be static, scheduled or dynamic. In the case ofstatic

lightpath demands, a desired static virtual topology (i.e. the set of lightpaths we wish to

establish) is knowna priori. Such a virtual topology is set up ‘semi-permanently’ which

implies that even when a certain connection is not being used its resources remain reserved.

When we refer toscheduled lightpath demands, we refer to connection requests for which
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we know the set-up and tear-down timesa priori. In other words, we know in advance when

a connection will be needed. Fordynamic lightpath demands, lightpath requests arrive un-

expectedly with random holding times. These lightpaths are set up dynamically at request

arrival time and are released when the connection is terminated.

To set up a lightpath, nodes on its corresponding physical path must be configured to do

so. If the network lacks wavelength converters, the lightpath must use the same wavelength

along its entire physical path. This is called thewavelength continuity constraint. Two

lightpaths that share a common physical link cannot be assigned the same wavelength. This

is called thewavelength clash constraint. The source and destination nodes of the lightpath

must also have available transmitters and receivers respectively in order for the lightpath to

be successfully set up.

Determining routes for a set of lightpath demands and assigning wavelengths to these

routes subject to a subset of the above mentioned constraints is known as the Routing and

Wavelength Assignment (RWA) problem. This problem has been proven to be NP-complete

[11] and several heuristic algorithms have been developed to solve it suboptimally [4] [12]

[57] [71]. Several variations of the RWA problem have been studied [39] [64] [67] such as

the routing and wavelength assignment of static, scheduled or dynamic lightpath demands

with a limited or unlimited number of wavelengths in networks with wavelength converters

at each node, at a subset of nodes, or in networks with no wavelength converters. Algorithms

to solve these problems can be centralized or distributed. The objective is often to minimize

the number of wavelengths used or to maximize the number of lightpaths set up subject to a

limited number of wavelengths. A second objective can be to minimize the physical lengths

of the corresponding physical paths. Examples of heuristic algorithms which solve the RWA

problem for static, scheduled, and dynamic lightpath demands can be found in [86], [85]

and [13], respectively. In this thesis, we will consider the problems of Static and Scheduled

Routing and Wavelength Assignment in Chapters 3 and 4, respectively.

2.2 Multicast Routing and Wavelength Assignment

Due to the rapid development of advanced network services and applications, network traffic

has been growing exponentially in the past several years. As already mentioned, WDM

technology is a promising solution for satisfying the ever increasing capacity requirements

in telecommunication networks. In addition to high capacity requirements, the development

of several multimedia applications has created an increasing need for point-to-multipoint

and multipoint-to-multipoint communication. This type of communication is referred to as
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multicasting. WDM optical networks can efficiently support multicasting since splitting light

is inherently easier than copying data into an electronic buffer. Applications of multicasting

include multimedia conferencing, distance education, video distribution, distributed games

and many others. Many of these applications require packets of information to be sent with

a certain Quality of Service (QoS). In this thesis, we will consider the QoS demand of a

bounded end-to-end delay. This constraint is particularly important for real-time applications

such as video-conferencing or distance education.

Recall that in wavelength routed WDM networks, a virtual topology is established over

the physical optical network by setting up all-optical connections, calledlightpaths, between

pairs of nodes. A generalization of a lightpath, called alight-tree, was proposed in [81] to

facilitate multicasting in wavelength routed WDM optical networks. Light-trees logically

connect a source node to a group of destination nodes. Thus, these trees enable all-optical

point-to-multipoint communication, i.e. entirely in the optical domain. Light-tree demands,

like lightpath demands, can be static, scheduled or dynamic. A survey of optical multicasting

in WDM networks is given in [22]. To establish a light-tree, nodes in the network must

be equipped with multicast capable switches [47] which increases network cost. However,

it has been shown that setting up a virtual topology composed of a set of light-trees, as

opposed to lightpaths, substantially reduces the average packet hop distance and the number

of transceivers required in a network for unicast, multicastandbroadcast traffic [81].

To establish a virtual topology composed of a set oflight-trees, we must solve theMul-

ticast Routing and Wavelength Assignment(MC_RWA) problem. In this thesis, we consider

thestaticMC_RWA problem, i.e. all the the requests are knowna priori and the virtual topol-

ogy is established ‘semi-permanently’. Given is a network and a set of multicast requests.

For each multicast request, it is necessary to find a multicast tree, i.e. a light-tree, which

connects the source node to all the destination nodes. Optimization problems in multicast

tree construction are discussed in [70]. Multicast routing is often reduced to the minimum

Steiner tree problem in graphs. Generally, for a given graphG = (V,E), whereV is a set

of nodes andE is a set of edges, and a given subset of nodes,D ⊆ V , a Steiner tree is one

which connects all the nodes inD using a subset of edges inE. This tree may or may not

include nodes inV \D. A minimumSteiner tree is such a tree which is of minimum weight

in a weighted graph. Several applications of Steiner Trees can be found in [10].

In addition to finding a feasible multicast tree, in order to solve the Multicast Routing

and Wavelength Assignment problem it is necessary to assign wavelengths to these trees

subject to the following constraints. If no wavelength converters are available, the same

wavelength must be assigned along the entire tree. This is called thewavelength continuity
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constraint. In addition, light-trees that share a common physical link cannot be assigned

the same wavelength. This is called thewavelength clash constraint. Depending on the

power splitters available at each node, the optical signal may only be split into a bounded

number of signals [2]. This imposes a constraint on the degree of the established multicast

trees. Delay constrained multicasting, where each multicast request has an end-to-end delay

bound associated with it, can also be considered. The objective of the MC_RWA problem is

often to minimize the number of wavelengths used, or to maximize the number of light-trees

successfully set up subject to a limited number of wavelengths. A second objective which

can be considered is the minimization of the costs of the established light-trees. The cost of

a light-tree can represent various values such as the actual cost, the total number of hops, the

total length or the maximum transmission delay in the tree.

The problem of Routing and Wavelength Assignment of unicast (lightpath) demands has

been shown to be NP-complete [11]. Multicast (light-tree) demands make the problem even

harder. In fact, multicast routing, i.e. the minimum Steiner tree problem, itself is NP-hard

[27]. Several variations of the MC_RWA problem and their solutions have been proposed in

[8], [33], [34], [40], and [84].

2.3 Virtual Topology Design

The Virtual Topology Design problem in wavelength routed WDM networks is as follows.

Given is a physical topology, the number of available wavelengths on each link, the num-

ber of available transmitters and receivers at each node, and a traffic matrix representing the

long-term average traffic flows between nodes. To create a virtual topology, a set of light-

paths (and/or light-trees) which forms the virtual topology over the physical one must be

determined. In this thesis, we will consider the design of virtual topologies consisting only

of lightpaths. In order for these lightpaths to be established, each lightpath must be routed

over the physical topology and assigned a particular wavelength (i.e. the RWA problem).

We will refer to a combination of these subproblems as theVirtual topology andRouting and

WavelengthAssignment problem (V RWA). Lastly, packet switched traffic must be routed

over the established virtual topology. This will be referred to asTraffic Routing (TR). The

Virtual Topology Design problem refers to a combination of theVRWAandTRproblems.

To establish a virtual topology, a number of constraints must be satisfied. These include

the wavelength continuity and clash constraints included in the RWA problem. Furthermore,

the source and destination nodes of a lightpath must have available transmitters and receivers,

respectively, in order for the lightpath to be successfully established. Due to a limited number
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of transmitters and receivers at each node and a limited number of available wavelengths on

each link, it is usually not possible to set up a lightpath between every pair of nodes. There

are several objectives which can be considered in virtual topology design which include

minimizing congestion, average packet hop distance, the number of wavelengths used, etc.

A detailed description of these objectives will be discussed in Chapter 6.

Determining a good virtual topology with respect to various optimization criteria given a

limited amount of resources is a complex problem. Several variations of the virtual topology

problem have been studied [39], [24], [64], [67]. These include designing regular [68] and

arbitrary ([5], [48], [66], [76], [100], [88], [73], [50]) virtual topologies.

2.4 Other Issues

2.4.1 Virtual Topology Reconfiguration

The virtual topology is most often designed to perform well for a given traffic matrix which

represents the estimated long-term average traffic flows between pairs of nodes. However,

traffic is prone to change and thus the established virtual topology may not preform well for

changing traffic patterns. The advantage of wavelength routed networks lies in the fact that

wavelength routed switches are reconfigurable and thus the virtual topology can be changed

to meet the changing traffic demands. This is done by establishing new lightpaths and/or

tearing down existing lightpaths. However, reconfiguration is expensive since it incurs ser-

vice disruption and control overhead. As a result, reconfiguration is often kept to a minimum.

Research in this field is focused on finding new virtual topologies which are as close to the

current virtual topology as possible and yet improve performance measures. Related work

can be found in [6] and [75]. An approach to virtual topology reconfiguration without as-

suming the future traffic pattern is known is given in [28].

2.4.2 Survivability

Survivability and fault management are also important issues in wavelength routed networks.

Mechanisms must be developed which deal with component failures. It is crucial in wave-

length routed networks that failure recovery be fast in order to minimize service disruption

since there is a huge amount of traffic being carried. Handling failures at the optical layer,

as opposed to the client layer, has the following advantages. Namely, recovery is faster

at the lightpath level and the number of failed lightpaths is usually much smaller than the

number of failed user connections allowing restoration to be performed with less overhead
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[67]. Two common approaches in literature dealing with component failures in wavelength

routed networks are as follows. The first approach is to define secondary paths and preassign

wavelengths to them. This enables almost instant recovery but at the cost of reserving exces-

sive resources. The second approach is to deal with failures as they arrive by dynamically

searching for backup paths. This, however, incurs a longer recovery delay and provides no

guarantee that there is a backup path available. The objective criteria for designing surviv-

able networks and efficient fault management mechanisms include resource requirements,

connection acceptance rates and failure recovery times [67]. Related work can be found in

[60], [101], [61], and [99].

2.4.3 Traffic Grooming

Connection requests in wavelength routed optical networks often require less capacity than

is available on a single lightpath. As a result, efficient traffic grooming which combines low-

rate (sub-wavelength) traffic onto a single wavelength, i.e. a higher capacity lightpath, can

drastically improve network throughput and reduce network cost. Several approaches have

been studied, but the majority of research is focused on traffic grooming in ring networks.

Traffic grooming in WDM mesh networks with the objective to maximize network through-

put is studied in [106]. An approach which solves traffic grooming together with routing and

wavelength assignment is proposed in [98].

2.4.4 Control and Management

As already mention in Chapter 1.3.2, a control mechanism is needed in wavelength routed

networks which can dynamically establish and tear down lightpaths. In order to establish

a lightpath, a dynamic routing and wavelength assignment algorithm is used to determine

the physical path and wavelength assigned to the lightpath. The network control mecha-

nism must have information about lightpaths and wavelengths currently being used in the

network in order to perform dynamic RWA. Once RWA is solved, the corresponding wave-

length routed switches must be appropriately configured to establish the lightpath. Several

approaches have been studied in literature which fall into two categories: centralized and

distributed ([95], [65]). Common objectives when developing an efficient control mecha-

nism include maximizing the number of connections established (throughput), minimizing

connection set-up times and minimizing control overhead . Besides the mentioned control

functions, a network management system is needed for performance management, fault man-

agement, security management and accounting management [67]. For more on control and
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management refer to [99] and [61].

2.4.5 Transmission Impairments

Transmission impairments of the physical layer are often ignored when designing virtual

topologies and performing RWA. However, taking these impairments into consideration in

the planning process can reduce network cost and improve the performance characteristics.

Since transmission distance is fairly long in wide-area wavelength routed optical networks,

physical limitations should be taken into consideration to ensure a low BER (Bit Error Rate).

The BER of a connection depends on a large number of transmission impairments includ-

ing attenuation, dispersion and non-linear effects. Developing routing and/or wavelength

assignment schemes with target BER levels (i.e. a BER lower than a certain threshold value)

or minimizing the BER level could help improve network performance [21]. An approach

to virtual topology design considering physical limitations is given in [98]. Another op-

timization problem regarding transmission impairments in wavelength routed networks is

minimizing the number of optical amplifiers needed and determining their placement in the

network subject to device limitations. These limitations include the maximum output power

and the maximum gain of amplifiers, the maximum power of transmitters, the minimum

signal power needed for wavelength detection, and attenuation in the fiber [67]. Amplifier

placement with the objective of minimizing the total amplifier cost is investigated in [104].

2.4.6 Wavelength Convertible Networks

In wavelength convertible networks, nodes in the network are equipped with wavelength

convertible switches which enable a signal on an particular input port to be switched to an

output port on a different wavelength without performing opto-electronic conversion [74].

The wavelength continuity constraint is dropped when solving the virtual topology design

and routing and wavelength assignment problems in such networks. Since wavelength con-

verters are fairly expensive, sparse wavelength conversion, i.e. where converters are only

placed at a subset of the nodes in the network, is often considered. This gives rise to the op-

timization problem of converter placement. For more on RWA with wavelength conversion

and converter placement refer to [16], [15], [92] and [14].



Chapter 3

Static Routing and Wavelength

Assignment

In this chapter we consider the problem ofStatic Routing and Wavelength Assignmentin

wavelength routed networks with no wavelength conversion. We improve upon solutions

proposed for the routing and wavelength assignment of static lightpath requests by effi-

ciently applying bin packing algorithms. Bin packing is a classical NP-hard optimization

problem [27] which finds its application in many real world problems, such as truck loading,

stock-cutting problems, storage allocation for computer networks, the problem of packing

commercials into breaks and many others. However, the potential of this model has not

yet been systematically explored in the context of the routing and wavelength assignment

problem.

We apply bin packing to develop very efficient - yet simple - heuristic algorithms for

the RWA problem with the objective to minimize the number of wavelengths used. We also

consider a second objective, which is to minimize the physical lengths of the established

lightpaths. The motivation for these objectives is as follows. Minimizing the number of

wavelengths is desirable in order to leave more room for future expansion of the virtual

topology. Minimizing the physical length of a lightpath, not only in terms of hops, but also

in terms of actual distance, is desirable in all WDM networks due to signal degradation and

propagation delay.

The algorithms were tested on large random networks and compared with an efficient

RWA algorithm presented in [57]. Results indicate that the proposed algorithms obtain so-

lutions which, not only use significantly fewer wavelengths, but which also establish shorter

lightpaths. The obtained solutions were also compared with analytical lower bounds. For

denser networks, the proposed algorithms obtained optimal or near optimal solutions with
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respect to both wavelengths and lightpath lengths in many cases. Furthermore, the speed

and simplicity of the algorithms make them highly tractable for large networks with many

lightpath requests.

In the next section, we informally define the RWA problem, and discuss related work in

Section 3.2. In Section 3.3 we introduce classical bin packing and suggest heuristic algo-

rithms for the RWA problem. Lower bounds are briefly discussed in Section 3.4. Numerical

results and a chapter summary are given in Sections 3.5 and 3.6, respectively.

3.1 Problem Definition

The physical optical network is modelled as a graphG = (V,Ep), whereV is the set of

nodes andEp is the set of physical edges. Edges are assumed to be bidirectional, each

representing a pair of optical fibers (i.e. one fiber per direction). Given is a set of lightpath

requestsτ = {(s1, d1), . . . , (sn, dn)}, wheresi, di ∈ V, i = 1, . . . , n. Each lightpath request

(si, di) in G is defined by its source nodesi and destination nodedi. The static Routing

and Wavelength Assignment problem searches for a set of directed pathsP = {P1, . . . , Pn}
in G, each corresponding to one lightpath request, and assigns wavelengths to these paths.

PathsPi andPj wherei 6= j, i, j = 1, . . . , n, cannot be assigned the same wavelength if they

share a common directed edge. The length1 of pathPi, i = 1, . . . , n, denoted asl(Pi), can

be upper bounded by a valueH. The objective is to minimize the number of wavelengths

required to successfully route and assign wavelengths to all the lightpath requests inτ . We

also consider a second objective which is to minimize the average physical length of the

established lightpaths, i.e.min
Pn

j=1 l(Pj)

n
.

3.2 Related Work

Most approaches used to solve the RWA problem in WDM optical networks decompose the

problem into two subproblems, routing and wavelength assignment, solved subsequently. A

classification of such RWA algorithms can be found in [12]. In [4], the authors use a mul-

ticommodity flow formulation and randomized rounding to solve the routing subproblem.

Wavelength assignment is solved using graph coloring heuristics. In [35], the authors use

local random search for route selection. For each routing scheme, the wavelength assign-

ment problem is solved using a greedy graph coloring algorithm. A generalization of the

graph coloring problem, called the partition coloring problem, and its application to routing

1Length can be considered in terms of the number of hops or actual distance.
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and wavelength assignment is studied in [54]. In [69], wavelength assignment of previously

calculated alternative paths is solved using a tabu search algorithm suggested for partition

coloring.

An algorithm which solves the routing and wavelength assignment subproblems simul-

taneously is suggested in [53]. Here, the authors present an integer formulation and a col-

umn generation technique to help solve it. This approach may not be practical for larger

problems. A fast yet effective greedy algorithm based on edge disjoint path (EDP) algo-

rithms is presented in [57]. The algorithm, calledGreedy_EDP_RWA, creates a partition

τ1, . . . , τk of the set of lightpath requestsτ . Each element of the partition is composed of a

subset of lightpath requests which can be routed on mutually edge disjoint paths inG and,

hence, can be assigned the same wavelength. The number of distinct wavelengths needed

to successfully perform RWA corresponds to the number of elements in the partition. This

algorithm is very simple and fast and yet was shown to outperform the algorithm presented

in [4]. The algorithm in [69] was shown to perform the same or slightly better than the mul-

tistart Greedy_EDP_RWAalgorithm with respect to the number of wavelengths used, after

10 minutes of computational time, for networks with the number of nodes ranging from 14

to 32.

3.3 Heuristic Algorithms for RWA Using a Bin Packing

Approach

3.3.1 Bin Packing

The bin packing problem is a classical combinatorial optimization problem that has been

widely studied in literature. Given is a list ofn items of various sizes and identical bins of

limited capacity. To solve the bin packing problem, it is necessary to pack these items into

the minimum number of bins, without violating the capacity constraints, so that all items are

packed. Since this problem is NP-hard [27], a vast array of approximation algorithms have

been proposed and studied. Surveys of bin packing algorithms can be found in [19] and [18].

A more recent heuristic algorithm is suggested in [3].

Four well-known classical bin packing algorithms are the First Fit (FF), Best Fit (BF),

First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) algorithms. The FF and BF

algorithms are so-called on-line bin packing algorithms, which means that they pack items

into bins in random order with no information of subsequent items. Both algorithms label

bins in sequential order as new bins are used. The FF algorithm packs each item into the first
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bin (i.e. the bin with the lowest index) into which it fits. The BF algorithm packs each item

into the bin which leaves the least room left over after packing the item.

The FFD and BFD algorithms are two very fast and well known off-line bin packing

algorithms. This means that they have information of all the items to be packeda priori.

Having this information, it seems logical to first place larger items into bins and then fill up

the remaining space with smaller items. On the contrary, if all the small items are neatly

packed into one bin, there is a great chance that none of the large items will fit into that

bin. Moreover, each larger item may need an extra bin of its own leaving a lot of unused

space around it and ultimately leading to a larger number of bins used. The FFD and BFD

algorithms apply this concept by sorting the given items in non-increasing order of their cor-

responding sizes, and then perform packing in the same manner as the FF and BF algorithms,

respectively. These algorithms perform significantly better than FF and BF.

3.3.2 Algorithms for the RWA Problem

To apply bin packing to the Routing and Wavelength Assignment problem we must define

items, bins, and their corresponding sizes in terms of optical networks. We consider lightpath

requests to represent items, while copies of graphG represent bins. Each copy ofG, referred

to as binGi, i = 1, 2, 3, . . ., corresponds to one wavelength. We consider the size of each

lightpath (sj, dj) ∈ τ to be the length of its shortest pathSPj in graphG. However, it

is important to note that lightpaths are not necessarily routed on their shortest paths. This

measure is used only by the FFD and BFD algorithms in order to sort the ‘items’ or lightpaths

in non-increasing order of their corresponding sizes.

The capacity of each bin is limited by the edges inG. Namely, two lightpaths routed on

the same copy ofG cannot traverse any of the same edges due to thewavelength clash con-

straint. To solve the RWA problem, we wish to pack as many items (lightpaths) into a mini-

mum number of bins (copies ofG), and therefore minimize the number of wavelengths used.

In doing so, we must also take care to satisfy the wavelength continuity and clash constraints.

Herein, we propose RWA algorithms, to be referred to as FF_RWA, BF_RWA, FFD_RWA

and BFD_RWA, which are respectively based on classical bin packing algorithms FF, BF,

FFD and BFD. The FF_RWA algorithm obtains solutions equivalent to those obtained by the

Greedy_EDP_RWAalgorithm suggested in [57], while the remaining algorithms perform

significantly better.
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FF_RWA (Greedy_EDP_RWA[57])

The First Fit bin packing algorithm modified to solve the Routing and Wavelength Assign-

ment problem, referred to as FF_RWA, runs as follows. First, only one copy ofG, bin G1, is

created. Higher indexed bins are created as needed. Lightpath requests(sj, dj) are selected

at random and routed on the lowest indexed copy ofG in which there is room. BinGi is con-

sidered to have room for lightpath(sj, dj) if the length of the shortest path fromsj to dj in

Gi, denoted asP i
j , is less thanH. If a lightpath is routed in binGi, the lightpath is assigned

wavelengthi and the edges along pathP i
j are deleted fromGi. If all the edges from binGi

are deleted, the bin no longer needs to be considered. If no existing bin can accommodate

lightpath request(sj, dj), a new bin is created.

The FF_RWA algorithm is similar to theGreedy_EDP_RWAalgorithm suggested in [57].

The difference is in the order in which some steps are executed. Namely, the FF_RWA

algorithm routes each lightpath on the first copy ofG it fits in. If all the existing bins are full,

a new bin is created. TheGreedy_EDP_RWAalgorithm, on the other hand, creates only one

copy ofG at a time, and then tries to route as many lightpaths as possible on that copy. Due

to its basic equivalency with FF_RWA, we will compare theGreedy_EDP_RWAfrom [57]

with the rest of the bin packing algorithms proposed in this thesis.

BF_RWA

The Best Fit Routing and Wavelength Assignment algorithm, BF_RWA, routes lightpaths

in the bin into which they fit ‘best’. The BF_RWA algorithm defines the ‘best fit’ quite

differently than the BF bin packing algorithm. Namely, in classical bin packing, the ‘best

fitting’ bin is considered to be the one in which there remains the least empty space after

packing an item. The BF_RWA algorithm, on the other hand, considers the best bin to be

the one in which the lightpath can be routed on the shortest path. In other words, if at some

point in running the algorithm, there areB bins created, binGi, 1 ≤ i ≤ B, is considered to

be the best bin for lightpath(sj, dj) if l(P i
j ) ≤ l(P k

j ), for all k = 1, . . . , B, andk 6= i. This

is not necessarily the overall shortest path,SPj, since it is possible that none of the existing

bins have this path available. If there is no satisfactory path available in any of theB bins

(i.e. l(P i
j ) > H, for i = 1, . . . , B), a new bin is created.

The motivation for the ‘best fit’ approach described above, is not only to use less wave-

lengths, but also to minimize the physical length of the established lightpaths. Of course,

we could route each lightpath(sj, dj) strictly on its shortest pathSPj, but this would in

most cases lead to a larger number of bins, which in turn means using a larger number of
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FF RWA (FFD RWA)

Input:
G = (V, Ep);//physical network

τ = {(s1, d1), . . . , (sn, dn)}; //lightpath requests

H; //max physical length of lightpath

Begin:

(ONLY FOR FFD RWA: Sort and renumerate demands τ in non-
increasing order of their shortest paths, SPj , in G )
P = {}; //The final paths

Create 1 copy (bin) of G : G1;
BINS := {G1};
while τ is not empty do

for j = 1 to |τ | do
Pj = ∅;
for i = 1 to |BINS| do

Find shortest path, P i
j , for lightpath (sj , dj) in Gi;

if l(P i
j ) ≤ H then

Pj = P i
j ;

Assign wavelength i to path Pj ;

Delete edges in P i
j from Gi;

i = |BINS|;
end if;

end for;
if Pj = ∅ then

New := |BINS| + 1;
Create copy of G: GNew;
BINS := BINS ∪ {GNew};
Find shortest path, P New

j , for lightpath (sj , dj) in GNew;

Pj = P New
j ;

Assign wavelength New to path Pj ;

Delete edges in P New
j from GNew

end if;
P = P ∪ Pj ;
τ = τ \ (sj , dj);

end for;
end while;
return P ;
End

BF RWA (BFD RWA)

Input:
G = (V, Ep);//physical network

τ = {(s1, d1), . . . , (sn, dn)}; //lightpath requests

H; //max physical length of lightpath

Begin:

(ONLY FOR BFD RWA: Sort and renumerate demands τ in non-
increasing order of their shortest paths, SPj , in G )
P = {}; //The final paths

Create 1 copy (bin) of G : G1;
BINS := {G1};
while τ is not empty do

for j = 1 to |τ | do
Pj = ∅, l(Pj) = ∞;
BestBin := 0;
for i = 1 to |BINS| do

Find shortest path, P i
j , for lightpath (sj , dj) in Gi;

if l(P i
j ) ≤ H and l(P i

j ) < l(Pj) then

BestBin = i;
Pj = P i

j ;
Assign wavelength i to path Pj ;

end if;
end for;
if Pj 6= ∅ then

Delete edges in P BestBin
j from GBestBin;

else
New := |BINS| + 1;
Create copy of G: GNew;
BINS := BINS ∪ {GNew};
Find shortest path, P New

j , for lightpath (sj , dj) in GNew;

Pj = P New
j ;

Assign wavelength New to path Pj ;

Delete edges in P New
j from GNew

end if;
P = P ∪ Pj ;
τ = τ \ (sj , dj);

end for;
end while;
return P ;
End

Figure 3.1:Pseudocodes of the FF_RWA, BF_RWA, FFD_RWA, and BFD_RWA algorithms.

wavelengths.

FFD_RWA

The First Fit Decreasing Routing and Wavelength Assignment algorithm sorts the lightpath

requests in non-increasing order of the lengths of their shortest paths,SPj, in G. Light-

paths with shortest paths of the same length are placed in random order. The algorithm then

proceeds as FF_RWA.

The motivation for such an approach is as follows. If the connection request with the

longest shortest path is considered first, it will be routed in ‘empty’ binG1, i.e. G1 = G.

This means the lightpath will not only successfully be routed inG1, but will be routed on

its overall shortest path. After deleting the corresponding edges from binG1, the remaining

edges can be used to route ‘shorter’ lightpath requests which are easier to route on alternative

routes that are satisfactory (i.e. shorter thanH). In other words, the FFD_RWA algorithm

first routes ‘longer’ lightpaths which are harder to route, and then fills up the remaining space
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in each bin with ‘shorter’ lightpaths. This may lead to fewer wavelengths used.

BFD_RWA

The Best Fit Decreasing Routing and Wavelength Assignment algorithm sorts the lightpath

requests in non-increasing order of the lengths of their shortest pathsSPj in G, and then

proceeds as BF_RWA.

Pseudocodes of the FF_RWA, BF_RWA, FFD_RWA and BFD_RWA algorithms are

shown in Fig. 3.1. Some ‘first fit’ and ‘longest path first’ approaches have been used by

wavelength assignment algorithms [12], but to the best of our knowledge have not been used

to solve the routing subproblem, or for simultaneous routing and wavelength assignment. All

four algorithms efficiently solve the static RWA problem, while the FF_RWA and BF_RWA

algorithms can also be used for dynamic RWA. This makes sense since they are analogous

to the ‘on-line’ FF and BF bin packing algorithms. Namely, in thedynamicRWA problem,

lightpath requests inτ are not knowna priori, but arrive unexpectedly. This means that light-

paths inτ are established in a specific order, i.e. in the order in which they arrive. If such is

the case, the FF_RWA and BF_RWA algorithms simply establish lightpaths in the specified

order according to their corresponding ‘first fit’ or ‘best fit’ strategies.

3.4 Lower Bounds

Since the algorithms considered in this chapter are heuristics which obtain upper bounds

on the minimal objective function values, it is useful to have good lower bounds in order

to assess the quality of the sub-optimal solutions. We use a lower bound for the number

of wavelengths required which is similar to a lower bound developed for the virtual topol-

ogy design problem presented in [76]. Stronger lower bounds may be found using more

sophisticated methods, such as that in [83], but we use the lower bound presented here for

its simplicity. Namely, the algorithms were tested for fairly large test problems, so using

complex algorithms for finding better lower bounds was not practical. Furthermore, com-

putational results demonstrate the efficiency of the suggested lower bound, particularly in

denser networks. This bound on the number of wavelengths needed to establish a given set

τ of n lightpath requests in a network with|V | nodes and|Ep| edges is
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LBW = max{ max
i∈V

d∆lout(i)

∆p(i)
e, max

i∈V

d∆lin(i)

∆p(i)
e, d

∑n
j=1 l(SPj)

2 ∗ |Ep| e}. (3.1)

∆lout(i) represents the logical out-degree of nodei, i.e. the number of lightpaths for

which nodei is the source node.∆lin(i) represents the logical in-degree of nodei, i.e. the

number of lightpaths for which nodei is the destination node. Since all edges in graphG are

bidirectional, the physical in-degree is equal to the physical out-degree for each nodei and is

denoted as∆p(i). l(SPj) is the length of the shortest path inG of lightpath request(sj, dj).

The first element in (5.1) represents the maximum ratio of logical to physical out-degree of

any node inG, rounded up to the first higher integer. If some nodei has∆p(i) adjacent

physical links and is the source node for∆lout(i) lightpaths, at least one physical link will

haved∆lout
(i)

∆p(i)
e lightpaths routed over it. Since lightpaths routed on the same physical links

cannot be assigned the same wavelength, at leastd∆lout
(i)

∆p(i)
e wavelengths are needed to route

the corresponding lightpaths. The highest such ratio among all the nodes in the network

is a lower bound on the number of wavelengths needed to perform RWA for setτ . The

second element in (5.1) is analogous to the first element, but represents the maximum ratio

of logical to physicalin-degree of any node inG, rounded up to the first higher integer. In

some cases, the third element in (5.1) may give a better lower bound. This element represents

the minimum total physical hop length of all the lightpaths divided by the total number of

links in the network. The minimum total physical hop length of the established lightpaths is

the sum of the lengths of the shortest paths (in terms of hops) of all the lightpath requests.

Since each edge inEp represents 2 links, one in each direction, the total physical hop length

is divided by2 ∗ |Ep|.
A simple lower bound on the average physical length of the established lightpaths is equal

to the average length of the shortest paths inG of all the lightpath requests inτ . We consider

the lengths of lightpaths in terms of hops and refer to this lower bound as the Physical Hops

lower bound,LBPH . The bound is as follows.

LBPH =

∑n
j=1 l(SPj)

n
. (3.2)
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Table 3.1:100-node test networks with an average degree of 3: Lower bound and the average (lowest,

highest) number of wavelengths used in the solutions obtained by theGreedy_EDP_RWAalgorithm

(from [57]), and the BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Netw.
Pl

Lightpath

requests
LBW

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2054 29 48.8 (47,52) 45.2 (45,46) 45 (45,45) 45 (45,45)

2 2034 27 49.6 (49,51) 49.1 (49,50) 49 (49,49) 49 (49,49)

3 2006 29 34.4 (33,35) 31.4 (31,32) 29.9 (29,30) 30.5 (30,31)

4 2044 22 31.4 (30,33) 27.4 (27,29) 28 (28,28) 26 (25,27)

5

0.2

2109 25 35.7 (35,38) 30.6 (30,32) 31.1 (31,32) 29 (28,30)

1 4063 50 91.3 (89,95) 87.1 (87,88) 87 (87,87) 87 (87,87)

2 4038 47 96.9 (96,98) 96.1 (96,97) 96 (96,96) 96 (96,96)

3 3982 52 68.1 (67,69) 62.7 (62,65) 60.6 (60,61) 61.2 (61,62)

4 4045 44 60 (58,64) 51 (50,54) 52.3 (52,53) 48.7 (48,49)

5

0.4

4122 51 68.6 (67,71) 57.6 (56,59) 58.3 (58,59) 56 (54,58)

1 6054 71 130 (128,134) 122.6 (122,124) 122 (122,122) 122 (122,122)

2 6020 66 127.9 (127,129) 126 (126,126) 126 (126,126) 126 (126,126)

3 5999 66 100.3 (98,104) 92.5 (92,95) 91 (91,91) 91.8 (91,92)

4 6048 62 86.1 (85,88) 73 (72,74) 77. 2 (77,78) 71.4 (71,72)

5

0.6

6095 71 98 (96,99) 82.3 (79,86) 84.4 (84,86) 85.7 (83,88)

1 8014 88 167.4 (165,170) 161 (161,161) 161 (161,161) 161 (161,161)

2 8006 84 159.7 (159,161) 158 (158,158) 158 (158,158) 158 (158,158)

3 7985 89 133.4 (130,136) 121.5 (121,123) 120 (120,120) 120 (120,120)

4 8008 86 115.5 (114,119) 97 (95,99) 100.8 (100,101) 94.5 (94,95)

5

0.8

8046 88 127.2 (123,131) 103.9 (101,107) 109 (109,109) 106.7 (104,109)

1 9900 99 207.5 (205,210) 196 (196, 196) 196 (196,196) 196 (196,196)

2 9900 99 198.4 (196,203) 196 (196,196) 196 (196,196) 196 (196,196)

3 9900 99 166.1 (164,170) 150.4 (149,152) 147.1 (146,149) 146.1 (146,147)

4 9900 99 140.9 (138,143) 117.1 (115,120) 123.5 (123,124) 114.6 (114,115)

5

1.0

9900 99 154.5 (151,158) 128.2 (125,131) 132.7 (132,133) 129.6 (127,132)

3.5 Numerical Results

In order to determine the performance measures of the proposed algorithms, theGreedy_EDP_RWA

[57] and the BF_RWA, FFD_RWA and BFD_RWA algorithms were implemented in C++

and run on a PC powered by a P4 2.8GHz processor. The FF_RWA algorithm was not im-

plemented since it yields solutions equivalent to those obtained by theGreedy_EDP_RWA

algorithm. A series of random 100-node networks with average degrees of 3, 4, and 5 were

created (5 networks per average degree). Random sets of lightpath requests were created

for each test network with the probabilityPl of there being a lightpath request between two

nodes. The value ofPl ranged from 0.2 to 1.0, in 0.2 increments, for up to 9900 lightpath

requests. The upper bound on the physical hop length of the established lightpaths,H, is set

here to max(diam(G),
√|Ep|) as suggested in [57].
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Table 3.2: 100-node test networks with an average degree of 3: Lower bound and the average

lightpath length in the solutions obtained by theGreedy_EDP_RWAalgorithm (from [57]), and the

BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Network
Pl

Lightpath

requests
LBPH

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2054 3.48 4.55 3.51 4.58 3.48*

2 2034 3.40 4.44 3.43 4.46 3.40*

3 2006 3.43 4.48 3.49 4.50 3.47

4 2044 3.39 4.50 3.65 4.52 3.58

5

0.2

2109 3.48 4.60 3.67 4.64 3.65

1 4063 3.48 4.54 3.49 4.56 3.48*

2 4038 3.38 4.39 3.39 4.39 3.38*

3 3982 3.44 4.46 3.48 4.49 3.47

4 4045 3.40 4.51 3.58 4.51 3.53

5

0.4

4122 3.51 4.62 3.63 4.64 3.62

1 6054 3.48 4.51 3.49 4.55 3.48*

2 6020 3.38 4.37 3.39 4.40 3.38*

3 5999 3.43 4.45 3.47 4.48 3.46

4 6048 3.42 4.50 3.57 4.52 3.54

5

0.6

6095 3.51 4.58 3.59 4.62 3.59

1 8014 3.48 4.53 3.49 4.54 3.48*

2 8006 3.38 4.37 3.39 4.40 3.38*

3 7985 3.45 4.45 3.48 4.49 3.48

4 8008 3.43 4.51 3.57 4.53 3.54

5

0.8

8046 3.51 4.59 3.60 4.61 3.60

1 9900 3.48 4.52 3.49 4.55 3.49

2 9900 3.39 4.37 3.40 4.41 3.39*

3 9900 3.45 4.44 3.48 4.48 3.48

4 9900 3.43 4.49 3.56 4.53 3.55

5

1

9900 3.51 4.59 3.61 4.60 3.61

All four algorithms were run with 10 different seeds (i.e. 10 different permutations of

τ ) for each test case. The average, lowest and highest number of wavelengths of the solu-

tions obtained by each algorithm were recorded. The average physical hop lengths of the

established lightpaths were also found. The average number of wavelengths needed to suc-

cessfully perform Routing and Wavelength Assignment by each of the algorithms for the

test networks with an average degree of 3 are shown in Table 3.1. The lowest and highest

solution values found are shown in parenthesis. The lower bound,LBW , is also shown. The

corresponding average lightpath lengths and the lower boundPHLB are shown in Table 3.2.

For test networks with an average degree of 4, the wavelengths and average lightpath lengths

of the obtained solutions are shown in Tables 3.3 and 3.4, respectively. Tables 3.5 and 3.6

show the results obtained for test networks with an average degree of 5. The best obtained
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Table 3.3:100-node test networks with an average degree of 4: Lower bound and the average (lowest,

highest) number of wavelengths used in the solutions obtained by theGreedy_EDP_RWAalgorithm

(from [57]), and the BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Netw.
Pl

Lightpath

requests
LBW

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2116 21 24.3 (23,25) 21.7 (21,24) 21* (21,21) 21* (21,21)

2 2081 25 28.1 (26,30) 25.4 (25,27) 25* (25,25) 25* (25,25)

3 2067 24 25.8 (24,27) 24.4 (24,26) 24* (24,24) 24* (24,24)

4 2054 29 29.9 (29,31) 29.4 (29,31) 29* (29,29) 29* (29,29)

5

0.2

2125 32 33.8 (32,36) 32* (32,32) 32* (32,32) 32* (32,32)

1 4063 39 44.3 (43,46) 39.9 (39,43) 39* (39,39) 39* (39,39)

2 4047 46 50.9 (49,53) 47.2 (47,48) 47 (47,47) 47 (47,47)

3 4064 50 53.4 (52,55) 50.1 (50,51) 50* (50,50) 50* (50,50)

4 4063 47 51.4 (50,52) 48.3 (47,50) 47* (47,47) 47* (47,47)

5

0.4

4099 50 55.8 (53,59) 50.3 (50,51) 50* (50,50) 50* (50,50)

1 6017 61 66.9 (63,69) 61.1 (61,62) 61* (61,61) 61* (61,61)

2 5995 69 74.6 (72,78) 69.1 (69,70) 69* (69,69) 69* (69,69)

3 6054 67 75.4 (73,78) 67.8 (67,71) 67* (67,67) 67* (67,67)

4 6054 71 77.5 (75,81) 71.2 (71,72) 71* (71,71) 71* (71,71)

5

0.6

6113 66 77.9 (76,83) 67.6 (66,70) 66* (66,66) 66* (66,66)

1 7960 80 86.7 (84,89) 80.1 (80,81) 80* (80,80) 80* (80,80)

2 7988 81 89.8 (88,93) 81.8 (81,83) 81* (81,81) 81* (81,81)

3 8052 88 99.4 (96,103) 89.8 (88,93) 88* (88,88) 88* (88,88)

4 8014 86 94.4 (91,99) 86.6 (86,89) 86* (86,86) 86* (86,86)

5

0.8

8017 88 101.4 (97,106) 88.9 (88,90) 88* (88,88) 88* (88,88)

1 9900 99 108.3 (106,110) 99.9 (99,102) 99* (99,99) 99* (99,99)

2 9900 99 110.7 (108,113) 100.4 (99,102) 99* (99,99) 99* (99,99)

3 9900 99 120 (118,123) 105 (103,109) 99* (99,99) 99* (99,99)

4 9900 99 110.8 (108,112) 99.1 (99,100) 99* (99,99) 99* (99,99)

5

1.0

9900 99 122.7 (119,125) 106.7 (105,109) 103.6 (103,104) 104.5 (104,105)

solution for each test case is marked in bold. If the obtained solution is equal to the lower

bound, i.e. the obtained solution is surely optimal, it is marked as ‘*’.

The BF_RWA, FFD_RWA and BFD_RWA algorithms all perform significantly better

than theGreedy_EDP_RWAalgorithm for all cases with respect to the number of wave-

lengths used. The FFD_RWA and BFD_RWA algorithms perform best for this optimization

criterion. In fact, the worst solution obtained by the FFD_RWA and BFD_RWA algorithms

is better or equal to the best solution obtained by theGreedy_EDP_RWAalgorithm in all

cases. The worst solution obtained by the BF_RWA algorithm is better or equal to the best

solution obtained by theGreedy_EDP_RWAalgorithm in all but 2 cases for networks with

an average degree of 3, 4 cases for networks with an average degree of 4, and 7 cases for

networks with an average degree of 5.

Since only those lightpaths whose shortest paths are equal in length are sorted randomly,
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Table 3.4: 100-node test networks with an average degree of 4: Lower bound and the average

lightpath length in the solutions obtained by theGreedy_EDP_RWAalgorithm (from [57]), and the

BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Network
Pl

Lightpath

requests
LBPH

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2116 2.92 3.86 2.97 3.87 2.93

2 2081 2.95 3.88 2.98 3.87 2.96

3 2067 2.96 3.89 2.99 3.90 2.96*

4 2054 3.05 4.03 3.11 4.03 3.05*

5

0.2

2125 3.23 4.25 3.28 4.26 3.24

1 4063 2.91 3.84 2.93 3.85 2.91*

2 4047 2.97 3.87 2.98 3.88 2.97*

3 4064 2.97 3.87 2.98 3.88 2.97*

4 4063 3.05 4.02 3.10 4.00 3.05*

5

0.4

4099 3.24 4.23 3.29 4.25 3.26

1 6017 2.92 3.82 2.93 3.83 2.92*

2 5995 2.96 3.85 2.97 3.87 2.96*

3 6054 2.98 3.87 2.98* 3.88 2.98*

4 6054 3.05 4.00 3.07 4.00 3.05*

5

0.6

6113 3.24 4.23 3.29 4.23 3.27

1 7960 2.93 3.83 2.94 3.84 2.93*

2 7988 2.97 3.84 2.98 3.85 2.97*

3 8052 2.98 3.86 2.99 3.87 2.98*

4 8014 3.05 4.00 3.08 4.00 3.05*

5

0.8

8017 3.24 4.22 3.27 4.23 3.26

1 9900 2.94 3.83 2.94* 3.83 2.94*

2 9900 2.97 3.85 2.98 3.85 2.98

3 9900 2.98 3.86 2.99 3.86 2.98*

4 9900 3.05 4.00 3.07 4.00 3.05*

5

1

9900 3.24 4.20 3.28 4.22 3.27

the FFD_RWA and BFD_RWA algorithms usually perform the same for various permuta-

tions of τ . As a result, the worst solutions obtained by the FFD_RWA and BFD_RWA

algorithms were in most cases their best solutions. These solutions were also better or equal

to those obtained by theGreedy_EDP_RWAand BF_RWA algorithms. This seems to indi-

cate that the FFD_RWA and BFD_RWA algorithms could be run only once and still obtain

high quality solutions. TheGreedy_EDP_RWAand BF_RWA algorithms, on the other hand,

need to be run as multistart algorithms and even then they obtain inferior solutions.

As can be seen in Table 3.3, for networks with average degree 4, theaveragesolu-

tions obtained by the FFD_RWA and BFD_RWA algorithms were optimal in at least 23

out of the 25 test cases, in one case for the BF_RWA algorithm, and in zero cases for

theGreedy_EDP_RWAalgorithm. To obtain better results with theGreedy_EDP_RWAand
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Table 3.5:100-node test networks with an average degree of 5: Lower bound and the average (lowest,

highest) number of wavelengths used in the solutions obtained by theGreedy_EDP_RWAalgorithm

(from [57]), and the BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Netw.
Pl

Lightpath

requests
LBW

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2116 20 21.7 (21,23) 20.3 (20,22) 20* (20,20) 20* (20,20)

2 2029 27 27.3 (27,28) 27.1 (27,28) 27* (27,27) 27* (27,27)

3 2081 24 24.8 (24,27) 24* (24,24) 24* (24,24) 24* (24,24)

4 2067 19 20.1 (19,22) 19.1 (19,20) 19* (19,19) 19* (19,19)

5

0.2

2098 23 24.6 (23,25) 23.1 (23,24) 23* (23,23) 23* (23,23)

1 4063 37 39.4 (38,41) 37.2 (37,38) 37* (37,37) 37* (37,37)

2 3988 46 48.8 (48,50) 46.1 (46,47) 46* (46,46) 46* (46,46)

3 4047 46 47.2 (46,48) 46.1 (46,47) 46* (46,46) 46* (46,46)

4 4064 43 45.6 (44,47) 43.6 (43,44) 43* (43,43) 43 *(43,43)

5

0.4

4100 47 47.7 (47,49) 47* (47,47) 47* (47,47) 47* (47,47)

1 6017 60 61.8 (61,64) 60* (60,60) 60* (60,60) 60* (60,60)

2 5963 68 70.3 (69,72) 68.1 (68,69) 68* (68,68) 68* (68,68)

3 5995 69 71.1 (70,73) 69 (69,69) 69* (69,69) 69* (69,69)

4 6054 63 65.7 (63,69) 63.1 (63,64) 63* (63,63) 63* (63,63)

5

0.6

6088 62 64.1 (62,66) 62.2 (62,63) 62* (62,62) 62* (62,62)

1 7960 79 82.2 (81,85) 79* (79,79) 79* (79,79) 79* (79,79)

2 7984 88 91.3 (89,94) 88.1 (88,89) 88* (88,88) 88* (88,88)

3 7988 80 83.5 (81,85) 80.1 (80,81) 80* (80,80) 80* (80,80)

4 8052 86 89.6 (87,94) 86.1 (86,87) 86* (86,86) 86* (86,86)

5

0.8

7994 81 83.7 (82,87) 81.1 (81,82) 81* (81,81) 81* (81,81)

1 9900 99 102.4 (100,104) 99* (99,99) 99* (99,99) 99* (99,99)

2 9900 99 109.9 (107,113) 100.1 (99,102) 99* (99,99) 99* (99,99)

3 9900 99 103.5 (101,106) 99.1 (99,100) 99* (99,99) 99* (99,99)

4 9900 99 105.2 (103,107) 99.1 (99,100) 99* (99,99) 99* (99,99)

5

1.0

9900 99 104.4 (102,108) 99.1 (99,100) 99* (99,99) 99* (99,99)

BF_RWA algorithms, they could be run as multistart algorithms and then select the best

found solution. Thebestsolution obtained by the BF_RWA algorithm was optimal in 22

cases while thebestsolution obtained by theGreedy_EDP_RWAwas optimal in only 3

cases. Table 3.5 indicates that for test networks with average degree 5, theaveragesolu-

tions obtained by the FFD_RWA and BFD_RWA algorithms were optimal in all of the 25

test cases, while the BF_RWA andGreedy_EDP_RWAalgorithms obtained optimal average

solutions in five and zero cases, respectively. For these networks, thebestsolution obtained

by the BF_RWA algorithm was optimal in all cases while thebestsolution obtained by the

Greedy_EDP_RWAwas optimal in only 8 cases. It is evident that sorting lightpath requests

in non-increasing order of their shortest paths helps obtain solutions using fewer wavelengths

than establishing lightpaths at random.

The average length of the established lightpaths are compared in Tables 3.2, 3.4 and 3.6.

Both the BF_RWA and BFD_RWA algorithms perform significantly better than the FF_RWA
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Table 3.6: 100-node test networks with an average degree of 5: Lower bound and the average

lightpath length in the solutions obtained by theGreedy_EDP_RWAalgorithm (from [57]), and the

BF_RWA, FFD_RWA and BFD_RWA algorithms proposed in this thesis.

Test

Network
Pl

Lightpath

requests
LBPH

Greedy_EDP

_RWA

(FF_RWA)

BF_RWA FFD_RWA BFD_RWA

1 2116 2.71 3.58 2.75 3.58 2.71*

2 2029 2.83 3.67 2.84 3.68 2.83*

3 2081 2.70 3.55 2.72 3.54 2.70*

4 2067 2.67 3.50 2.71 3.51 2.67*

5

0.2

2098 2.77 3.62 2.79 3.62 2.77*

1 4063 2.70 3.55 2.73 3.55 2.70*

2 3988 2.86 3.69 2.86* 3.71 2.86*

3 4047 2.71 3.55 2.73 3.54 2.71*

4 4064 2.67 3.48 2.68 3.47 2.67*

5

0.4

4100 2.74 3.58 2.75 3.58 2.74*

1 6017 2.71 3.55 2.72 3.54 2.71*

2 5963 2.84 3.67 2.85 3.69 2.84*

3 5995 2.70 3.52 2.71 3.52 2.70*

4 6054 2.68 3.48 2.70 3.48 2.68*

5

0.6

6088 2.74 3.56 2.75 3.56 2.74*

1 7960 2.71 3.55 2.73 3.54 2.71*

2 7984 2.84 3.67 2.85 3.69 2.84*

3 7988 2.71 3.53 2.72 3.52 2.71*

4 8052 2.68 3.48 2.69 3.47 2.68*

5

0.8

7994 2.74 3.56 2.74* 3.55 2.74*

1 9900 2.72 3.55 2.73 3.54 2.72*

2 9900 2.83 3.65 2.83* 3.67 2.83*

3 9900 2.71 3.52 2.72 3.52 2.71*

4 9900 2.69 3.47 2.70 3.47 2.69*

5

1

9900 2.74 3.55 2.74* 3.54 2.74*

and FFD_RWA algorithms, although the BFD_RWA algorithm performs best in all cases. In

fact, the BFD_RWA algorithm obtains the optimal solution in at least 9, 17 and 25 cases for

networks with average degrees 3, 4 and 5, respectively. Routing the lightpaths according to

the ‘best fit’ strategy evidently leads to shorter lightpaths than using the ‘first fit’ strategy. For

easier visualization of the obtained results, the average wavelengths and lightpath lengths of

the solutions found for the test networks with an average degree of 4 are shown graphically

in Fig. 3.2. Here the values forPl ranged from 0.1 to 1.0 in 0.1 increments.

Furthermore, the algorithms were tested on a reference European core network topology

shown in Fig. 3.3 which was designed as part of the COST Action 266 project [37].Pl from

0.1 to 1.0 in 0.1 increments. The results are shown in Fig. 3.4. The lower boundLBW on the

required number of wavelengths is not efficient for this network topology, so we assess the
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Figure 3.2: 100-node test networks with an average degree of 4: Comparison of the (a) average

number of wavelengths used and the (b) average lightpath length in the solutions obtained by the

Greedy_EDP_RWAalgorithm (from [57]), and the BF_RWA, FFD_RWA and BFD_RWA algorithms

proposed in this thesis.

quality of the algorithms by comparing them to each other. Since the network is small and

not many alternative paths are available, the algorithms performed fairly similar with respect

to the number for wavelengths used (Fig. 3.4.(a)). However, the BF_RWA, FFD_RWA and

BFD_RWA algorithms performed the same or better than theGreedy_EDP_RWAalgorithm

in all cases. Fig. 3.4.(b) indicates that the ‘best fit’ algorithms again perform significantly

better than the ‘first fit’ algorithms with respect to the average hop length. The BFD_RWA

algorithm established the shortest lightpaths in all cases.

All four algorithms are very fast and highly tractable. The FFD_RWA and BFD_RWA

algorithms are slower than theGreedy_EDP_RWA(FF_RWA) and BF_RWA algorithms by

the time it takes to sort the lightpath demands. On the other hand, these algorithms are more

robust and often give their best solutions in every run. As a result, these algorithms only need

to be run once. The best and worst solution values obtained by theGreedy_EDP_RWAalgo-

rithm, on the other hand, vary significantly so this algorithm needs to be run as a multistart

algorithm in order to obtain good results. This, of course, leads to much larger execution

times. It should also be noted that the ‘best fit’ algorithms are somewhat slower with respect

to the ‘first fit’ algorithms since they search among all the existing bins to find the ‘best

fit’, while the first fit algorithms establishes the first found satisfactory route. When run on
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Figure 3.3:The hypothetical European core network [37].

a PC powered by a P4 2.8GHz processor, the maximum execution time for the FFD_RWA

and BFD_RWA algorithms for the 100 node networks with 9900 lightpath requests was less

than 8 minutes. The maximum execution time for the FF_RWA and BF_RWA algorithms

was under 6 minutes. For the European core network, all algorithms performed under half a

second.

The following conclusions can be drawn from the obtained results. Sorting lightpaths in

non-increasing order of their shortest paths helps to obtain solutions using significantly fewer

wavelengths. We can see from Tables 3.1, 3.3 and 3.5 that the advantage of sorting lightpaths

becomes increasingly evident as the number of lightpath requests increases (Pl ↗). These

are the cases where RWA is more challenging since we wish to establish a larger number of

lightpaths. Routing lightpaths according to the ‘best fit’ strategy helps to consistently reduce

lightpath hop length. The BFD_RWA algorithm, which both sorts lightpaths and uses the

‘best fit’ strategy, clearly performs best for all test cases.

Furthermore, recall that theGreedy_EDP_RWAand BF_RWA algorithms can be run for

the dynamic Routing and Wavelength Assignment problem. For this problem, the men-

tioned algorithms are not run in multistart mode, but run once for each permutation of

τ . As a result, we compare theaveragesolution values obtained for the various permuta-

tions ofτ . The BF_RWA algorithm performed significantly and consistently better than the

Greedy_EDP_RWAalgorithm with respect to both wavelengths and lightpath lengths. Using

less wavelengths leaves more room for future lightpath requests. This decreases the chances

that a lightpath request will be blocked due to the lack of available resources, which is a

common objective criterion used to solve the dynamic RWA problem.
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Figure 3.4: The hypothetical European core network [37]: Comparison of the (a) average num-

ber of wavelengths used and the (b) average lightpath length in the solutions obtained by the

Greedy_EDP_RWAalgorithm (from [57]), and the BF_RWA, FFD_RWA and BFD_RWA algorithms

proposed in this thesis.

3.6 Summary and Future Work

Successful solvability of the static Routing and Wavelength Assignment (RWA) problem is

mandatory for making efficient use of resources in wavelength routed optical networks. In

this chapter, the bin packing problem is applied to optical networks to help develop highly

efficient heuristic algorithms for the RWA problem. Suggested are methods of sorting and

routing lightpaths which not only reduce the required number of wavelengths, but reduce the

average physical length of established lightpaths as well. Numerical results indicate that the

proposed methods obtain optimal or near optimal solutions in many cases, and significantly

outperform an efficient existing algorithm from [57] for the same problem. Furthermore,

the heuristics are robust and highly tractable and can thus be used to solve large problem

instances in reasonable time. Further avenues of research will include developing similar al-

gorithms for routing and wavelength assignment in networks with full or limited wavelength

conversion. Networks equipped with a limited number of transceivers and/or a limited num-

ber of wavelengths will also be considered.



Chapter 4

Scheduled Routing and Wavelength

Assignment

In this chapter we consider the Routing and Wavelength Assignment of Scheduled Lightpath

Demands (RWA SLD) in networks with no wavelength converters. We assume no limit on the

number of transmitters and receivers at each node and the number of available wavelengths

on each link. The objective is to minimize the number of wavelengths needed to successfully

establish a desired set of scheduled lightpath demands. Considering scheduled lightpath

demands seems relevant due to the periodic nature of traffic [52]. We know that traffic

between some nodes (e.g. office headquarters) is heavier during office hours than in the

middle of the night, andvice versafor the other nodes (e.g. networked data bases). We could

utilize this information by setting up multiple lightpaths between nodes at times when their

traffic is heavy and tearing down some or all of these lightpaths at times when their traffic

is low. By tearing down lightpaths between nodes at times of low traffic, their resources

are freed and can thus be used to establish alternative connections. If we have lightpath

demands which do not overlap in time and if we take this information into consideration

when performing routing and wavelength assignment, we can route both demands on the

same path using the same wavelength without them clashing. This can significantly reduce

the amount of network resources required to successfully route a set of lightpath demands.

Since the Routing and Wavelength Assignment of Scheduled Lightpath Demands is

solveda priori using given scheduling information, the lightpaths can be set up and torn

down quickly at the specified times. This is an advantage over the routing and wavelength

assignment of dynamic lightpath demands where RWA is performed dynamically as light-

path requests arrive, resulting in longer set-up delays. The RWA SLD problem has not been

studied as widely as the static and dynamic cases. A branch and bound algorithm along with



4. Scheduled Routing and Wavelength Assignment 44

a tabu search heuristic algorithm are given in [52]. In this chapter, we suggest a faster and

more efficient tabu search algorithm for the RWA SLD problem along with two very fast and

simple greedy algorithms based on edge and time disjoint paths. Furthermore, we derive an

efficient lower bound on the number of wavelengths needed for the RWA SLD problem.

The rest of this chapter is organized as follows. In Section 4.1, we define the RWA SLD

problem. Related work is briefly described in Section 4.2. In Section 4.3 we suggest a tabu

search algorithm for the RWA problem, followed by two simple yet very efficient greedy

algorithms in Section 4.4. In 4.5 we discuss lower bounds. Numerical results and a chapter

summary are given in Sections 4.6 and 4.7, respectively.

4.1 Problem Definition

The physical optical network is modelled as a graphG = (V,E), whereV is the set of nodes

andE is the set of edges. Edges are assumed to be bidirectional (each representing a pair

of optical fibers, i.e. one fiber per direction) and have assigned weights representing their

length or cost. Given is a set of scheduled lightpath demandsτ = {SLD1, . . . , SLDM}.
Each scheduled lightpath demandSLDi, wherei = 1, . . . , M , is represented by a tuple

(si, di, ni, αi, ωi) as suggested in [52]. Heresi, di ∈ V , are the source and destination nodes

of SLDi, ni is the the number of requested lightpaths between these nodes, andαi andωi

are the set-up and tear-down times respectively. The Routing and Wavelength Assignment

problem consists of finding a set of pathsP = {P (SLD1), . . . , P (SLDM)} in G, each

corresponding to one scheduled lightpath demand, and assigning a set of wavelengths to

each of these paths. As in [52], we assume that all the lightpaths of a particular SLD must

be routed on the same path and must therefore be assigned different wavelengths. We will

refer to this as thegroup lightpath constraint. As a result, each pathP (SLDi), wherei =

1, . . . , M , must be assigned a set ofni wavelengths, one for each individual lightpath of

SLDi. The set of wavelengths assigned to pathsP (SLDi) andP (SLDj), wherei 6= j

andi, j = 1, . . . , M , must be disjoint if these paths share a common edgeand if SLDi and

SLDj overlap in time. The objective is to minimize the number of wavelengths assigned and

required to successfully route and assign wavelengths to all the scheduled lightpath demands

in τ .
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4.2 Related Work

In [52], the authors solve the Routing and Wavelength Assignment problem of Scheduled

Lightpath Demands by decoupling it into two separate subproblems: routing and wavelength

assignment. They suggest a branch and bound algorithm for the routing subproblem which

provides optimal solutions but has an exponential complexity. To solve the routing subprob-

lem for larger problems, the authors propose a tabu search algorithm which obtains subopti-

mal solutions. Two different optimization criteria are considered giving rise to two versions

of the tabu search algorithm:TSch andTScg. TheTSch algorithm minimizes the number

of WDM channels1 which is particularly important in opaque WDM networks and will not

be discussed here. TheTScg algorithm minimizes congestion, i.e. the number of lightpaths

on the most heavily loaded link. This optimization criterion is important in networks with a

limited number of wavelengths since congestion is essentially a lower bound on the number

of wavelengths required. Wavelength assignment is performed subsequently using a greedy

graph coloring algorithm (referred to asGGC) suggested in [43]. The objective of theGGC

algorithm is to minimize the number of wavelengths used. The quality of the solutions for

the RWA SLD problem obtained byTScg/GGC are measured in terms of the number of

wavelengths needed. A complete description is provided in [52].

Fault tolerant routing and wavelength assignment of scheduled lightpath demands was

studied in [51] and [82]. In [51], the authors formulate the problem of fault tolerant RWA

SLD with the objective being to minimize the number of WDM channels. They propose

a Simulated Annealing algorithm using channel reuse and back-up multiplexing. In [82],

fault tolerant RWA SLD under single component failure is considered. The authors develop

ILP formulations for the problem with dedicated and shared protection. Two objectives

are considered: minimizing the capacity needed to guarantee protection for all connection

requests and maximizing the number of requests accepted subject to a limited capacity.

1WDM channels refer to the use of a particular wavelength on a directed physical link and are specified by

the wavelength used and the head and tail nodes of the directed link.
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4.3 An Alternative Tabu Search Algorithm for the Routing

Subproblem

4.3.1 Tabu Search

Tabu search is an iterative meta-heuristic which guides simpler heuristics in such a way that

they explore various areas of the solution space and prevents them from remaining in local

optima. In every iterative step of the tabu search method, we begin with some current solution

and explore its neighboring solutions. Neighboring solutions with respect to the current one

are all those obtained by applying some elementary transformation to the current solution.

The best neighboring solution according to some evaluation function is selected as the new

current solution in the next iteration. After executing a desired number of iterations, the best

found solution overall, called the incumbent solution, is deemed the final result.

To prevent the search technique from getting stuck in a local optimum or cycling between

already seen solutions, a memory structure called a tabu list is introduced. The tabu list

‘memorizes’ a certain number of previously visited solutions which are then forbidden for

as long as they remain in the list. The tabu list is updated circularly after every iteration

by adding the current solution to the list and removing the oldest element if the list is full.

The length of the tabu list can vary depending on different problems and is often determined

experimentally. The key to developing a good tabu search algorithm is to define a good initial

solution, neighborhood structure and evaluation function. Sometimes the neighborhood of a

solution can be very large so various neighborhood reduction techniques are applied. As a

result, only a subset of the neighboring solutions are evaluated. A detailed description of the

tabu search method can be found in [29].

4.3.2 The Proposed Tabu Search Algorithm:TScn

The tabu search algorithmTScg for the routing subproblem suggested by the authors of [52],

although faster than their branch and bound algorithm, still has a fairly long execution time

if run for a large enough neighborhood size and the number of iterations needed to obtain

solutions of good quality. This is due to their randomized neighborhood search technique.

Namely, theTScg algorithm begins by computing theK-shortest paths between the source

and destination nodes of each of theM SLDs inτ . Potential routing solutions are represented

by a vector ofM integers (initially all set to 1) ranging from 1 toK, each representing the

path used by a particular SLD. Neighboring solutions are all those in which one and only

one SLD is routed on a different route. A neighborhood defined as such can be very large so
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a desired number of SLDs are chosen at random, randomly rerouted and evaluated according

to their corresponding congestion. To obtain good solutions, a large number of iterations and

a fairly large number of neighbors need to be evaluated.

Since our final objective for the RWA SLD problem is to minimize the number of wave-

lengths used, we will compare our results with that of algorithmTScg/GGC. The evaluation

function used byTScg (i.e. minimization of congestion) does not necessarily lower the num-

ber of wavelengths needed even though this is the final goal of theTScg/GGC algorithm.

Recall that by minimizing congestion, which is the number of lightpaths on the most loaded

link, we are essentially trying to minimize the lower bound on the number of wavelengths

needed. Minimizing thelower bound does not necessarily mean that the number of wave-

lengths needed will be lower. On the other hand, if we tried to minimize theupperbound on

the number of wavelengths needed, this guarantees that there exists a wavelength assignment

with at most the upper bound number of wavelengths.

The tabu search algorithm for the routing subproblem suggested in this thesis attempts to

improve the drawbacks mentioned above. A new evaluation function is suggested along with

a directed neighborhood search technique which drastically reduces the neighborhood size.

As a result, this algorithm, in combination with the same graph coloring algorithm (GGC)

used in [52] for wavelength assignment, performs faster and obtains solutions of better or

equal quality than those obtained byTScg/GGC. We will refer to the proposed algorithm as

TScn wherecn stands forchromatic number. The relevance of this name will be described

below.

Preliminaries

Recall that the objective of the wavelength assignment algorithm as well as our final objec-

tive for the RWA SLD problem is to minimize the total number of wavelengths used. Since

we perform wavelength assignment using theGGC algorithmafter solving the routing sub-

problem, it seems that having a routing algorithm aware of the objective and behavior of

the wavelength assignment algorithm could help to obtain better solutions for the RWA SLD

problem. In other words, the optimization criteria of the routing algorithm should be such

that it gives routing schemes on which wavelength assignment can be performed using a

smaller number of wavelengths. To formulate such an optimization criteria we must first an-

alyze the behavior of the wavelength assignment algorithm which is here essentially a graph

coloring algorithm.

Namely, the problem of wavelength assignment can be reduced to thegraph coloring

problemwhich consists of assigning colors to the nodes of a graph such that no two neigh-



4. Scheduled Routing and Wavelength Assignment 48

boring nodes are assigned the same color. The objective is to minimize the total number

of colors used. This classical graph theory problem has been proven to be NP-complete so

several heuristic algorithms have been developed [41]. One such algorithm is theGGC al-

gorithm proposed in [43]. The routing solution obtained by solving the routing subproblem

is used as input for theGGC algorithm in the following manner. A conflict graph corre-

sponding to the routing solution is created where each established lightpath is represented

by one node in the conflict graph2 and there is an edge between two nodes if their respective

paths share a common physical link inG andoverlap in time. This means that the lightpaths

corresponding to neighboring nodes in the conflict graph cannot be assigned the same wave-

length. The graph coloring algorithmGGC is executed on this conflict graph where each

color represents a different wavelength.

1


3
4


2
 1


3


4


2


(a)
 (b)


Figure 4.1:Two simple 4 node networks.

The minimum number of colors needed to color a graph is called thechromatic number.

In 1941, Brooks [7] showed the upper bound on the chromatic number to be∆(G) + 1,

where∆(G) is the maximum degree inG. This bound was used for a long time. A more

recent result by L. Stacho in 2001 [90] gives a tighter upper bound. The author showed that

the chromatic number is always less than or equal to∆2(G) + 1 where∆2(G) is the largest

degree of any nodev in G, such thatv is adjacent to a node whose degree is at least as big as

its own.

Let us consider an example. In Fig. 4.1, two simple 4 node networks are shown. For

the network shown in Fig 4.1.(a), both Brooks’ and Stacho’s upper bounds give a value of 3.

However, for the network shown in Fig. 4.1.(b), using Brooks’ upper bound on the chromatic

number, we get a value of∆(G) + 1 = 3 + 1 = 4, while using Stacho’s we get a value of

2Note that one node in the conflict graph represents one particularlightpath of an SLD and not the SLD

itself. In other words, each scheduled lightpath demandSLDi is represented byni nodes in the conflict graph

which are all adjacent to each other.
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∆2(G) + 1 = 1 + 1 = 2. We can easily see that nodes1, 2, and4 can be colored with one

color and node3 with a second color.

According to Stacho’s upper bound, it is evident that graphs with smaller values of∆2(G)

give smaller upper bounds for the chromatic number. Note that a routing solutionX ob-

tained by solving the routing subproblem corresponds to exactly one conflict graphCG(X)

on which we solve the graph coloring problem. If we take into consideration upon construct-

ing routing solutionX that we wish to minimize its corresponding value for∆2(CG(X)),

we may attain a routing scheme whose corresponding conflict graph will need fewer colors

to perform graph coloring successfully. This also means that we need fewer wavelengths

to perform a successful wavelength assignment. Accordingly, the optimization criteria or

evaluation function used by theTScn algorithm to evaluate a routing solutionX is the min-

imization of the upper bound on the chromatic number of its corresponding conflict graph

(i.e. min (∆2(CG(X)) + 1)).

The TScn Algorithm

A description of the tabu search algorithmTScn proposed for the routing subproblem of

scheduled lightpath demands follows. As in [52], we first compute theK-shortest paths

between each source-destination pair of each SLD using Eppstein’s algorithm [25].K can

be set to various values. If we setK to a larger value, the solution obtained will probably

need less wavelengths but the physical paths used to route the SLDs will probably be longer.

This may present a problem if delay is an issue. On the other hand, ifK is set to a smaller

value, the physical paths will be restricted to only a few of the shortest paths. As a result, the

number of wavelengths needed to successfully route the SLDs will most likely be larger.

Recall that we have given a graphG = (V,E) and a set ofM Scheduled Lightpath

Demands (SLDs) each represented by a tuple(si, di, ni, αi, ωi), wheresi is the source,di

is the destination,ni is the number of requested lightpaths,αi is the set-up time, andωi is

the tear-down time of the SLD. For simplification purposes, the authors of [52] assume that

thegroup lightpath constraintapplies, i.e. all the lightpaths of a particular SLD are routed

on the same path. The same will be assumed here for easier comparison of the mentioned

algorithms. A potential routing solutionX is represented by a vector ofM integers,X =

(x1, . . . , xM), wherexi ∈ {1, . . . , K}, i = 1, . . . , M , represents the path used bySLDi. If

the integer representing the path of a specific SLD is set to1, that means that that particular

SLD is routed on the shortest path from its source to destination. If it is set to2, then that

SLD is routed on the second shortest path from source to destination, and so on up to theKth

shortest path. TheTScn algorithm initially routes all the SLDs inτ on their shortest paths in
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G.

Neighboring solutions with respect to the current one are all those where one and only

one SLD is routed on a different route. Instead of selecting a large number of neighbors at

random as in [52] and evaluating them, we suggest a more directed neighborhood reduction

technique. This technique drastically reduces the size of the neighborhood and yet helps

obtain solutions of good quality. First we construct the conflict graphCG(X) of the current

solutionX and then find the set of nodesL(X) which determine∆2(CG(X)). That is, we

find the one or more nodes which have the largest degree inCG(X), subject to the fact that

they are adjacent to a node whose degree is at least as big as their own. Recall that the nodes

in the conflict graph represent individual lightpaths and not SLDs. Since we are routing all

the lightpaths of a particular SLD on the same path (i.e. they all have the same degree3),

either all or none of the lightpaths of a particular SLD are inL(X). As a result, we can

easily reduce the set of lightpathsL(X) to their corresponding set of SLDsLSLD(X) where

|LSLD(X)| ≤ |L(X)|. The number of SLDs inLSLD(X) is usually fairly small. Instead of

evaluating a huge number of neighboring solutions, we evaluate only|LSLD(X)| neighbors.

The|LSLD(X)| neighbors are obtained by randomly rerouting each SLD inLSLD(X).

To determine the best neighboring solution which will pass into the next iteration, we

create a conflict graph for each neighboring solution and find its corresponding upper bound

on the chromatic number. In other words, we find∆2(CG(X)) + 1 for each neighborX.

The neighboring solution with the lowest upper bound is passed into the next iteration and

becomes the new current solution. If this solution is better than the incumbent solution, the

incumbent solution is updated. Such an evaluation function is the motivation for the neigh-

borhood reduction technique. Namely, if we reroute the SLDs which determine∆2(CG(X))

(i.e. the SLDs inLSLD(X)) instead of rerouting SLDs at random, there is a greater chance

that we might improve the upper bound and pass a better solution into the next iteration. Of

course, this does not guarantee that a better solution cannot be found by rerouting a series of

SLDs not included in setLSLD(X) . However, this is an approximation algorithm in which

a trade off between execution time and potential solution quality must be made.

A few extra features of the algorithm are as follows. For diversification purposes, if there

is no improvement after a certain number of iterations, we take a random number of SLDs

and randomly reroute them. If at some point no neighbor can be rerouted (basically, they

have all been rerouted and are on the tabu list), we reroute all the SLDs with the maximum

3For example, ifSLD1 with n1 = 3 lightpaths is adjacent toSLD2 andSLD3 with n2 = 7 andn3 = 5
lightpaths respectively, all three nodes representing lightpaths ofSLD1 have a degree ofn2 +n3 +(n1− 1) =
7 + 5 + (3− 1) = 14 in the conflict graph.n1 − 1 is added because each lightpath ofSLD1 is adjacent to all

the other lightpaths ofSLD1 except itself.
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degree in the conflict graph, (i.e.∆(CG(X)), not ∆2(CG(X))). If this solution is not on

the tabu list, it becomes the new current solution. If it is on the tabu list, we take a random

number of SLDs and randomly reroute them. In addition to the tabu list which records the

last change made in the form of(SLDi, P (SLDi)), whereSLDi is a number ranging from

1 toM andP (SLDi) is a number ranging from1 to K, we separately record the SLD which

was last changed. Rerouting this SLD onanypath is forbidden in the following iteration.

The pseudocode ofTScn is shown in Fig. 4.2.

TScn

Input and initialization:

G = (V, E);
τ = {SLD1, . . . , SLDM}, where SLDi = (si, di, ni, αi, ωi), i = 1, . . . , M ; // the set of SLDs

K; // the number of K-shortest paths

//initial routing solution with all paths set to 1

X0 = (x0
1
, . . . , x0

M
), x0

i
:= 1, i = 1. . . . , M ;

Find ∆2(CG(X0)) and the corresponding SLDs LSLD(X0) = {SLDr1
, . . . , SLDrs}, ri ∈ {1, . . . , M}, i = 1, . . . , s;

X := X0;//incumbent solution

∆2 := ∆2(CG(X0));//fitness of incumbent solution

Tabulist := {}, i := 0, itWOImprovenment := 0;

Begin:

//iterations

while i < desired number of iterations do

Xit := {}, ∆2(CG(Xit)) := ∞, LSLD(Xit) := {};
for j in 1, . . . , |LSLD(Xi)| do

xi
rj

′ := random number in {1, . . . , K}\xi
rj

except for that forbidden by tabu list;

X′

i
:= (xi

1
, . . . , xi

rj−1
, xi

rj

′, xi
rj+1

, . . . , xi

M
);

Find ∆2(CG(X′

i
)) and LSLD(X′

i
);

if ∆2(CG(X′

i
)) < ∆2(CG(Xit)) then

Xit := X′

i
, ∆2(CG(Xit)) := ∆2(CG(X′

i
)), LSLD(Xit) := LSLD(X′

i
);

end if

end for

if ∆2(CG(Xit)) == ∞ then

//all neighbors are on the tabu list

Find all nodes with max degree in conflict graph of solution Xi (i.e. ∆(CG(Xi))) and randomly reroute them. If this is on tabu list,
choose a random number of SLDs and randomly reroute them;

else

Xi := Xit, ∆2(CG(Xi)) := ∆2(CG(Xit)), LSLD(Xi) := LSLD(Xit);
end if

Update tabu list;
if ∆2(CG(Xi)) < ∆2 then

X := Xi, ∆2 := ∆2(CG(Xi));
else

itWOImprovement := itWOImprovement + 1;
end if

if itWOImprovement ≥ allowed no. of iterations without improvement then

Select a random number of SLDs and randomly reroute them;
end if

i := i + 1;
end while

End

Figure 4.2:Pseudocode of theTScn algorithm.

After solving the routing subproblem with theTScn algorithm, we use theGGC graph

coloring algorithm [43] for wavelength assignment. The computational results are presented

in Section 4.6.
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4.3.3 Complexity Analysis

For better insight, we examine the computational complexity of theTScg/GGC andTScn/GGC

algorithms. Both tabu search algorithms use Eppstein’s algorithm for computing the k-

shortest paths, run the desired number of iterations of their respective tabu search algorithms,

and then use theGGC algorithm for wavelength assignment. As a result, the computational

complexity of theTScg/GGC andTScn/GGC algorithms differ only with respect to the

operations performed in each iteration of the tabu search algorithms. Eppstein’s algorithm

for theK-shortest paths with time complexityO(|E| + |V | log |V | + K)) is run for each of

theM SLDs. TheGGC algorithm is an improvement algorithm which is run for a desired

number of iterations where each iteration has a worst case time complexity ofO(|V |2). The

complexity analysis of the iterations of the respective tabu search algorithms follows.

In each iteration of theTScg/GGC algorithm, each neighboring solution is evaluated

by finding the highest congestion on any of the|E| links. The congestion on edgee ∈ E

is computed by sorting the set-up and tear-down times of the SLDs routed overe and then

finding the time interval in which the maximum number of lightpaths are active. Sorting

takesO(M log M ) time. Finding the highest congestion takesO(M) time since the number

of time intervals must be≤ 2M . It follows that finding the highest congestion over all edges

takesO(|E|M(log M + 1)) time. Time complexity analysis for some of these steps was

developed in [49] for their Simulated Annealing algorithm for fault-tolerant RWA SLD. If

Nbr is the neighborhood size, each of theNbr neighbors is evaluated inO(|E|M(log M +

1)) time in each iteration.

The TScn/GGC algorithm, on the other hand, evaluates each neighboring solutionX

by constructing a conflict graphCG(X) and then finding the upper bound on the chromatic

number,∆2(CG(X)) + 1, of the conflict graph. The conflict graph can be constructed in

O(M2) time. ∆2(CG(X)) and the corresponding neighborhoodLSLD(X), can be found in

O(M2). It follows that the complexity of evaluating a neighboring solution isO(M2). Since

the neighborhood is adaptive, the size of the neighborhood is not constant. The upper bound

on the number of neighbors isM . This occurs only if the conflict graphCG(X) is a complete

graph. However, empirical testing indicates that the neighborhood size is often drastically

smaller thanM (see Section 4.6, Table 4.5), even whenM is large. The neighborhood size

could also be additionally upper bounded by a constant, say valueNbr used byTScg/GGC,

so that the number of neighbors evaluated in each iteration ismin{LSLD(X), Nbr}, where

each evaluation is performed inO(M2) time. The numerical results in Section 4.6 indicate

thatTScg/GGC is significantly slower thanTScn/GGC for the cases tested.
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4.4 Edge and Time Disjoint Path Algorithms

4.4.1 DP_RWA_SLD

In order to solve the routing and wavelength assignment problem of a set of scheduled

lightpath demands, we propose an algorithm motivated by a routing and wavelength as-

signment algorithm forstatic lightpath demands suggested in [57]. This algorithm, called

Greedy_EDP_RWA, creates a partitionτ1, . . . , τk of a set of static lightpath demands4 τ =

{(si, di), . . . , (sM , dM)}, wheresi, di ∈ V, i = 1, . . . , M . Each element of the partition is

composed of a subset of lightpath demands which can be routed on mutually edge disjoint

paths inG and hence can be assigned the same wavelength. The length of each path is upper

bounded by a valueh set in [57] tomax(diam(G),
√
|E|). The justification for settingh

to this value is given in [44]. The number of distinct wavelengths needed to successfully

perform RWA corresponds to the number of elements in the partition.

To solve the RWA SLD problem, we propose a fast algorithm using some of the ideas

introduced above. Routing and wavelength assignment are solved simultaneously based on

the idea of finding a partitionτ1, . . . , τk of the set ofscheduledlightpath demandsτ where

each elementτi, i ∈ 1, . . . , k, of the partition is composed of SLDs routed over ‘disjoint’

paths. Here, ‘disjoint’ paths include not onlyedgedisjoint paths as inGreedy_EDP_RWA,

but timedisjoint paths as well. Two paths that are disjoint in time may be routed using the

same physical edges. The lengths of the paths are upper bounded by a valueh. We will refer

to this algorithm asDP_RWA_SLD, whereDP stands forDisjoint Paths.

TheDP_RWA_SLDalgorithm first sorts the SLDs inτ in decreasing order of the number

of lightpaths each SLD requests. The reason for this will be discussed later. A partition of

τ is then created in the following manner. The first SLD from the sorted set of demands

is routed on its shortest path inG. This SLD and its corresponding path are placed inτ1

and removed fromτ . Subsequent attempts are made to route the remaining requests inτ

as follows. For each new SLD considered, the edges of the paths of those SLDs already

in τ1 with which the new SLD overlaps in time are deleted fromG. The resulting graph is

referred to asG′. The new SLD is now routed on its shortest path inG′. If this routing is

successful (i.e. there exists such a path inG′ whose length is≤ h), the new SLD is added to

τ1 and removed fromτ . Otherwise, it remains inτ . After attempting to route all the SLDs

in τ , we are left with a set of demands routed on mutually disjoint paths inτ1 and a set of

unrouted demands inτ . This entire procedure is iteratively repeated on the SLDs remaining

4Here, each static lightpath demand represents a single lightpath which is to be set up permanently. As a

result, each demand is defined only by its source and destination nodes.
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DP RWA SLD

Input and initialization:

G = (V, E);
τ = {SLD1, . . . , SLDM}, where SLDi = (si, di, ni, αi, ωi), i = 1, . . . , M ;//the set of SLDs

h = max(diam(G),
p

|E|);
λ = 0;//the number of wavelengths

i := 0;//the number of elements in the partition

Begin:

Sort the SLDs in τ in decreasing order of their corresponding values of ni. Sort requests with the equal values of ni in decreasing order of
the lengths of their shortest paths in G (if more than one request has the same length place them in random order);
while τ is not empty do

i := i + 1;
τi = {};
Pτi

= {}; //paths of SLDs in τi

for each SLDj ∈ τ in the sorted order do

G′ = G;
for each SLDk ∈ τi do

if (αj ≤ αk ≤ ωj) or (αk ≤ αj ≤ ωk) then

//SLDj ∈ τ and SLDk ∈ τi overlap in time

Remove from G′ all edges in P (SLDk);
end if

end for

Find shortest path P (SLDj) for SLDj in G′;
if the length of P (SLDj) is ≤ h then

Add P (SLDj) to Pτi
and SLDj to τi;

end if

end for

Wi= max value of nj of any SLDj ∈ τi;
For each SLD in τi, assign to their corresponding lightpaths wavelengths (λ + 1), . . . up to (λ + Wi) if needed;
λ := λ + Wi;
τ := τ\τi;

end while

End

Figure 4.3:Pseudocode of theDP_RWA_SLD algorithm.

in τ to create the other elements of the partition,τ2, . . . , τk, until all the demands inτ are

successfully routed.

Since we are creating a partition of SLDs (not individual lightpaths) we cannot assume

that only one wavelength is needed for each element of the partition. Since all the SLDs

in τi are mutually disjoint, their respective lightpaths can be assigned the same set of wave-

lengths. On the other hand, each individual lightpath of a particular SLD must be assigned a

different wavelength since they are all routed on the same path. It follows that the number of

wavelengthsWi which must be assigned toτi is the maximum number of lightpaths any SLD

included inτi requests. Wavelength assignment is performed in the following manner. For

each SLD inτ1, its corresponding lightpaths are assigned wavelengths1, 2, . . . up toW1 if

necessary. The lightpaths routed inτ2 are assigned wavelengths{(W1 +1), . . . , (W1 +W2)},
the lightpaths inτ3 are assigned wavelengths{((W1 + W2) + 1), . . . , ((W1 + W2) + W3)},
and so on. Generally speaking, each elementτi, i = 1, . . . , k is assigned wavelengths

{(∑i−1
t=0 Wt + 1), . . . , (

∑i−1
t=0 Wt + Wi)}, whereW0 = 0.

This method of wavelength assignment is the motivation for sorting the SLDs inτ in

decreasing order of the number of lightpaths each SLD requests. Recall that the number of

wavelengthsWi which must be assigned toτi is the maximum number of lightpaths any SLD

included inτi requests. If such is the case, it is evident that it is more desirable to route SLDs
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Table 4.1:An example of a set of scheduled lightpath demands

SLDi si di ni αi ωi

SLD1 4 3 5 1:00 6:00

SLD2 4 2 10 2:00 6:00

SLD3 4 1 9 2:00 7:00

SLD4 1 3 7 1:00 2:00
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Figure 4.4: An example of a partition of a set of SLDsτ obtained using theDP_RWA_SLD

algorithm (a) without sorting the SLDs and (b) with sorting the SLDs.

which request a large number of lightpaths (i.e. the requests with high traffic demands) in

the same element of the partition. In most cases, this will lead to a smaller number of total

wavelengths assigned, as will be demonstrated on an example. This also means that high

traffic demands are routed on mutually edge/time disjoint paths. We can intuitively see that

this will reduce congestion as opposed to routing high traffic on the same path at the same

time.

Furthermore, the SLDs with the same number of lightpaths are sorted in decreasing order

of the lengths of their corresponding shortest paths inG. This is done since SLDs which have

longer shortest paths are generally harder to route and should therefore be routed when more

edges are available. Related work is given in [86]. If there are multiple SLDs with the same

number of lightpaths and the same shortest path length, they are placed in random order.

To demonstrate the benefit of sorting the SLDs before creating a partition ofτ , a short

example is considered. Suppose the set of SLDs in Table 4.1 and the physical network

shown in Fig. 4.1.(a). Let the upper boundh on the length of a lightpath to be set to
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2. The lightpaths ofSLD1, SLD2, andSLD3 all overlap in time, while the lightpaths of

SLD4 are only in time conflict with those ofSLD1. Suppose we create a partition ofτ

in the order in which the SLDs are shown in Table 4.1. In that case,SLD1, SLD2 and

SLD4 could be routed in the first element of the partitionτ1, while SLD3 would require

a second element as shown in Fig. 4.4.(a). Such a partition would partition would require

W1 + W2 = max(n1, n2, n4) + max(n3) = 10 + 9 = 19 wavelengths to perform wave-

length assignment. Now consider routing the SLDs in descending order of their requested

lightpaths, i.e.{SLD2, SLD3, SLD4, SLD1}. This could result in a partition as follows:

τ1 = {SLD2, SLD3, SLD4} andτ2 = {SLD1} shown in Fig. 4.4.(b). Such a partition

would requireW1 + W2 = max(n2, n3, n4) + max(n1) = 10 + 5 = 15 wavelengths.

The pseudocode ofDP_RWA_SLD is shown in Fig. 4.3.

4.4.2 DP_RWA_SLD*

A related version of theDP_RWA_SLD algorithm is also proposed, referred to asDP_RWA_SLD∗.

After creating an element of the partitionτi, a second attempt at routing intoτi the SLDs re-

maining inτ is executed. The basic idea is the following. After creating each element of

the partitionτi and assigning up toWi wavelengths to each of the lightpaths of the SLDs

included inτi, we can see that there may be several SLDs that require less thanWi wave-

lengths. The edges on paths used by these SLDs could be utilized by routing other SLDs

using the wavelengths assigned toτi but not used on these particular edges. In other words,

we want to “fill up” τi by fully utilizing the set of wavelengths already assigned to it.

This is best shown on an example. Suppose we created an elementτi which is assigned

Wi = 10 wavelengths. Now suppose demandSLDj routed in τi requests 4 lightpaths

(i.e. nj = 4). These lightpaths are assigned wavelengths(
∑i−1

t=0 Wt + 1), (
∑i−1

t=0 Wt + 2),

(
∑i−1

t=0 Wt + 3) and(
∑i−1

t=0 Wt + 4). Each edge on pathP (SLDj) could be used to route

any SLD which demands(Wi − nj) = 10 − 4 = 6 lightpaths or less even if it overlaps in

time with SLDj. These lightpaths would simply be assigned wavelengths(
∑i−1

t=0 Wt + 5),

(
∑i−1

t=0 Wt + 6), . . . up to(
∑i−1

t=0 Wt + 10) if necessary.

To successfully execute this modification, the following steps are added to algorithm

DP_RWA_SLD giving rise toDP_RWA_SLD∗. After creating an elementτi and assign-

ing Wi wavelengths in the same way asDP_RWA_SLD (i.e. one run of thewhile loop),

we try and route the SLDs remaining inτ a second time. As before, to routeSLDj ∈ τ

in τi we start with graphG and check to see if it is in time conflict with any of the SLDs

already routed inτi. For the SLDs which are in time conflict withSLDj and request more

than(Wi − nj) lightpaths, we delete the edges of their corresponding paths fromG creating
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DP RWA SLD∗

Input and initialization:

G = (V, E);
τ = {SLD1, . . . , SLDM}, where
SLDi = (si, di, ni, αi, ωi), i = 1, . . . , M ;//the set of SLDs

h = max(diam(G),
p

|E|);
λ = 0;//the number of wavelengths

i := 0;//the number of elements in the partition

fillingUp := false; //this indicates if we are starting to create a partition or ”filling it up”

Begin:

Sort the SLDs in τ in decreasing order of their corresponding values of ni. Sort requests with the equal values of ni in decreasing order of
the lengths of their shortest paths in G (if more than one request has the same length place them in random order);
while τ is not empty do

if fillingUp == false then

Run one while loop of the DP RWA SLD algorithm;
fillingUp := true;

else

for each SLDj ∈ τ in the sorted order do

G′ = G
for each SLDk ∈ τi do

if (αj ≤ αk ≤ ωj) or (αk ≤ αj ≤ ωk) then

//SLDj ∈ τ and SLDk ∈ τi overlap in time

if nk > Wi − nj then

Remove from G′ all edges in P (SLDk);
end if

end if

end for

Find shortest path P (SLDj) for SLDj in G′;
if the length of P (SLDj) is ≤ h then

Add P (SLDj) to Pτi
and SLDj to τi;

Find the max wavelength Wmax(P (SLDj)) used by any SLD in τi which uses any of the edges in P (SLDj) and is in time
conflict with SLDj ;
Assign to SLDj the wavelengths (Wmax(P (SLDj)) + 1), . . . , (Wmax(P (SLDj)) + nj);

end if

end for

fillingUp := false;
τ := τ\τi;

end if

end while

End

Figure 4.5:Pseudocode of theDP_RWA_SLD∗ algorithm.

G′. The edges of those paths whose SLDs request(Wi − nj) or less lightpaths remain inG′

even though they are in time conflict withSLDj.

SLDj is then routed on its shortest pathP (SLDj) in G′. If the routing is successful (i.e.

there exists such a path and its length is≤ h), SLDj is added toτi and removed fromτ . In

order to assign wavelengths to the lightpaths ofSLDj, we do the following. We check all

the edges in pathP (SLDj) and determine the highest wavelengthWmax(P (SLDj)) used

on any of these edges by an SLD inτi which overlaps in time withSLDj. We then assign

wavelengths(Wmax(P (SLDj)) + 1), . . . , (Wmax(P (SLDj)) + nj) to thenj lightpaths of

SLDj. Note thatWmax(P (SLDj)) is the highest wavelength assigned to some demand

SLDk ∈ τi whose path overlaps withP (SLDj) and can therefore be written as(
∑i−1

t=0 Wt +

nk). Since prior to routingSLDj, we deleted fromG all those edges used by SLDs in time

conflict withSLDj requesting more than(Wi − nj) lightpaths, we can be certain thatnk ≤
Wi−nj. It follows thatWmax(P (SLDj))+nj =

∑i−1
t=0 Wt+nk +nj ≤

∑i−1
t=0 Wt+Wi. This

proves that we have not assigned toSLDj any wavelength aside from theWi wavelengths

already assigned toτi.

The pseudocode ofDP_RWA_SLD∗ is shown in Fig. 4.5.
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4.4.3 Complexity Analysis

The computational complexity of theDP_RWA_SLD andDP_RWA_SLD∗ algorithms

follows. TheDP_RWA_SLD algorithm first finds the all-pairs shortest paths between

nodes in the physical network using Floyd’s algorithm [26] inO(|V |3) time. TheM SLDs

are then sorted inO(M log M) time. The while loop runsO(M2|V |2) time giving us a final

complexity ofO(|V |3+M log M +M2|V |2). In theDP_RWA_SLD∗ algorithm, the while

loop is run twice as many times as inDP_RWA_SLD which still yields the same complex-

ity. The complexity of theDP_RWA_SLD and algorithms is not comparable to that of the

TScg/GGC andTScn/GGC algorithms since the former are constructive heuristics which

end deterministically, while the later are improvement heuristics which can be terminated

at any time and still obtain a feasible solution. However, numerical results (see Section 4.6)

indicate that in order to obtain good solutions using the tabu search algorithms, a fair number

of iterations need to be run resulting in execution times drastically longer than those of the

greedy algorithms.

4.5 Lower Bounds

Since the algorithms considered in this thesis are heuristics which obtain upper bounds on

the minimal objective function values, it is useful to have good lower bounds in order to

assess the quality of the sub-optimal solutions. A simplistic lower bound on the number of

wavelengths needed to perform successful routing and wavelength assignment on a set of

scheduled lightpath demands such that thegroup lightpath constraintis satisfied is

WLB
nmax

= max
i=1,...,M

{ni}. (4.1)

This represents the maximum number of lightpaths requested by any SLD inτ . However,

this lower bound is not necessarily efficient for a set of lightpath requests highly correlated

in time. In [76], a simple lower bound on the number of wavelengths required to set up a

regular virtual topology in wavelength routed optical networks is obtained by comparing the

fixed logical degree to the maximum physical degree in the network. We further develop this

idea of the logical to physical degree ratio to derive a tighter lower bound for the RWA SLD

problem as follows.

Let

Ss = {SLDi|si = s, i = 1, . . . , M}, ∀s ∈ V (4.2)

be the set of SLDs whose source node is nodes.
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Let

T S
s = {αi ∪ ωi|SLDi ∈ Ss, i = 1, . . . , M}, ∀s ∈ V (4.3)

be an ordered set of moments in time when some SLD inSs is either set up and/or some SLD

in Ss is torn down. IfT S
s = {ts1 , . . . , ts|TS

s |
}, thents1 < ts1 . . . < ts|TS

s |
and|T S

s | ≤ 2|Ss|.
Let

TOS
sj

= {SLDk ∈ Ss|[tsj
, tsj+1

] ⊆ [αk, ωk]},
∀s ∈ V, ∀j = 1, . . . , |T S

s | − 1,
(4.4)

be the set of SLDs whose source node iss and are active in time interval[tsj
, tsj+1

]. This

means that all the SLDs inTOS
sj

overlap in time. Furthermore, letTOS
sj

be anorderedset

with respect to the number of lightpaths requested by each SLD. In other words, ifTOS
sj

=

{SLD
to

sj
1

, . . . , SLD
to

sj

|TOS
sj
|
}, thenn

to
sj
1
≤ n

to
sj
2
≤ . . . ≤ n

to
sj

|TOS
sj
|
.

Lastly, let∆phys be the out-degree5 of nodes in the physical topology. All the lightpaths

of the SLDs inSs will surely be routed over one of the∆phys outgoing edges adjacent to

nodes. If the individual lightpaths of a single SLD do not necessarily need to be routed on

the same path (i.e. if we relax thegroup lightpath constraint), each individual lightpath can

be routed over any one of the∆phys outgoing edges. Lightpaths inSs which overlap in time,

i.e. their respective SLDs are both in at least one setTOS
sj

, j = 1, . . . , |T S
s | − 1, and which

are routed over the same physical edge must be assigned different wavelengths. To route and

assign wavelengths to the lightpaths of the SLDs in some setTOS
sj

, at least one physical link

will have

WLB
TOS

sj
=

⌈∑
i|SLDi∈TOS

sj
ni

∆phys

⌉
,

∀s ∈ V, ∀j ∈ {1, . . . , |T S
s | − 1},

(4.5)

lightpaths routed over it and therefore require at least as many wavelengths.

If we consider the lightpaths of the SLDs in setTOS
sj

to represent a logical topology over

the physical topology which is constant in the corresponding time interval,WLB
TOS

sj

represents

the ratio of logical to physical degree of nodes in time interval[tsj
, tsj+1

]. The highest such

ratio

WLB
S = max

s∈V
max

1≤j≤|T S
s |−1

WLB
TOS

sj
(4.6)

for any source node in the network over all time intervals is a lower bound on the number

of wavelengths needed to perform routing and wavelength assignment for a set of scheduled

5According to our problem definition, the physical out-degree is equal to the physical in-degree for each

node inV since we assume that each link in the physical topology represents two fibers - one in each direction.
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lightpath demandsτ . Note thatWLB
S is a lower bound for the RWA SLD problem where the

group lightpath constraintis relaxed. Since imposing such a constraint makes the problem

harder,WLB
S is also a lower bound for the constrained problem.

Furthermore, assuming thegroup lightpath constraintdoes apply, we suggest an alterna-

tive lower bound, referred to asWLB′
S . Let the load ofSLDi be its corresponding number

of lightpathsni. A lower boundWLB′
TOS

sj

on the number of wavelengths needed to perform

routing and wavelength assignment of the SLDs in setTOS
sj

is the maximum load on any

outgoing physical link adjacent tos after performing optimal load balancing of the|TOS
sj
|

SLDs over the∆phys links. If ni = 1 for all SLDs inTOS
sj

, load balancing is trivial and gives

the same lower bound as (4.6). Otherwise, this problem is NP-complete. For very small

cases, exhaustive search could be applied. However, for larger cases this is not practical.

Since we do not actually need to perform load balancing but are solely interested in the max-

imum load of the optimal solution, we can use a lower bound on the maximum load, which,

in turn, is a lower bound on the number of wavelengths needed. We know that at least

NS
sj

=

⌈
|TOS

sj
|

∆ps

⌉
, ∀s ∈ V, ∀j ∈ {1, . . . , |T S

s | − 1} (4.7)

SLDs(not individual lightpaths) will surely be routed on at least one physical outgoing link

adjacent tos in time period[tsj
, tsj+1

]. Defined as such,NS
sj
≤ |TOS

sj
|. By summing up the

load of theNS
sj

SLDs in TOS
sj

with the lightest load, i.e. the lowest number of lightpaths

ni, we obtain a lower bound on the maximum load. SinceTOS
sj

is a set of SLDs sorted in

nondecreasing order of their corresponding number of SLDs, the lower bound on the number

of lightpaths routed over at least one of the outgoing edges ofs in time interval[tsj
, tsj+1

]

is the sum of the number of lightpaths of the firstNS
sj

SLDs in TOS
sj

. In other words, if

TOS
sj

= {SLD
to

sj
1

, . . . , SLD
to

sj

|TOS
sj
|
}, then

WLB′
TOS

sj
=

NS
sj∑

i=1

n
to

sj
i

, ∀s ∈ V, ∀j ∈ {1, . . . , |T S
s | − 1}. (4.8)

It follows that the lower bound on the number of wavelengths needed to perform RWA of a

set of scheduled lightpath demands in the case that thegroup lightpath constraintapplies is

WLB′
S = max

s∈V
max

1≤j≤|T S
s |−1

WLB′
TOS

sj
. (4.9)

Note that for some cases, e.g. when one or a few SLDs request a very large number of light-

paths, bounds (4.1) and/or (4.6) may be tighter. As a result, we consider all the mentioned

bounds.
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The above discussion regarding lower bounds derived by considering SLDs with com-

mon source nodes can also be applied to SLDs with common destination nodes. Namely, if

SLDs terminate at the same noded ∈ V , they will surely be routed over one of the∆phyd

in-degree edges adjacent to noded. Let

Dd = {SLDi|di = d, i = 1, . . . , M}, ∀d ∈ V (4.10)

be the set of SLDs whose destination node isd. This is analogous to (4.2) for SLDs with

source nodes. SetsTD
dj

andTOD
d representing the time intervals and time overlapping SLDs

in Dd can be obtained from (4.3) and (4.4), respectively, by replacingS with D ands with

d. ND
dj

can be obtained in the same manner from (4.7). This leads to two additional lower

bounds,

WLB
D = max

d∈V
max

1≤j≤|T D
d |−1

WLB
TOD

dj

=

max
d∈V

max
1≤j≤|T D

d |−1








∑
i|SLDi∈TOD

dj

ni

∆phyd








(4.11)

and

WLB′
D = max

d∈V
max

1≤j≤|T D
d |−1

WLB′
TOD

dj

=

max
d∈V

max
1≤j≤|T D

d |−1





ND
dj∑

i=1

n
to

dj
i





(4.12)

analogous to (4.6) and (4.9).

The preceding discussion shows a lower bound on the number of wavelengths needed to

solve the RWA SLD problem without thegroup lightpath constraintto be

WLB = max{WLB
S ,WLB

D }. (4.13)

For the problem augmented with thegroup lightpath constraint, a tighter lower bound is

W ′
LB = max{WLB

nmax
,WLB

S ,WLB′
S ,WLB

D ,WLB′
D }. (4.14)

In the example given in Table 4.1, supposing the physical topology shown in Fig. 4.1.(a),

the lower boundW ′
LB would be calculated as follows. In this example,τ ={SLD1, SLD2,

SLD3, SLD4}, M = 4, andV = {1, 2, 3, 4}, while the physical in and out-degree of each

node is∆phyi
= 2, ∀i ∈ V . Lower boundWLB

nmax
= 10 represents the maximum number of
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lightpaths requested by any SLD inτ . To calculateWLB
S we must findWLB

TOS
sj

for eachs and

j. For s = 1, S1 = {SLD4}, while for s = 4, S4 = {SLD1, SLD2, SLD3}. For s = 2

or s = 3, these sets are empty since nodes 2 and 3 are not source nodes for any requested

SLD.T S
1 = {1:00, 2:00} andT S

4 ={1:00, 2:00, 6:00, 7:00}, whileTOS
11

= {SLD4}, TOS
41

=

{SLD1}, TOS
42

= {SLD1, SLD3, SLD2}, andTOS
43

= {SLD3}. Note that these sets

are ordered in nondecreasing order of the number of lightpaths requested by the SLDs in

the set. Lower bounds over the source nodes and time intervals areWLB
TOS

11

= d7/2e = 4,

WLB
TOS

41

= d5/2e = 3, WLB
TOS

42

= d(5 + 10 + 9)/2e = 12 andWLB
TOS

43

= d9/2e = 5. It follows

thatWLB
S = 12. Furthermore,NS

11
= 1, NS

41
= 1, NS

42
= 2, andNS

43
= 1. It follows that

WLB′
TOS

11

= n4 = 7, WLB′
TOS

41

= n1 = 5, WLB′
TOS

42

= n1+n3 = 5+9 = 14, andWLB′
TOS

43

= n2 = 10.

This leads to lower boundWLB′
S = 14. WLB

D andWLB′
D are analogously found to be 6

and 10 respectively. It follows that a lower bound for the RWA SLD without thegroup

lightpath constraintisWLB = max{12, 6} = 12, whileW ′
LB = max{10, 12, 14, 6, 10} = 14

gives a lower bound for the constrained version of the problem. In the example in Fig.

4.4.(b), we can see that a routing and wavelength assignment was found with 15 wavelengths,

demonstrating the efficiency of the bound for this case.

Table 4.2:Hypothetical U.S. network [52],δ = 0.01, M = 30: Avg. no. of wavelengths, avg. iter.

in which the best solution was obtained, avg. exec. time per iteration and avg. exec. time to best

solution for algorithmsTScg/GGC [52] andTScn/GGC; Avg. no. of wavelengths and avg. exec.

time for algorithmsDP_RWA_SLD andDP_RWA_SLD∗, and lower boundW ′
LB.

TScg/GGC [52] TScn/GGC
Lower

bound

K

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(ms)

Avg.

time to

best sol.

(ms)

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(ms)

Avg.

time to

best sol.

(ms)

Avg.

W ′
LB

2 11.12 0.81 395.37 85.74 11.12 3.53 4.48 27.57

3 10.50 12.25 402.11 4918.09 10.50 2.72 2.73 10.44

4 10.28 35.38 402.12 14204.34 10.28 9.92 2.69 33.71

5 10.22 26.63 495.22 10901.78 10.22 10.52 2.59 38.65 9.90

DP_RWA_SLD DP_RWA_SLD∗

Avg. wavelengths Avg. exec. time (ms) Avg. wavelengths Avg. exec. time (ms)

10.00 0.76 9.90 0.88
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Table 4.3:Hypothetical U.S. network [52],δ = 0.8, M = 30: Avg. no. of wavelengths, avg. iter.

in which the best solution was obtained, avg. exec. time per iteration and avg. exec. time to best

solution for algorithmsTScg/GGC [52] andTScn/GGC; Avg. no. of wavelengths and avg. exec.

time for algorithmsDP_RWA_SLD andDP_RWA_SLD∗, and lower boundW ′
LB.

TScg/GGC [52] TScn/GGC
Lower

bound

K

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(ms)

Avg.

time to

best sol.

(ms)

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(ms)

Avg.

time to

best sol.

(ms)

Avg.

W ′
LB

2 14.33 28.48 396.90 11329.26 13.85 77.42 7.66 595.97

3 13.78 59.92 399.40 37730.77 12.65 13.82 4.21 59.90

4 12.47 240.12 404.43 98217.44 11.68 36.45 4.03 147.18

5 11.70 321.03 404.24 130825.00 11.20 96.38 3.89 368.59 10.08

DP_RWA_SLD DP_RWA_SLD∗

Avg. wavelengths Avg. exec. time (ms) Avg. wavelengths Avg. exec. time (ms)

11.90 0.94 10.63 1.07

4.6 Analysis of Computational Results

4.6.1 Experimental Method and Numerical Results

TheTScg/GGC [52], TScn/GGC, DP_RWA_SLD, andDP_RWA_SLD∗ algorithms

for the Routing and Wavelengths Assignment problem of Scheduled Lightpath Demands

were all implemented in C++ and run on a PC powered by a P4 2.8GHz processor. TheTScg

[52] and the suggestedTScn tabu search algorithms for the routing subproblem were run in

combination with theGGC graph coloring algorithm from [43] for wavelength assignment.

The source code for theGGC algorithm was provided by the authors. Random numbers

were generated using the R250 random number generator [42].

We tested the algorithms using the hypothetical U.S. backbone given in [52]. The net-

work consists of 29 nodes and 44 edges which are assumed to be bidirectional. The weight

of an edge represents its physical length. Using a Perl script provided by the authors of [52],

60 sets of M=30 SLDs were generated with time correlation0.01, and 60 sets with time

correlation0.8. Each SLD could request at most 10 lightpaths. Time correlation closer to 0

means that the SLDs are weakly time correlated while time correlation closer to 1 means that

the SLDs generated are strongly time correlated. For exact definition of the time correlation
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Table 4.4: Hypothetical U.S. network [52],M = 30, WORST cases: Test cases for which the

best solution was found in the highest iteration, the corresponding iteration, avg. execution time per

iteration and the execution time to best solution for algorithmsTScg/GGC [52] andTScn/GGC

TScg/GGC [52] TScn/GGC

δ K Test case

Iteration

found

best

Avg.

time/iter.

(s)

Time

to best

solution

(s)

Test case

Iteration

found

best

Avg.

time/iter.

(s)

Time

to best

solution

(s)

2 52 2 0.3921 0.784 54 86 0.0077 0.666

0.01 3 21 158 0.4059 64.137 21 45 0.0047 0.210

4 21 277 0.4035 111.770 21 141 0.0044 0.624

5 24 265 0.4012 106.344 21 149 0.0045 0.671

2 39 1509 0.3965 598.240 39 1348 0.0078 10.467

0.8 3 22 1204 0.4006 482.276 17 219 0.0051 1.112

4 41 2419 0.4020 972.498 39 457 0.0036 1.649

5 33 2989 0.4041 1207.822 54 1525 0.0042 6.442

parameter used, refer to [52]. In this thesis, we will refer to this parameter asδ.

As in [52], theTScg/GGC algorithm was run with a neighborhood size of 200, the

length of the tabu list was set to 2 times the neighborhood size and the number of allowed

iterations without improvement was set to 150. Regarding theTScn/GGC algorithm, the

size of the neighborhood is not an input parameter sinceTScn uses an adaptive neighborhood.

The remaining parameters for theTScn/GGC algorithm were determined experimentally.

Since effective tabu tenures, i.e. the length of the tabu list, have been shown to depend

on the size of the problem [29], we tested the algorithm with tabu tenures proportional to

the number of possible neighboring solutions. Since a neighboring solution with respect to

a current one is defined such that one of theM SLDs is routed on a different path, there

areM(K − 1) possible neighbors. Experimental results indicated that a tabu list of size

M(K − 1)/10 was long enough to disable cycling and short enough so as not to restrict

the search. Setting the number of iterations without improvement to a value dependant on

the size of the problem also proved effective. Empirical testing also showed that applying

diversification everyM(K − 1)/3 iterations helped obtain good results.

Both theTScg/GGC and TScn/GGC algorithms were run for 3000 iterations, as in

[52], andK ranged from 2 to 5. Since a tabu search algorithm can reach its best incumbent

solution in any iteration and then continue running without any improvement (even with di-
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versification), we recorded the iteration in which the best solution was first found for each

test case for both tabu search algorithms. We also measured the average execution time per

iteration and the time it took each tabu search algorithm to reach its best solution. These

results, averaged over the 60 test cases, and the average number of wavelengths of the solu-

tions obtained by each of the tabu search algorithms for time correlations 0.01 and 0.8 are

shown in Tables 4.2 and 4.3, respectively. The number of wavelengths and execution times

for theDP_RWA_SLD andDP_RWA_SLD∗ algorithms and lower boundW ′
LB are also

shown in Tables 4.2 and 4.3. For further insight regarding execution time, in Table 4.4, the

number of iterations and the time it took to reach the best solution by each of the tabu search

algorithms for the test case for which they performedworstare shown. Note that the results

shown regarding the execution times of the the tabu search algorithms do not include the time

it takes to subsequently run theGGC algorithm. The average execution times of theGGC

algorithm were around 12 and 18 seconds for time correlations 0.01 and 0.8, respectively.

We can see thatTScn/GGC performs better than (or equal to)TScg/GGC in all cases

with respect to solution qualityandexecution time. For test data with time correlation 0.01,

the initial solution is often optimal since most of the SLDs do not overlap in time. These test

cases, although helpful in showing the benefit of performing RWA considering scheduled

lightpath demands as opposed to static lightpath demands, are less effective in comparing

the results of RWA SLD algorithms. The results for time correlation 0.8 are much more

interesting. The specific test cases where the number of wavelengths differed in the solutions

obtained by each of the tabu search algorithms are shown in Fig. 4.6. We can see that

TScn/GGC used used less wavelengths in all cases.

According to Table 4.2, theDP_RWA_SLD algorithm outperforms both tabu search

algorithms in combination with theGGC algorithm for time correlation 0.01. For time corre-

lation 0.8,DP_RWA_SLD outperformsTScg/GGC for cases whereK = 2, 3, and 4, and

outperformsTScn/GGC for cases whereK = 2 and 3.DP_RWA_SLD has the shortest

execution time among all the mentioned algorithms for all cases. TheDP_RWA_SLD∗ al-

gorithm outperformsTScn/GGC, TScg/GGC andDP_RWA_SLD for all values ofK in

solution quality and both tabu search algorithms in execution time. Since theTScn/GGC al-

gorithm uses less wavelengths thanTScg/GGC for all test cases, and theDP_RWA_SLD∗

algorithm uses less wavelengths than theDP_RWA_SLD algorithm in all cases, we com-

pare the results ofTScn/GGC andDP_RWA_SLD∗. The test cases where the solutions

obtained byTScn/GGC andDP_RWA_SLD∗ differed for time correlation 0.8 are shown

in Fig. 4.7. TheTScn/GGC algorithm algorithm performed better in 4 cases, while the

DP_RWA_SLD∗ algorithm performed better in 14 cases.
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Table 4.5: Hypothetical U.S. network [52],M = 30: Average neighborhood size for algorithm

TScn/GGC

Average neighborhood size

K δ = 0.01 δ = 0.8

2 0.810 2.035

3 0.711 1.946

4 0.662 1.879

5 0.661 1.825

Since the neighborhood of theTScn/GGC algorithm is adaptive, we recorded the av-

erage neighborhood sizes for theTScn/GGC algorithm. These results are shown in Table

4.5. We can see that the proposed neighborhood reduction technique dramatically reduces

the size of the neighborhood and yet obtains good results. The average neighborhood size

for test cases with time correlation 0.01 is less than one since for many of the test cases,

solutions can be found where none of the SLDs overlap in both time and space due to the

very small time correlation. Such solutions give conflict graphs where none of the nodes

representing lightpaths of different SLDs are adjacent, and thus RWA is trivial.

Table 4.6: Hypothetical U.S. network [52],M = 30: Avg. physical hop length of the light-

paths in the solutions obtained by algorithmsTScg/GGC [52], TScn/GGC, DP_RWA_SLD and

DP_RWA_SLD∗

Time correlationδ = 0.01 Time correlationδ = 0.8

K
TScg/

GGC[52]

TScn/

GGC

DP_

RWA_SLD

DP_

RWA_SLD∗
TScg/

GGC[52]

TScn/

GGC

DP_

RWA_SLD

DP_

RWA_SLD∗

2 3.755 3.828 3.847 3.987

3 3.888 3.788 3.818 3.819 3.983 4.001 3.980 3.993

4 4.006 3.876 4.468 4.167

5 4.032 3.912 4.631 4.248

The average physical hop lengths of the lightpaths established by each of the algorithms

are shown in Table 4.6. For test cases with time correlation 0.01, theTScn/GGC algorithm

established shorter lightpaths than theTScg/GGC algorithm for cases whereK = 3, 4,

and 5. TheDP_RWA_SLD∗ set up shorter lightpaths than the tabu search algorithms

for all cases butK = 2 for TScg/GGC andK = 3 for TScn/GGC. For test cases with

time correlation 0.8, theTScn/GGC andDP_RWA_SLD∗ algorithms were better than

TScg/GGC for K = 4 and 5, while the latter performed better forK = 2 and 3. The
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Figure 4.6:Hypothetical U.S. network [52],δ = 0.8, M = 30: The number of wavelengths of the

solutions obtained by algorithmsTScg/GGC [52] andTScn/GGC, and lower boundW ′
LB for the

test cases where the number of wavelengths differ.

DP_RWA_SLD algorithm established the shortest lightpaths for both time correlations.

The algorithms were also tested on a reference European core network topology shown

in Fig. 3.3 which was designed as part of the COST Action 266 project [37]. This network

network consists of 14 nodes and 39 edges. 20 test cases with time correlationδ = 0.95 and

M = 200 SLDs were generated, where each SLD can request at most 10 lightpaths. The

tabu search algorithms were run withK = 5. The average number of wavelengths and the

average execution times to reach the best solution are shown in Table 4.7. For the European

network, all three proposed algorithms significantly outperform theTScg/GGC algorithm

with respect to both the number of wavelengths and execution time6. The wavelengths re-

quired for the specific test cases are shown in Fig. 4.8. The average neighborhood size

for the TScn/GGC algorithm was 1.540. The average physical hop lengths of the estab-

lished lightpaths were as follows: 3.503, 3.655, 2.717 and 2.730 for algorithmsTScg/GGC,

TScn/GGC, DP_RWA_SLD and DP_RWA_SLD∗, respectively. Here,TScg/GGC

outperformedTScn/GGC, butDP_RWA_SLD andDP_RWA_SLD∗ again established

shorter lightpaths than the tabu search algorithms.

6The run time for theGGC algorithm for the test cases generated for the European network was about 220

seconds.
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Figure 4.7:Hypothetical U.S. network [52],δ = 0.8, M = 30: The number of wavelengths of the

solutions obtained by algorithmsTScn/GGC andDP_RWA_SLD∗, and lower boundW ′
LB for the

test cases where the number of wavelengths differ.

4.6.2 Discussion

All three proposed algorithms give better quality solutions in less time than theTScg/GGC

[52] algorithm for the data tested. The proposed tabu search algorithm,TScn/GGC, uses

less wavelengths thanTScg/GGC and yet evaluates only a few neighbors in each iteration.

The very efficient neighborhood reduction technique, in addition to improving the quality of

the solutions, drastically reduces the execution time per iteration with respect to the previous

art. The time per iteration of theTScn/GGC algorithm is not only dramatically shorter than

that of theTScg/GGC algorithm, but surprisingly decreases asK increases for the cases

tested. One of the reasons for this is that, for this data set, the average neighborhood size

decreased asK increased (see Table 4.5). The neighborhood size depends on the topology of

the conflict graph and is therefore dependent onK. Although, in general, the neighborhood

size does not necessarily decrease asK increases, such was the case for the data instances

evaluated in this thesis. Examining the behavior of the algorithm further, we found that

whenK is small, it occurs more frequently that all neighboring solutions are on the tabu

list. In such cases, alternative neighboring solutions outside the reduced neighborhood set

are examined until a valid neighbor is found. This slightly increases the run-time of the

algorithm.

Another point worth mentioning, regarding theTScn/GGC algorithm, is that the number

of iterations required to reach the best solution is higher whenK = 2 than whenK > 2.
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Table 4.7:Hypothetical European network [37],δ = 0.95, M = 200: Avg. no. of wavelengths, avg.

iter. in which the best solution was obtained, avg. exec. time per iteration and avg. exec. time to best

solution for algorithmsTScg/GGC [52] andTScn/GGC; Avg. no. of wavelengths and avg. exec.

time for algorithmsDP_RWA_SLD andDP_RWA_SLD∗, and lower boundW ′
LB.

TScg/GGC [52] TScn/GGC
Lower

bound

K

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(s)

Avg.

time

to best

sol. (s)

Avg.

wave-

lengths

Avg.

iter.

found

best

Avg.

time/iter

(s)

Avg.

time

to best

sol. (s)

Avg.

W ′
LB

5 29.00 935.40 1.403 1301.228 22.70 905.00 0.076 69.837

DP_RWA_SLD DP_RWA_SLD∗ 13.05

Avg. wavelengths Avg. exec. time (s) Avg. wavelengths Avg. exec. time (s)

21.80 0.0203 19.45 0.0227

Since neighborhood reduction is so drastic, the search is too restrictive whenK is very small.

The search technique is much more effective whenK is larger, which is convenient since

these are the cases when the problem size is bigger and the corresponding combinatorial

optimization problem is harder.

Regarding the proposed greedy algorithms, bothDP_RWA_SLD andDP_RWA_SLD∗

outperformTScg/GGC in all cases with respect to the number of wavelengths and execu-

tion time. These algorithms also establish shorter lightpaths. TheDP_RWA_SLD and

DP_RWA_SLD∗ algorithms are easy to implement, give good quality solutions and can

be applied to large networks due to their very short execution times.DP_RWA_SLD∗

is negligibly slower and establishes slightly longer lightpaths than longer lightpaths than

DP_RWA_SLD, but performs significantly the number of wavelengths used.

Although the greedy algorithmDP_RWA_SLD∗ is better on average than the proposed

tabu search algorithmTScn/GGC, for specific test cases this is sometimes not true (see

Figure 4.7 and 4.8). An effort was made to determine a pattern in test cases in which the

tabu search algorithm performed better than the greedy algorithm, andvice versa. However

nothing conclusive was found. This is not surprising since both strategies (greedy and tabu)

are heuristics and the search trajectory can be unpredictable depending on input data. If the

input data in an instance is such that a greedy strategy provides an effective minimization

direction, it is possible that nothing better will be obtained by the improvement mechanism

of tabu search. Also, the initial solution used in tabu search can sometimes be inefficient
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Figure 4.8: Hypothetical European network [37],δ = 0.95, M = 200: The number of

wavelengths of the solutions obtained byTScg/GGC [52], TScn/GGC, DP_RWA_SLD, and

DP_RWA_SLD∗, and lower boundW ′
LB .

(far away from the optimal solution), in which case it might be difficult to reach a very good

suboptimal solution via a restricted neighborhood search. In some other instances, input data

can be such that a good initial solution and effective improvements are provided with tabu

search strategy, while a greedy strategy lacks flexibility in search directions and ends with an

inferior solution. Due to short computational times, for smaller problems bothTScn/GGC

andDP_RWA_SLD∗ could be applied and the better solution selected. For larger problems

it might be better to run the greedy algorithm, compare the solution with the available lower

bound, and in case of a significant gap between the solution and its lower bound, the tabu

search algorithm could be applied in an attempt to improve the solution.

4.7 Summary and Future Work

In order to efficiently utilize resources in wavelength-routed optical networks, it is neces-

sary to successfully solve the problem of Routing and Wavelength Assignment. Scheduled

lightpath demands, where the set-up and tear-down times of lightpaths are knowna priori,

could be considered by RWA algorithms in order to utilize the network’s resources even

further. In this chapter, efficient heuristic algorithms are proposed for the routing and wave-

length assignment of scheduled lightpath demands in networks with no wavelength convert-

ers. Testing and comparing with an existing algorithm for the RWA SLD problem shows that

these algorithms not only provide solutions of better or equal quality, but are dramatically

faster. New lower bounds for the RWA SLD problem are also proposed. Further avenues of

research will include developing similar algorithms for routing and wavelength assignment
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in networks with full or limited wavelength conversion. Networks equipped with a limited

number of transmitters and receivers at each node and/or a limited number of wavelengths

on each link will also be considered. Furthermore, routing and wavelength assignment al-

gorithms which consider physical layer QoS (Quality of Service) demands, such as target

BER (Bit Error Rate) levels, could prove interesting research topics. Fault tolerant RWA and

restoration schemes for scheduled lightpaths demands are important issues which could also

be addressed.



Chapter 5

Multicast Routing and Wavelength

Assignment

In this chapter we consider the problem of Multicast Routing and Wavelength Assignment.

Since multicast routing itself is NP-hard, we first study the multicast routing problem inde-

pendently in Section 5.1 and suggest an algorithm for the delay-constrained multicast routing

problem. In Section 5.2, we then study the complete Multicast Routing and Wavelength As-

signment problem with static light-tree demands.

5.1 Multicast Routing

Multicast is a mechanism which enables the simultaneous transmission of information to a

group of destinations in a network. In other words, it is a technique thatlogically connects

a subset of nodes in a network. The development of numerous real-time multimedia appli-

cations in the past several years has created an increasing need for this type of distribution

of information. Many applications (e.g. video-conferencing, distance education, video-on-

demand, and applications in finance) require packets of information to be sent with a certain

Quality of Service (QoS). In this thesis, we will discuss one of the most important QoS

demands which is the demand for a bounded end-to-end delay from the source to any des-

tination in a multicast session. Real-time applications do not allow the end-to-end delay to

exceed a certain delay bound, which represents a measure of the quality of service of that

application.

In order to support these real-time applications and their respective QoS demands, net-

works require efficient multicast routing protocols that provide the necessary Quality of Ser-

vice while minimizing the use of network resources. The routing algorithms used in these
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protocols usually attempt to find a minimum cost tree that includes the source and all the

destination nodes, while attempting to satisfy the delay constraint and other QoS demands.

Other QoS demands could include the minimum required bandwidth, the maximum allowed

packet loss ratio and the maximum delay jitter. The tree topology is most frequently used,

since it enables parallel sending of packets to multiple destinations and duplicating the pack-

ets is only necessary where the tree branches.

Multicast routing is often reduced to the Minimum Steiner Tree Problem in Graphs

(MStTG). Generally, for a given graphG = (V,E), whereV is a set of nodes andE is

a set of edges, and a given subset of nodes,D ⊆ V , a Steiner tree is one which connects

all the nodes inD using a subset of edges inE. This tree may or may not include nodes in

V \D. Nodes inV \D which are included in the Steiner tree are called Steiner nodes. The

MStTG problem deals with searching for such a tree that is of minimal weight in a weighted

graph. This basically reduces to searching for the set of Steiner nodes that gives the best so-

lution. Since the MStTG problem has been proven to be NP-complete [27], several heuristic

algorithms have been developed to solve it suboptimally. Examples of such heuristics are

found in [32], [46], [102], and [107].

The MStTG problem can be augmented to include additional constraints giving rise to the

constrained MStTG (CMStTG) problem. This section is concerned with delay-constrained

multicast routing (the DCMR problem). This problem can be reduced to the Constrained

Minimum Steiner Tree Problem in Graphs (CMStTG), where the constraint is the maximum

end-to-end delay from the source to any destination. This problem refers to the search for

the minimum Steiner tree that satisfies a delay constraint. We propose a heuristic algorithm

for solving the CMStTG problem based on the GRASP search method. The algorithm was

tested on small and medium sized problems (50 - 100 nodes) from SteinLib ([45]), and the

results were compared with the results of theTS − CST tabu search algorithm ([87]) and

Kompella et al.’s centralizedCSTC algorithm ([46]). SteinLib is a library of test data which

includes optimal solutions for Steiner Tree problems and is available on the WWW. Results

indicate that the proposed GRASP method is superior to both algorithms in solution quality.

Further testing is required to determine more exact performance measures of this heuristic.

The rest of the section is organized as follows. In Section 5.1.1 we formally define the

DCMR problem, followed by a short introduction to GRASP in Section 5.1.2. In Section

5.1.3 we describe our GRASP heuristic algorithm for the DCMR problem. We introduce

the test problem set and the experimental method in Section 5.1.4. In Section 5.1.5 we

summarize the obtained computational results and finish with a summary in Section 5.1.6.
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5.1.1 The Delay-Constrained Multicast Routing (DCMR) Problem Model

The communication network is modelled as a graphG = (V, E), whereV is the set of nodes

andE is the set of edges. On the graphG we define the functionsc(i, j) andd(i, j), where

c(i, j) is the cost of using edge(i, j) ∈ E andd(i, j) is the delay along edge(i, j) ∈ E. Given

is a source nodes and a set of destination nodesS, where{s} ∪ S ⊆ V . The upper delay

bound on the path froms to any node inS is denoted as∆. The delay-constrained multicast

routing problem (DCMR) searches for a treeT = (VT , ET ), whereVT ⊆ V andET ⊆ E,

while minimizing the cost of the tree, subject to the following constraints:{s}∪S ⊆ VT and

D(s, v) < ∆ for everyv ∈ S, whereD(s, v) =
∑

i,j d(i, j) for all edges(i, j) ∈ ET on the

path froms to v in T .

It is important to note that we assume to have centralized information about the network

topology. We also assume that the delay of an edge is a constant value which represents the

sum of the propagation delay along the edge and the switching delay at the previous node.

The cost of an edge is not necessarily proportional to its delay. The cost of an edge can

represent various values such as the actual cost or the transfer capacity of the link.

5.1.2 The GRASP Metaheuristic

GRASP (Greedy Randomized Adaptive Search Procedure) is an iterative metaheuristic used

in a wide array of combinatorial optimization problems. Every GRASP iteration consists

of two phases: a construction phase, followed by a local search phase. The construction

phase builds a feasible solution by applying a randomized greedy algorithm. The random-

ized greedy algorithm builds a solution by iteratively creating a candidate list of elements

that can be added to the partial solution and then randomly selecting an element from this

list. Creating this candidate list, called the restricted candidate list (RCL), is done by eval-

uating the elements not yet included in the partial solution with a certain greedy function

that depends on the specifications of the problem. Only the best elements according to this

evaluation are included in the RCL. The size of this list can be limited either by the number

of elements or by their quality with respect to the best candidate element. After every itera-

tion of this greedy algorithm, the restricted candidate list is updated. The construction phase

ends when all the elements needed to create a feasible solution are included. This solution is

usually of good quality and offers fast local convergence as a result of thegreedyaspect of

the algorithm used. Since this greedy algorithm israndomized, exploration of the solution

space is diversified.

The solution obtained in the construction phase is not necessarily locally optimal, so a
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local search phase is applied. This phase uses a local search algorithm which iteratively

replaces the current solution with a better neighboring solution until no better solution can

be found. This algorithm can use different strategies for neighborhood evaluation and for

moving from one feasible solution to another. It can either search for the best neighboring

solution or just choose thefirst improvingone.

After applying the desired number of GRASP iterations, the best solution found over-

all is produced as the final result. Success of a particular GRASP metaheuristic depends

on a number of different factors. Some of the most important include the efficiency of the

randomized greedy algorithm used, the choice of the neighborhood structure, and the neigh-

borhood search technique. A more detailed description of the GRASP procedure is described

in [77]. GRASP algorithms have been used to help solve the Minimum Steiner Tree Problem

in Graphs (MStTG) in [58], [59], and [78], along with many other optimization problems.

To the best of our knowledge, this method has not been applied to the Constrained MStTG

problem or to multicast routing in general.

5.1.3 Description of theGRASP − CST Algorithm

While solving the DCMR problem using our GRASP heuristic, the problem is first reduced

to the Constrained Minimum Steiner Tree Problem in Graphs (CMStTG). In this problem,

the constraint is the maximum end-to-end delay from the source node to each destination in

the multicast group.

It has already been mentioned that for a given weighted graphG = (V, E) and a set of

nodesD ⊆ V , a minimum Steiner tree is such a tree which connects all the nodes inD using

a subset of edges inE that give the minimum total weight. The constrained minimum Steiner

tree is such a tree which is of minimum weight while satisfying the given constraint(s). In

our problem, we distinguish between one source nodes and a group of destination nodesS,

so for usD = {s} ∪ S. Nodes inV \D, which are included in the constrained Steiner tree,

are called Steiner nodes.

Graph Reductions

Before implementing the GRASP method, reducing the size of the graph in accordance with

the specifics of the problem is desirable. If we decrease the number of potential Steiner

nodes in the graph, the solution space becomes smaller and there are less potential solutions

among which to search. We will apply a few of the standard graph reductions described in

[105], with a slight modification due to the added delay constraint.
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First, we prune the graph of allnon-destinationnodes (nodes inV \D) that are of degree 1

since they will surely not be included in the solution. Secondly, we observe that the adjacent

edge of everydestinationnode that is of degree 1 will always be in the Steiner tree. As a

result of this, we can deem the adjacent node of every such destination node as a destination

node itself (if it is not already deemed as such). This reduces the size of our problem, since

it reduces the number of non-destination nodes among which we have to decide which are to

be included in the Steiner tree.

For further reduction, we do the following: for every non-destination nodek that is of

degree 2 with adjacent nodesi andj, we can replace edges(i, k) and(k, j) from E with

one edge(i, j), wherec(i, j) = c(i, k) + c(k, j) andd(i, j) = d(i, k) + d(k, j). Nodek

is then deleted from the graph. If there already exists an edge(i, j) in E, we compare its

cost and delay parameters to those of the newly constructed edge. If one of these edges

has both a lesser cost and a lesser delay, we can eliminate the other fromE. Otherwise,

both edges remain inE. This is because for various delay bounds the cheaper edge with the

greater delay may not satisfy the delay constraint while the more expensive one might. After

performing these reductions, we execute our GRASP search algorithm on the reduced graph.

The GRASP − CST Algorithm

We will refer to our GRASP heuristic as the Greedy Randomized Adaptive Search Proce-

dure - Constrained Steiner Tree (GRASP − CST ) algorithm. As already mentioned, the

GRASP method is an iterative metaheuristic algorithm where each iteration is composed of

two phases: the construction phase and the local search phase. The construction phase builds

a feasible solution with a randomized greedy algorithm which is further improved by exe-

cuting a local search algorithm in the local search phase. After executing the desired number

of iterations, the best found solution over all the iterations is kept. The efficiency and quality

of various GRASP heuristic algorithms vary depending on the design of these two phases.

Potential solutions in our heuristic are potential constrained Steiner trees represented by

binary sets consisting of|V \ D| bits. Each bit corresponds to a different node inV \ D.

Nodes whose corresponding bits are set to zero in a given configuration are Steiner nodes.

Nodes whose corresponding bits are set to 1 are not included in the constrained Steiner tree.

Each configuration corresponds to apotentialconstrained Steiner tree because there exists

the possibility that for some configurations no constrained Steiner Tree can be found. Such is

the case if a configuration leaves the graph unconnected because then no Steiner tree exists.

Another possibility is that for a given configuration, we cannot find a Steiner tree that satisfies

the given delay bound. We denote the cost of such solutions as infinite.
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Begin GRASP

//Initialization:
Input nodes V and E from graph G
Input s := source node; S := destination nodes;
s ∪ S = D;
Input α, ∆, GraspIt, RandSeed, ItWithoutImprovement;
Reduce graph G;
//current incumbent solution
X := [x1 · · ·x|V \D|], xi ∈ [0, 1], i = 1, . . . , |V \D|
C, D := ∞; //cost and delay of the current incumbent sol

//the first iteration of GRASP finds the pure greedy solution (α = 1)
Xpot := ConstructGreedyRandSol(1, RandSeed, ∆);
if a feasible solution exists (∆ can be met) then

X := TS − CST (ItWithoutImprovement, Xpot, ∆);
C := cost of DCST (X);
D := delay of DCST (X);

end if

//the remaining iterations of GRASP use α > 1
i := 0;
while i < GraspIt − 1 do

Xpot := ConstructGreedyRandSol(α, RandSeed, ∆);
if a feasible solution exists (∆ can be met) then

Xpot := TS − CST (ItWithoutImprovement, Xpot,∆);
Cpot := cost of DCST (Xpot);
Dpot := delay of DCST (Xpot);
if Cpot < C then

X := Xpot; C := Cpot; D := Dpot;
end if

end if

end while

endGRASP

Figure 5.1:Pseudocode of theGRASP − CST algorithm

The pseudocode of theGRASP − CST algorithm is shown in Fig. 5.1. Details of the

construction and local search phase follow.

The Construction Phase: In order to construct a good starting solution which is feasible

with respect to the delay constraint, we do the following: we construct a constrained

Steiner treeT which initially consists of only the source nodes (i.e. T = {s}). Next,

we create a candidate list by evaluating the cost of adding each destination node not

yet included in the solution (nodes inD \ T ) to the existing tree while making sure

that the delay from the source to this candidate destination node is less than the given

delay bound.

To perform this evaluation, we compute the shortest paths with respect to the cost

function from each unconnected destination node to the existing tree (which in this

first iteration consists only of the source node) using Dijkstra’s single-source shortest

paths algorithm ([20]). For each nodei ∈ D \ T , we denote its shortest path to the

existing tree with respect to cost asShCPath(i). We also compute the shortest paths

from each destination node to the source node with respect to thedelayfunction. This
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Begin ConstructGreedyRandSol(α, RandSeed, ∆)

T := s;
XgreedyRand := [x1 · · ·x|V \D|], xi ∈ [0, 1], i = 1, . . . , |V \D|;
if the delay of ShDPath(i) > ∆, for any i ∈ S then

exit the GRASP − CST algorithm; // no feasible solution exists
end if
for all i ∈ S do

Find ShCPath(i) and ShDPath(i) from s;
if delay of ShCPath(i) < ∆ then

ConnecPath(i) := ShCPath(i);
ConnecCost(i) := cost of ShCPath(i);

else
ConnecPath(i) := ShDPath(i);
ConnecCost(i) := cost of ShDPath(i);

end if
end for

while D * T do
BestConnecCost := min(ConnecCost(i)), i ∈ D \ T ;
Make RCL of all i ∈ D \ T where ConnecCost(i) ≤ α · BestConnecCost;
Node k = random(RCL, RandSeed);
T = T ∪ ConnecPath(k);
Update ConnecCost and ConnecPath for all D \ T

end while

for all nodes in T \ D do
Set their corresponding bits in XgreedyRand to 0;

end for

return XgreedyRand;
endConstructGreedyRandSol

Figure 5.2:Pseudocode of the construction phase ofGRASP − CST

path is denoted asShDPath(i). These paths can include any unconnected destination

or non-destination node in the graph (V \ T ).

Note that the shortest delay paths are computed with respect to the source nodes and

not the existing treeT . In other words, they are only computed in the first iteration

of the construction phase whenT = {s}. This is because our delay constraint is

defined as the maximum end-to-end delay from the source to any destination node in

the multicast session. These shortest delay paths computed in this first iteration of the

construction phase serve as our ‘back up’ paths when our shortest cost paths violate

the delay constraint. The shortest delay path found for each destination node must

satisfy the given delay constraint, otherwise no feasible solution exists.

We define the value of adding each unconnected destination nodei to the existing

tree, as the cost of its respective shortestcostpath (ShCPath(i)) if this path satis-

fies the delay constraint, otherwise as the cost of its respective shortest delay path

(ShDPath(i)). We denote this value asConnecCost(i) and its respective path as

ConnecPath(i). We then sort these candidate nodes with respect to the value of these

determined connection costs.

To create a restricted candidate list (RCL), we include only those nodesi ∈ D \ T for
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whichConnecCost(i) ≤ α · ConnecCost(j), whereα ≥ 1 andj ∈ D \ T for which

ConnecCost(j) ≤ ConnecCost(k), for everyk ∈ D\T . If α = 1, then the algorithm

is pure greedy. This means that only the node(s) with the least connection cost can be

in the RCL. If α > 1, the RCL can also include other nodes whose connection costs

are good, but not necessarily best.

We now choose a candidate node at random from the RCL. We add this chosen node

i, i ∈ D \ T , along with all the other nodes found along its respective connection path

ConnecPath(i) to treeT . We update the connection costs and paths of the remaining

unconnected destination nodes (D \ T ) by computing their shortest paths to any of

the newly connected nodes. If any of these computed paths improve their existing

connection costs while satisfying the delay constraint, their respective connection costs

and paths are updated. This procedure ends when all the destination nodes are included

in the tree (D ⊆ T ).

As already mentioned, the greedy aspect of the construction phase provides good so-

lution quality and fast local convergence. The random aspect of the construction phase

enables diversified exploration of the solution space. Diversification allows the search

procedure to visit various areas of the solution space that may contain the optimal solu-

tion. Since the pure greedy algorithm gives high quality average solutions, our GRASP

heuristic is designed in such a way that the first iteration ofGRASP −CST performs

its construction phase withα = 1 (pure greedy). The remainingGRASP − CST

iterations perform their construction phases withα > 1. This is done so that we have a

pretty good solution even after the firstGRASP − CST iteration and then search for

an even better one in the remaining number of iterations, depending on how much ex-

ecution time we are willing to spend. In other words, since there is a trade off between

solution quality and execution time, this method ensures that if in a certain situation it

is more important to produce a solution in less time, we can runGRASP − CST for

only a few iterations, or even one, and we will still get a reasonably good result.

The pseudocode of the construction phase ofGRASP − CST is shown in Fig. 5.2.

The Local Search Phase:Since the feasible solution built in the construction phase is not

necessarily locally optimal, applying a local search procedure to find the local opti-

mum is desirable. A better solution might also be close by, but not necessarily local.

For this purpose we designed the search phase ofGRASP − CST to enable us to

explore further than just the local optimum if desired. Local search algorithms usually

iteratively replace the current solution with a better neighboring solution until no bet-
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Begin TS-CST(ItWithoutImprovement, Xpot, ∆)
TabuList := {}; i := 0; iter := 0;
XTS−CST := Xpot; //the initial solution is that found in the construction phase
CTS−CST := cost of DCST (XTS−CST );
DTS−CST := cost of DCST (XTS−CST );
Xi := Xpot;
while iter < ItWithoutImprovement do

Cit := ∞; Xit := {};
for n = 1, . . . , |V \ D| do

if n is not on TabuList then

Xneighbor = Flip bit n in Xi;
Evaluate Xneighbor; //find DCST (Xi)
Cneighbor := cost of DCST (Xneighbor);
if unfeasible (∆ cannot be met or graph unconnected) then

Cneighbor := ∞;
end if

if Cneighbor < Cit then

Cit := Cneighbor; Xit := Xneighbor; nit := n;
end if

end if

end for

if Cit = ∞ (no feasible neighbor was found) then

nit := i modulo |V \ D| + 1;
add nit to TabuList;

else

Xi := Xit;
end if

if Cit < CTS−CST then

XTS−CST := Xit, CTS−CST = Cit, DTS−CST = Dit;
else

iter = iter + 1; //increment iterations without improvement
end if

Add nit to TabuList; i := i + 1; //total iterations performed (with or without improvement)
end while

return XTS−CST ;
endTS-CST

Figure 5.3:Pseudocode of the local search phase ofGRASP − CST

ter solution can be found.GRASP − CST enables us to specify the desired ‘number

of iterations without improvement’ so that the search procedure does not necessarily

terminate at the first local optimum.

We use the tabu search heuristic algorithmTS −CST suggested in [87] with a modi-

fication enabling us to specify the desired number of iterations without improvement.

We also modify this algorithm so its initial solution is that obtained in the construction

phase ofGRASP − CST instead of that suggested in [87]. Here, we will briefly

describe theTS −CST algorithm. As already mentioned, potential solutions are rep-

resented by binary sets consisting of|V \D| bits. Each bit corresponds to a different

node inV \D. Nodes whose corresponding bits are set to zero in a given configuration

of bits are Steiner nodes. Nodes whose corresponding bits are set to 1 are not included

in the constrained Steiner tree. The neighborhood of a certain potential solution in-

cludes all those solutions whose binary sets differ from the chosen solution by exactly
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one bit. In other words, neighboring solutions are all those solutions obtained by either

adding or removing exactly one Steiner node.

In each iteration of theTS − CST algorithm, we start with some current solution,

explore all its neighboring solutions and then choose the best neighboring solution

which becomes the new current solution in the next iteration. This procedure is called

an move. TS − CST is a tabu search heuristic, which means that it has a memory

structure of variable size called a tabu list which prevents the algorithm from visit-

ing previously visited solutions. Therefore, when exploring the neighborhood of the

current solution, those neighboring solutions that are forbidden by the tabu list are ig-

nored. Following every iteration or move, the tabu-list is updated circularly by adding

the last performed move (or some attribute of this move) to the list and removing the

oldest member. For our purposes, the size of tabu-list is set to one which is enough to

prevent the algorithm from oscillating between neighboring solutions.

In order to evaluate each neighboring solution and select the best one to become the

current solution in the next iteration, the following is done: First all the non-Steiner

non-destination nodes (that is, those nodes whose corresponding bits are set to 1) are

eliminated from graph G along with all their adjacent edges. Next, a spanning tree of

the remaining graph that attempts to minimize the cost while satisfying the delay con-

straint is found. This is referred to as the Delay Constrained Spanning Tree (DCST).

To find the DCST, a modified version of Prim’s Minimum Spanning Tree algorithm

([20]) is used so as to yield a solution in which the end-to-end delay from the source to

every destination node is less than the given delay bound∆. The tree initially consists

of only the source node. Then the algorithm subsequently searches for the closest node

to the existing tree by examining all its adjacent edges. That edge which is cheapest

but whose addition to the tree does not exceed the delay bound is chosen and added

to the existing tree. The procedure is finished when all the nodes are included in the

tree. The value of each neighboring solution is defined as the cost of the found Delay

Constrained Spanning Tree.

In each iteration of theTS − CST algorithm, the cost of the corresponding DCST of

each neighbor of the current solution is found (except for those forbidden by the tabu

list), and the best among them is chosen to pass into the next iteration. This solution

does not necessarily have to improve the current solution. If it does not, we increment

the number of iterations performed without improvement. If in some iterationi no

feasible solution in the neighborhood of the current solution exists, we choose a non-

feasible neighbor in a pseudo-random manner to become the new current solution
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Table 5.1:Characteristics of the problem set and the solution quality obtained while simulating the

MStTG problem (∆ = ∞)

GRASP-CST TS-CST CSTc

Probl. |V| |D| |E| Copt

�
GRASP-

CST (%)

DGRASP-

CST

�
TS-CST

(%)

DTS-

CSTC

�
CSTc

(%)

DCSTc

B01 50 9 63 82 0 30 0 30 0 30

B02 50 13 63 83 0 55 0 55 8.43 55

B03 50 25 63 138 0 78 0 78 1.45 78

B04 50 9 100 59 0 58 0 58 0 58

B05 50 13 100 61 0 43 1.64 39 4.92 26

B06 50 25 100 122 0 93 0 93 4.92 65

B07 75 13 94 111 0 51 0 51 0 51

B08 75 19 94 104 0 49 0 49 0 49

B09 75 38 94 220 0 66 0 66 2.27 51

B10 75 13 150 86 0 66 0 66 13.95 78

B11 75 19 150 88 0 65 11.36 91 4.55 75

B12 75 38 150 174 0 66 0 75 0 125

B13 100 17 125 165 0 38 0 38 6.06 53

B14 100 25 125 235 0 70 1.28 80 1.28 70

B15 100 50 125 318 0 81 0 81 2.52 77

B16 100 17 200 127 0 63 7.09 95 7.87 64

B17 100 25 200 131 0 59 1.53 71 2.29 66

B18 100 50 200 218 0 113 0 113 3.67 80

in order to prevent the algorithm from getting stuck. This can be done in various

ways. In our algorithm, we chose to flip thenth bit of the current solution, where

n = (i)modulo(|V \ D| + 1), and this becomes the new current solution in the next

iteration. For a more detailed description of theTS − CST algorithm refer to [87].

After runningTS−CST for the desired number of iterations without improvement the

algorithm ends. If we set the number of iterations without improvement to 1, we find

the local optimum. If this number is greater than one, we expand the search beyond

the local optimum.

The pseudocode of the local search phase ofGRASP − CST is shown in Fig. 5.3.
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Table 5.2:Solution quality for∆1 = min(DGRASP−CST , DTS−CST , DCSTC
) + 1

GRASP-CST TS-CST CSTC

Probl.
�

1 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01* 31 82* 30 0.170 82* 30 0.290 82* 30 0.591

B02* 56 83* 55 0.199 83* 55 0.310 90 55 1.152

B03* 79 138* 78 0.329 138* 78 0.410 140 78 1.692

B04* 59 59* 58 1.041 59* 58 2.664 75 58 1.421

B05 27 62 26 1.292 76 26 3.143 63 26 0.561

B06 66 126 65 1.762 126 63 2.403 128 65 1.571

B07* 52 111* 51 0.430 111* 51 0.890 118 51 3.153

B08* 50 104* 49 0.480 104* 49 0.661 110 39 3.034

B09 52 231 48 0.830 231 48 0.670 225 51 3.134

B10* 67 86* 66 2.733 86* 66 12.467 106 51 4.606

B11* 66 88* 65 2.254 92 61 14.020 99 57 4.516

B12* 67 174* 66 6.057 180 54 11.315 182 66 4.717

B13* 39 165* 38 1.361 165* 38 2.913 187 38 5.197

B14* 71 235* 70 1.252 239 64 3.634 238 70 9.874

B15 78 330 61 1.702 330 61 3.444 328 71 10.975

B16* 64 127* 63 4.737 149 58 33.478 146 54 9.624

B17* 60 131* 59 8.862 131* 59 33.569 165 50 9.033

B18 81 219 80 11.175 219 80 24.404 226 80 12.367

5.1.4 The Set of Test Problems and the Experimental Method

We implementedGRASP − CST , along with theTS − CST algorithm ([87]) and Kom-

pella et al.’s centralizedCSTC algorithm ([46]), in C++. We tested the above mentioned

algorithms on problem set B from Steinlib ([45]) using the experimental method suggested

in [87] which will be briefly described. All three algorithms were executed on a PC powered

by a Pentium 2 450MHz processor.

Steinlib is a publicly available library of test data for the Minimum Steiner Tree Problem

in Graphs (MStTG). Since we consider the Delay-Constrained Multicast Routing (DCMR)

problem which reduces to the Constrained MStTG problem, the test data as such is not

sufficient. Since the edges in the test data have only a cost function assigned, their respective

delay values are generated randomly. SetD is the set of nodes given in the test data that

must be spanned by the Steiner tree. The first node in setD is chosen to serve as our source

s. The remaining nodes inD \ {s} are destination nodesS.
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The algorithms were then run with a high enough value of the delay bound so as not to act

as a constraint. (The delay bound∆ cannot actually be set to∞ since the time complexity

of the CSTC algorithm isO(∆|V |3)). These obtained solutions are really the solutions

to the (unconstrained) MStTG problem since the delay values of the edges play no role in

constructing the Steiner tree. If the cost of the obtained solution is that supplied by the test

data, we know that it is optimal. After running each algorithm, the cost of the obtained

Steiner tree along with the maximum end-to-end delay from the source to any destination is

calculated. The deviation (δ) of the calculated cost above the optimal cost supplied by the

test data and the corresponding maximum end-to-end delay (D) are shown in Table 5.1.

The inhibiting factor in the Delay-Constrained Multicast Routing problem is, of course,

the value of the delay bound. This means that the smaller the delay bound, the stronger the

constraint. For this reason, the following is done: The smallest of the three corresponding

maximum delay values found for each test problem while simulating the MStTG problem

(Table 5.1), is chosen. This value is then incremented by 1, and set as delay bound∆1. The

cost (C) and maximum delay values (D) that correspond to the Steiner trees obtained by

testing the algorithms with delay bound∆1 , along with their execution times (T ), are shown

in Table 5.2. The algorithms are then tested for two more delay bounds:∆2 (Table 5.3) and

∆3 (Table 5.4).∆2 is 10% greater than∆1, rounded up to the nearest integer, while∆3 is

10% less than∆1, rounded down to the nearest integer.

Since theGRASP − CST algorithm gave the optimal solution to all 18 test problems

for the MStTG problem, we know the maximum delay that corresponds to all of the optimal

solutions. As a result, if the delay bound of the CMStTG problem is set to a valuegreater

than the maximum delay of the optimal solution to the MStTG problem, we know that this

optimal solution to the MStTG problem is also optimal for the CMStTG problem. Such

problems are marked with ‘* ’ in Tables 5.2 and 5.3 to let us know that the optimal solution

for these cases is known. For problems where we do not know the optimal solution, we

simply compare the performance of the three implemented algorithms. Unfortunately, to the

best of our knowledge, there is no test data available for the CMStTG problem.

To determine appropriate values for the input parameters for theGRASP − CST al-

gorithms, a number of experiments were performed. The goal was to use a small number

of GRASP iterations and a small number of iterations in the local search phase to reduce

execution time, and yet obtain good solutions for this set of problems. Regarding the local

search procedure, we first set the number of iterations without improvement to 1 to make it a

strictly local neighborhood search. However, the neighborhood of theTS −CST algorithm

used in the local search procedure proved too restrictive. One of the reasons for this is the
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Table 5.3:Solution quality for∆2 = 1.1 ·∆1

GRASP-CST TS-CST CSTC

Probl.
�

2 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01* 35 82* 30 0.160 82* 30 0.281 82* 30 0.680

B02* 62 83* 55 0.199 83* 55 0.310 90 55 1.302

B03* 87 138* 78 0.331 138* 78 0.410 140 78 1.872

B04* 65 59* 58 1.031 59* 58 2.634 64 58 1.571

B05 30 62 26 1.252 76 29 3.114 66 27 0.631

B06 73 124 72 1.961 124 72 2.463 128 65 1.752

B07* 58 111* 51 0.450 111* 51 0.901 118 51 3.554

B08* 55 104* 49 0.509 104* 49 0.670 110 39 3.374

B09 58 221 57 0.850 221 57 0.740 225 51 3.534

B10* 87 86* 66 3.044 86* 66 12.447 99 63 6.078

B11* 73 88* 65 2.283 92 61 14.009 93 57 5.128

B12* 74 174* 66 5.227 174* 66 11.456 175 71 5.127

B13* 43 165* 38 1.391 165* 38 2.923 187 38 5.768

B14* 79 235* 70 1.351 238 74 4.004 238 70 11.085

B15* 86 318* 81 2.674 318* 81 3.854 322 50 12.677

B16* 71 132 50 4.987 149 58 33.709 137 64 10.754

B17* 66 131* 59 8.573 134 59 32.858 148 49 9.914

B18 90 219 80 10.867 222 84 25.045 226 80 13.839

neighborhood structure of theTS − CST algorithm. Namely, since potential solutions are

represented by a set of Steiner nodes, and the neighborhood is defined as all those solutions

where the status of only a single node is changed, the neighborhood of a current solution

often consists of all infeasible solutions (i.e. unconnected trees). Allowing more flexibil-

ity drastically improved results. To provide this flexibility, we set the number of iterations

without improvement to 2 and, thus, allowed 2 nodes to be changed with regards to their

status as Steiner nodes before obtaining a solution better than the current one. This little

nudge beyond the first local optimum significantly improved results. Of course, raising the

value of this parameter even further could potentially lead to even better solutions but testing

indicated that the gain on solution quality was not significant with respect to the increase in

execution time. Also, for several of the cases tested, the obtained solutions were optimal.

Thus, further raising this value seemed unnecessary.

Regarding the remaining parameters, it was necessary to determine a good balance be-

tween parameterα and the number of GRASP iterations. Parameterα should be large enough
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Table 5.4:Solution quality for∆3 = 0.9 ·∆1

GRASP-CST TS-CST CSTC

Probl.
�

3 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01 27 - - - - - - - - -

B02 50 91 43 0.281 91 43 0.260 91 43 1.062

B03 71 144 59 0.400 144 59 0.360 155 70 1.761

B04 53 62 35 0.860 64 42 2.554 80 48 1.232

B05 24 66 19 1.221 75 21 3.184 66 18 0.480

B06 59 138 58 1.302 127 53 2.604 135 52 1.091

B07 46 - - - 118 33 0.900 128 32 2.813

B08 45 107 36 0.429 107 34 0.720 111 34 2.703

B09 46 - - - - - - - - -

B10 60 88 51 2.464 91 57 12.798 100 51 4.106

B11 59 89 43 2.263 94 57 13.629 99 57 4.116

B12 60 177 56 6.329 190 58 12.046 200 57 4.217

B13 35 172 28 0.971 - - - 217 34 4.607

B14 63 240 62 1.292 246 55 3.524 243 50 8.953

B15 70 330 61 2.293 330 61 3.454 330 63 9.974

B16 57 129 51 5.877 153 55 33.919 146 54 8.502

B17 54 136 53 7.209 158 53 25.316 159 50 8.272

B18 72 223 67 11.816 227 69 25.716 228 70 10.914

to enable a diversified search and yet small enough to intensify the search around good so-

lutions. Recall that candidates in the restricted candidate list (RCL) are chosen according

to the cost of adding them to the existing tree, i.e. if the cost of adding a node is less than

or equal to the cost of the best candidate multiplied by factorα, the node is included in the

RCL. Since the costs on edges in the networks ranged from 1 to 10, the costs of the paths

connecting various nodes to the existing tree often varied significantly. As a result, setting

α to a value close to 1 proved fairly restrictive, resulting in a construction phase that ran al-

most like a pure greedy algorithm. This caused most of the GRASP iterations run to give the

same solution. For most cases, this solution was good but it could still be improved. Tests

showed that settingα to 5 provided enough flexibility in the construction phase to enable the

GRASP − CST algorithm to perform a diversified search. Values higher than 5 often ob-

tained poor quality solutions in the construction phase and, thus, a large number of GRASP

iterations had to be run to obtain good solutions. When parameterα was set to 5, only 5

iterations ofGRASP − CST were required to obtain high quality results for this problem
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Figure 5.4:Deviation of the cost of the solutions obtained byTS−CST andCSTC overGRASP−
CST for ∆1

set.

It follows that the results shown in Tables 5.1-5.4 are those obtained with the following

input values: the number of GRASP iterations is set to 5,α is set to 5, and the number

of iterations without improvement of the local search procedure is set to 2. Parameters for

testing theTS −CST algorithm are those chosen in [87] where the number of iterations for

problems B01-B09 is 25, while the remaining problems are run for 40 iterations.

For easier visualization of the obtained results, the deviation of the cost of the solutions

found by theTS−CST andCSTC algorithms above the cost of the corresponding solution

obtained by theGRASP−CST algorithm for the middle delay bound (∆1) are shown in Fig.

5.4. The average deviation of the cost of the constrained Steiner tree obtained by theTS −
CST algorithm over that obtained by theGRASP−CST algorithm (δTS−CST/GRASP−CST )

is +3.01%. In the case of theCSTC algorithm (δCSTC/GRASP−CST ), the average deviation is

+8.25%.
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5.1.5 Numerical Results

In Table 5.1, we can see that for the unconstrained multicast routing problem (reduced to

the MStTG problem),GRASP − CST gave the optimal solution inall cases, while the

TS−CST andCSTC algorithms found the optimal solution in 13 and 5 cases, respectively.

These results indicate that the suggested GRASP heuristic is efficient for the general problem

of multicast routing. Regarding QoS multicasting with a bounded end-to-end delay, Tables

5.2, 5.3 and 5.4 show the results of the algorithms for the CMStTG problem with various

delay bounds.GRASP − CST performed better than both theTS − CST andCSTC

algorithms for all three delay bounds. For∆1, GRASP−CST gave better or equal solutions

(marked in bold) for 16 out of 18 problems. For∆2, this was the case for all 18 problems,

while for ∆3, GRASP − CST performed better or equal to theTS − CST andCSTC

algorithms for 16 out of 18 problems.

Regarding optimality, we can see from Table 5.2 that for∆1, GRASP − CST obtained

the optimal solution (denoted as ‘* ’) in all 13 cases where the optimal solution is known.

The TS − CST algorithm did so in 9 cases, whileCSTC did so in only 1 case. For the

problems for which the optimal solution is not known, we compare the obtained results with

lower bounds. Namely, the optimal solutions for the unconstrained minimum Steiner tree

problem (shown in Table 5.1) represent lower bounds on the solutions for the constrained

problem. For∆1, themaximumdeviation of a solution obtained by theGRASP − CST

algorithm over its corresponding lower bound was 5.00%. This occurred for problem B09.

The largest deviations of solutions obtained by theTS − CST andCSTC algorithms over

the corresponding lower bounds were 24.59% (problem B05) and 27.12% (problem B04),

respectively. Note that for problem B04, the optimal solution is known. Therefore, this

deviation is the deviation over the optimal solution, and not just the lower bound.

We can see from Table 5.3 that for∆2, GRASP − CST found the optimal solution in

all but one of the 13 cases where the optimal solution is known. TheTS − CST algorithm

found the optimal solution in 9 cases, while theCSTC algorithm in 1 case. For∆2, the

solution obtained by theGRASP −CST algorithm deviated most over the lower bound (in

this case, the optimal solution) for problem B16.GRASP − CST gave a solution more

expensive by 5 units of cost (3.94%). TheTS − CST algorithm deviated most for problem

B05, giving a solution more expensive by 15 units of cost (24.59%). The maximum deviation

of theCSTC algorithm was for problem B10. The obtained solution was 13 units (15.12%)

more expensive than the optimal solution.

For the smallest delay bound,∆3, the optimal solutions are not known for any of the

cases so we compare with lower bounds from Table 5.1. We can see from the results in
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Table 5.4, that for∆3 the GRASP − CST algorithm deviated over the lower bound (for

cases when a feasible solution was found1) most by 13.11% for problem B06. For cases

where a feasible solution was found, theTS −CST algorithm deviated most over the lower

bound for problem B05, i.e. by 22.95%. TheCSTC algorithm did so for problem B04

where it obtained a solution 35.59% more expensive than the lower bound. All these results

indicate that theGRASP −CST algorithm is more robust thanTS−CST andCSTC , and

consistentlygives high quality solutions.

Comparing the execution times of the algorithms is difficult since bothGRASP −CST

andTS−CST can be terminated at any time depending on the desired number of iterations.

CSTC on the other hand ends deterministically. Even so, for the chosen number of iterations,

GRASP − CST performed better than, or equal, toTS − CST for all but one case with

respect to solution qualityand all but two cases where both algorithms found a feasible

solution with respect to execution time. Recall that the local search phase ofGRASP−CST

uses theTS − CST algorithm. Comparison of the execution times of the algorithms tested

evidently shows that fewer iterations ofTS − CST are run in the local search phase of

GRASP −CST than in theTS −CST algorithm itself as run in [87], and yetGRASP −
CST obtains better solutions. This shows that the construction phase ofGRASP − CST

often gives good solutions and that the local search phase converges quickly. This is one of

the main advantages of the GRASP metaheuristic.

The execution time ofGRASP − CST did not exceed 12 seconds for even the largest

problems, while the execution time ofTS−CST ran up to 33.919 seconds and yet produced

a solution of inferior quality. For the chosen number of iterations,GRASP − CST also

performed better than theCSTC algorithm in solution quality as well as in execution time.

For each delay bound,GRASP − CST was faster for all but two problems where both

algorithms found a feasible solution. The average execution time of theGRASP − CST

algorithm run for the above specified number of iterations over all the tested problems for

all three delay bounds was 2.722 seconds. The average execution time for theTS − CST

algorithm was 8.696 seconds, while theCSTC algorithm on average ran for 5.012 seconds.

We can see that theGRASP − CST algorithm gives superior solutions in less time than

bothTS − CST andCSTC for this set of problems.

1Note that there are cases for all three algorithms where no feasible solution was found. Thus, the deviation

over the lower bound for these cases is infinite.
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5.1.6 Summary and Future Work

In this section, we proposed a GRASP heuristic algorithm for solving the Delay-Constrained

Multicast Routing problem. In the past couple of years there has been an increased devel-

opment of numerous multimedia network applications, many of which transfer information

in real-time interactive environments to a group of users. Many of these applications can

tolerate only a bounded end-to-end delay and therefore require delay-constrained multicast

routing algorithms.

In the proposed algorithm, the Delay-Constrained Multicast Routing problem is first re-

duced to the Constrained Minimum Steiner Tree problem and then the GRASP method is

applied. Testing on small and medium sized problems available in SteinLib has shown that

the proposed algorithm gives near-optimal solutions in moderate time for this set of prob-

lems. The results were also compared to those obtained by a tabu-search algorithm ([87]) and

Kompella et al.’s centralized algorithm ([46]) for the same problem. The proposed GRASP

heuristic algorithm outperforms both of the above mentioned algorithms for this problem set.

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic proven to

be efficient for a wide array of optimization problems. This search procedure seems little

used in research dealing with QoS-driven multicast routing. The encouraging results ob-

tained in this thesis indicate that further research in this field could be useful. Introducing

multiple QoS demands to the multicast routing problem such as the minimum bandwidth or

the maximum delay jitter could be interesting for further avenues of research. The adaptation

of GRASP strategies to the problem of dynamic multicast routing, or ratherre-routingwhen

multicast members join or leave the group during the lifetime of the connection, could also

prove interesting.

5.2 Static Multicast Routing and Wavelength Assignment

To establish a virtual topology composed of a set oflight-trees(as opposed to lightpaths) in

wavelength routed networks, we must solve theMulticast Routing and Wavelength Assign-

ment(MC_RWA) problem. In this section, we considerstaticmulticast requests, i.e. all the

the requests are knowna priori and the virtual topology is established ‘semi-permanently’.

Given is a network and a set of multicast requests. For each multicast request, it is necessary

to find a multicast tree, i.e. a light-tree, which connects the source node to all the destination

nodes.

In this section develop heuristic algorithms for the routing and wavelength assignment of

multicast requests by efficiently applying bin packing based algorithms. These heuristics are
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motivated by the concepts used by RWA algorithms for unicast (lightpath) demands ([86])

described in Chapter 3. They also apply the GRASP heuristic for the delay constrained

multicast routing problem ([89]) described in Section 5.1. The objective of the proposed

heuristic algorithms for the MC_RWA problem is to minimize the number of wavelengths

used. We also consider a second objective, which is to minimize the costs of the established

light-trees. The cost of a light-tree can represent various values such as the actual cost,

the total number of hops, the total length or the maximum transmission delay in the tree.

Delay constrained multicasting, where each multicast request has an end-to-end delay bound

associated with it, is also considered.

The algorithms were tested on random networks and on a benchmark problem set for the

Steiner tree problem from [45]. Comparison with lower bounds indicates that the proposed

algorithms obtain solutions of good quality both with respect to the number of wavelengths

used and average light-tree cost, particularly for denser networks. These algorithms are

highly flexible and can consider unicast, multicast and broadcast requests with or without

QoS constraints.

The rest of the section is organized as follows. In Section 5.2.1 we informally define the

MC_RWA problem and discuss related work in Section 5.2.2. In Section 5.2.3 we suggest

heuristic algorithms for the MC_RWA problem based on bin packing algorithms. Lower

bounds are briefly discussed in Section 5.2.4. Numerical results and a summary are given in

Sections 5.2.5 and 5.2.6, respectively.

5.2.1 Problem Definition

The physical optical network is modelled as a graphG = (V,E), whereV is the set of

nodes andE is the set of edges. Edges are assumed to be bidirectional (each represent-

ing a pair of optical fibers, i.e. one fiber per direction). On graphG we define the func-

tions c(i, j) andd(i, j), wherec(i, j) can represent the cost of using edge(i, j) ∈ E and

d(i, j) can represent the length or propagation delay along edge(i, j) ∈ E. The cost of

an edge is not necessarily proportional to its delay. Given is a set of multicast requests

τ = {(s1, S1, ∆1), . . . , (sn, Sn, ∆n)}, where{si ∪ Si} ⊆ V, i = 1, . . . , n. Each multicast

request is defined by a source nodesi ∈ V , a group of destination nodesSi ⊆ V , and an

upper bound on the delay fromsi to any node inSi denoted as∆i. If we are considering

multicasting with no QoS demands,∆i is set to∞. If we are considering multicasting with

a bounded end-to-end delay,∆i is set to the desired bound.

The Multicast Routing and Wavelength Assignment problem consists of finding a set of

treesT = {T1, . . . , Tn} in G, each corresponding to one multicast request, and assigning
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wavelengths to them. We assume that the trees are bidirectional, i.e. that data is transmitted

between the source and destination nodes in both directions. Each treeTi = (VTi
, ETi

),

whereVTi
⊆ V andETi

⊆ E, is subject to the following constraints.si ∪ Si ⊆ VTi
and

D(si, v) ≤ ∆i for everyv ∈ Si whereD(si, v) =
∑

(j,k) d(j, k) for all edges(j, k) ∈ ETi

on the path fromsi to v in Ti. The cost of treeTi is c(Ti) =
∑

(j,k)∈ETi
c(j, k). TreesTi

andTj wherei 6= j, i, j = 1, . . . , n, cannot be assigned the same wavelength if they share a

common edge. We assume no bound on the degree of a multicast tree, i.e. the optical signal

can be split into an arbitrary number of signals. The objective is to minimize the number

of wavelengths required to successfully route and assign wavelengths to all the multicast

requests inτ . We also consider a second objective which is to minimize the average cost of

the established trees, i.e.min
Pn

i=1 c(Ti)

|τ | .

5.2.2 Related Work

Previous works regarding the MC_RWA problem consider various problem models and so-

lution approaches. In [8], the authors decompose the MC_RWA problem into two subprob-

lems, routing and wavelength assignment, solved subsequently. For multicast routing, a

heuristic is suggested which minimizes the cost of the multicast trees. The authors consider

cost to include not only the bandwidth cost, but the cost of wavelength conversion and light

splitting as well. Furthermore, the authors prove that wavelength assignment for a given

routing scheme is not NP-hard and propose a polynomial optimal wavelength assignment

algorithm. In [33], wavelength assignment for dynamic multicasting, i.e. where multicast

sessions are dynamically set up and released over time, was also shown to be solvable in

linear time if the number of wavelengths per link, transmitters and receivers per node, and

switch degree are constants.

In [31] and [34], the authors explore multicast routing under themulti-treemodel. In such

a model, one multicast request is realized with a collection of light-trees where each light-tree

can have at most a specified number of destinations. A 4-approximation routing algorithm

is proposed which minimizes the cost of the established trees. A wavelength assignment

algorithm is also suggested.

QoS multicast routing and wavelength assignment is studied in [40]. The QoS demand

considered is a bounded end-to-end delay from the source node to any destination node

in a multicast session. Heuristic algorithms with the objective to minimize the number of

wavelengths using two different approaches are proposed. The first approach reduces the

maximal link load in the system, while the second tries to free the least used wavelength.

Multicasting in all-optical networks where each node can receive only one signal at a
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time, referred to as thesingle reception constraint, is studied in [72]. Using some properties

of expander graphs, the authors obtain an upper bound on the number of wavelengths re-

quired to support such multicasting. Protective MC_RWA, where back-up trees are reserved

to protect multicast sessions, is studied in [84]. The authors give a mathematical formula-

tion for this problem, along with an expanded formulation for protective MC_RWA in sparse

splitting networks.

Since multicasting in WDM networks requires multicast-capable switches, their cost and

design have been widely studied [64] [47]. Multicasting in optical networks where some

switches in the network are incapable of splitting light due to evolutional and/or economic

reasons is studied in [103]. The authors propose heuristic algorithms for multicast routing in

such networks by constructing a so-called ‘light-forest’ consisting of a collection of multicast

trees for each multicast session. A low cost architecture, referred to asTap-and-Continue,

for multicasting in WDM networks along with a 4-approximation algorithm for multicast

routing was proposed in [1].

5.2.3 Heuristic Algorithms for the MC_RWA Problem

In order to solve the MC_RWA problem we propose fast and simple heuristic algorithms

developed by applying concepts used for bin packing. Recall that the bin packing problem

is a classical combinatorial NP-complete optimization problem already discussed in Section

3.3.1. Here, we briefly summarize the concepts relevant to understanding the algorithms

proposed in this section. Given is a list ofn items of various sizes and identical bins of

limited capacity. To solve the bin packing problem, it is necessary to pack these items into

the minimum number of bins, without violating the capacity constraints, so that all items

are packed. Since this problem is NP-hard [27], a vast array of approximation algorithms

have been proposed and studied. Four well-known classical bin packing algorithms are the

First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD) and Best Fit Decreasing (BFD)

algorithms. The FF algorithm packs each item, in the order in which they are given, into the

first bin into which it fits. The BF algorithm packs each item into the bin which leaves the

least room left over after packing the item. The FFD and BFD algorithms sort the given items

in non-increasing order of their corresponding sizes, and then perform packing in the same

manner as the FF and BF algorithms, respectively. These algorithms perform significantly

better than FF and BF. Surveys of bin packing algorithms can be found in [19] and [18].

We apply these classical bin packing methods to help solve the Multicast Routing and

Wavelength Assignment problem. Since each link in the physical networkG can support

multiple wavelengths, we can considerG to be a multilayered graph where each layer rep-
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resents one wavelength. Our main objective is to ‘pack’ a set of multicast requests into this

graph using the least number of layers, i.e. using the minimum number of wavelengths.

As a result, we consider multicast requests to represent the ‘items’ in bin packing, while

copies of graphG (individual layers) represent ‘bins’. Each copy ofG, referred to as bin

Gi, i = 1, 2, 3, . . ., corresponds to one wavelength. The capacity of each bin is limited by the

edges inG since light-trees routed on the same layer cannot traverse any of the same edges

due to thewavelength clash constraint.

Since the FFD and BFD bin packing algorithms sort ‘items’ in decreasing order of their

corresponding sizes, we must define the size of a multicast request. Herein, we suggest two

evaluation functions.

• |Si|: The first evaluation function considers the size of a multicast request to be the

number of destination nodes, i.e. the cardinality of setSi. This size is easy to calculate

but may not be a good representative of the actual size of the multicast tree. Namely,

if all the destination nodes are set close to each other in the network, the multicast tree

may be much smaller than a tree whose destination nodes are spread out over the graph

even though they are fewer in number. Also, this measure may not be relevant if all

the multicast sessions have a similar number of destination nodes.

• MCTj: The second evaluation function considered for the size of a multicast request

is an approximation of the corresponding minimum cost multicast tree. As already

mentioned, finding a multicast tree, i.e. multicast routing, reduces to the minimum

Steiner tree problem in graphs. Since this problem itself is NP-hard [27], there is

no polynomial time algorithm known which can guarantee the optimal minimum cost

Steiner tree. Therefore, we consider the size of each multicast request(sj, Sj, ∆j) ∈
τ to be the length of the suboptimal minimum cost tree,MCTj, in graphG found

using the multicast routing heuristic algorithm, called GRASP-CST ([89]) described

in Section 5.1.3. However, it is important to note that multicast requests will not

necessarily be routed on these found suboptimal trees. This measure is used only by

the algorithms in order to sort the ‘items’ or multicast requests in non-increasing order

of their corresponding sizes.

A description of the proposed heuristics for the MC_RWA problem follows. Their cor-

responding pseusocodes are shown in Fig. 5.5. Algorithms referred to as FF_MC_RWA and

BF_MC_RWA are based on the classical bin packing algorithms FF and BF, respectively.

Two algorithms, FFD_MC_RWA and FFTD_MC_RWA, are suggested which correspond to

the bin packing FFD algorithm. The two differ with respect to the evaluation of the size of
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FF DCMC RWA (FFD DCMC RWA; FFCD DCMC RWA)

Input:
G = (V, E);//physical network

τ = {(s1, S1, ∆1), . . . , (sn, Sn, ∆n)}; //multicast requests

Begin:
———————-

ONLY FOR FFD DCMC RWA:
Sort and renumerate demands τ in nonincreasing order of the
number of destination nodes in each request, |Si|, i = 1, . . . , n
———————-

ONLY FOR FFCD DCMC RWA:
for i = 1 to n do

Run GRASP -CST (si, Si, ∆i; G) to obtain Steiner tree
MCTi;

end for
Sort and renumerate demands τ in nonincreasing order of the cost
of the obtained Steiner trees c(MCTi), i = 1, . . . , n.
———————-

T = {}; //The final trees

Create 1 copy (bin) of G : G1;
BINS := {G1};
while τ is not empty do

for j = 1 to |τ | do
Tj = ∅;
for i = 1 to |BINS| do

Find Steiner tree T i
j by running

GRASP -CST (sj , Sj , ∆j ; Gi);
if feasible then

Tj = T i
j ;

Assign wavelength i to tree Tj ;

Delete edges in T i
j from Gi;

i = |BINS|;
end if;

end for;
if Tj = ∅ then

New := |BINS| + 1;
Create copy of G: GNew;
BINS := BINS ∪ {GNew};
Find Steiner tree, T New

j , by running

GRASP -CST (sj , Sj , ∆j ; GNew);

Tj = T New
j ;

Assign wavelength New to path Tj ;

Delete edges in T New
j from GNew

end if;
T = T ∪ Tj ;
τ = τ \ (sj , Sj , ∆j);

end for;
end while;
return T ;
End

BF DCMC RWA (BFD DCMC RWA; BFCD DCMC RWA)

Input:
G = (V, E);//physical network

τ = {(s1, S1, ∆1), . . . , (sn, Sn, ∆n)}; //multicast requests

Begin:
———————-

ONLY FOR BFD DCMC RWA:
Sort and renumerate demands τ in nonincreasing order of the
number of destination nodes in each request, |Si|, i = 1, . . . , n)
———————-

ONLY FOR BFCD DCMC RWA:
for i = 1 to n do

Run GRASP -CST (si, Si, ∆i; G) to obtain Steiner tree
MCTi;

end for
Sort and renumerate demands τ in nonincreasing order of the cost
of the obtained Steiner trees c(MCTi), i = 1, . . . , n.
———————-

T = {}; //The final trees

Create 1 copy (bin) of G : G1;
BINS := {G1};
while τ is not empty do

for j = 1 to |τ | do
Tj = ∅, c(Tj) = ∞;
BestBin := 0;
for i = 1 to |BINS| do

Find Steiner tree T i
j by running

GRASP -CST (sj , Sj , ∆j ; Gi);

if feasible and c(T i
j ) < c(Tj) then

BestBin = i;
Tj = T i

j ;
Assign wavelength i to tree Tj ;

end if;
end for;
if Tj 6= ∅ then

Delete edges in T BestBin
j from GBestBin;

else
New := |BINS| + 1;
Create copy of G: GNew;
BINS := BINS ∪ {GNew};
Find Steiner tree, T New

j , by running

GRASP -CST (sj , Sj , ∆j ; GNew);

Tj = T New
j ;

Assign wavelength New to tree Tj ;

Delete edges in T New
j from GNew

end if;
T = T ∪ Tj ;
τ = τ \ (sj , Sj , ∆j);

end for;
end while;
return T ;
End

Figure 5.5:Pseudocodes of the FF_MC_RWA, BF_MC_RWA, FFD_MC_RWA, BFD_MC_RWA,

FFTD_MC_RWA, and BFTD_MC_RWA algorithms.

a multicast request. Analogously, algorithms BFD_MC_RWA and BFTD_MC_RWA corre-

spond to bin packing algorithm BFD.

FF_MC_RWA: The First Fit Multicast Routing and Wavelength Assignment algorithm,

referred to as FF_MC_RWA, runs as follows. Layers ofG, or bins, are created as

needed and sequentially indexed. The algorithm begins by creating one layer ofG,

calledG1. Multicast requests(sj, Sj, ∆j) are selected at random and routed on the

lowest indexed layer ofG in which there is room. BinGi is considered to have room

for multicast request(sj, Sj, ∆j) if we can find a multicast tree, using the GRASP-

CST algorithm, connectingsj to all the nodes inSj in Gi. This tree is denoted as

T i
j . If we are considering delay constrained multicasting, this tree must satisfy the
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delay constraint. If a multicast request is routed in binGi, the request is assigned

wavelengthi and the edges along treeT i
j are deleted fromGi. If all the edges from

bin Gi are deleted, the bin no longer needs to be considered. If no existing bin can

accommodate multicast request(sj, Sj, ∆j), a new bin is created.

BF_MC_RWA: The Best Fit Multicast Routing and Wavelength Assignment algorithm,

BF_MC_RWA, runs as follows. Multicast requests are routed on the layer ofG in

which they fit ‘best’. We consider the best fit to be the layer on which we can find

the least cost feasible multicast tree. In other words, if at some point in running the

algorithm, there areB bins created, binGi, 1 ≤ i ≤ B, is considered to be the best bin

for multicast request(sj, Sj, ∆j) if c(T i
j ) ≤ c(T k

j ), for all k = 1, . . . , B. This is not

necessarily the suboptimal minimum cost tree,MCTj, found on the original graphG,

since it is possible that none of the existing bins have this tree available. If there is no

feasible tree available in any of theB bins, a new bin is created.

The benefit of such a ‘best fit’ approach is that it attempts to minimize the cost of the

established multicast trees which is the second objective we consider for the MC_RWA

problem. Of course, we could route each multicast request(sj, Sj, ∆j) strictly on its

suboptimal minimum cost tree,MCTj, but this would in most cases lead to using a

larger number of layers, which in turn means using a larger number of wavelengths.

FFD_MC_RWA: The First Fit Decreasing Multicast Routing and Wavelength Assign-

ment algorithm sorts the multicast requests in non-increasing order of their corre-

sponding number of destination nodes, i.e.|Sj|. Requests with an equal number

of destination nodes are placed in random order. The rest of the algorithm runs as

FF_MC_RWA. Sorting the requests in this order may establish multicast trees using

less wavelengths. The reasoning behind this is that routing requests with a large num-

ber of destination nodes is in most cases more demanding than routing multicast re-

quests with fewer destination nodes. Therefore, if we route the requests which are

more demanding first, i.e. when there are more edges available on low indexed layers

of G, routing on these layers will most likely be successful. We then may be able to fill

up the remaining space on these already used layers with less demanding requests and

thus eliminate the need for creating higher indexed layers. This may lead to a routing

and wavelength assignment using less wavelengths.

BFD_MC_RWA: The Best Fit Decreasing Multicast Routing and Wavelength Assign-

ment algorithm sorts the multicast requests in non-increasing order of their corre-

sponding number of destination nodes, i.e|Sj|, and then runs as BF_MC_RWA.
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FFTD_MC_RWA: The First Fit Tree Decreasing Multicast Routing and Wavelength As-

signment algorithm sorts the multicast requests in non-increasing order of the cost of

the suboptimal multicast trees inG, MCTj, found for each request using the GRASP-

CST algorithm from [89]. The algorithm then proceeds as FF_MC_RWA. This method

of sorting requests is more complex than that in FFD_MC_RWA but seems a better in-

dicator of multicast request size and thus may help obtain better solutions for some

instances.

BFTD_MC_RWA The Best Fit Tree Decreasing Multicast Routing and Wavelength As-

signment algorithm sorts the multicast requests in non-increasing order of the cost of

the suboptimal multicast trees inG, MCTj, and then runs as BF_MC_RWA.

5.2.4 Lower Bounds

To assess the quality of the solutions obtained by the proposed algorithms, we suggest lower

bounds for the number of wavelengths used and the average cost of the established light-

trees. A lower bound on the number of wavelengths needed to establish a given setτ of

multicast requests in networkG = (V,E) is

LBW = max
i∈V

d∆l(i)

∆p(i)
e. (5.1)

This is similar to the lower bound on the number of wavelengths for the routing and

wavelength assignment problem for unicast demands used in [86].∆l(i) represents the log-

ical degree of nodei, while ∆p(i) represents the node’s physical degree. The logical degree

of a node is the number of multicast requests for which the node is the source or destination

node. Recall that the established multicast trees are bidirectional so trees which terminate

and originate from the same node cannot be assigned the same wavelength if they traverse the

same edge adjacent to the node. This is due to thewavelength clash constraint. Since node

i has∆p(i) adjacent physical links and is the source or destination node for∆l(i) multicast

trees, at least one physical link will haved∆l(i)
∆p(i)

e multicast trees routed over it. Since trees

routed on the same physical links cannot be assigned the same wavelength, at leastd∆l(i)
∆p(i)

e
wavelengths are needed to route the corresponding multicast requests. The highest such ratio

among all the nodes in the network is a lower bound on the number of wavelengths needed

to solve the MC_RWA problem.
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A lower bound on the average cost of the established multicast trees can be found in

the following manner. Since finding the minimum cost multicast tree is itself NP-hard, we

need to find a lower bound for the minimum cost multicast tree for each request. A simple

lower bound for a multicast request with one source node and|Si| destination nodes is the

sum of the|Si| cheapest edges inG. It follows that a lower bound on the average cost of

the multicast trees corresponding to requests inτ = {(s1, S1, ∆1), . . . , (sn, Sn, ∆n)}, is the

average of the lower bounds corresponding to each of then requests. We refer to this lower

bound asLBC . If we sort edges(i, j) in |E| in increasing order of their costs,c(i, j), and

rename them as{e1, . . . , e|E|}, the bound is as follows.

LBC =

∑n
i=1(

∑|Si|
j=1 c(ej))

n
. (5.2)

5.2.5 Numerical Results

The FF_MC_RWA, BF_MC_RWA, FFD_MC_RWA, BFD_MC_RWA, FFTD_MC_RWA,

and BFTD_MC_RWA algorithms were implemented in C++ and run on a PC powered by

a P4 2.8GHz processor. We generated a series of random 50-node networks with average

degrees of 3, 4, 5, and 6 (5 networks per average degree). Next, we generated random

sets of multicast requests, consisting of 50, 100, 150, 200 and 250 requests, for each test

network. Each request was generated with a random number of destination nodes ranging

from 1 to 49. This way, unicast and broadcast traffic was also included since they are special

cases of multicast traffic. Functionsc(i, j) andd(i, j) were both set to 1 if there was an

edge between nodesi and j, and 0 otherwise. In other words, instead of the actual cost,

the algorithms try to minimize the number of hops in a multicast tree. The upper bound on

the end-to-end delay from the source node to any destination in a multicast session was set

to max(diam(G),
√
|E|) as used for unicast RWA algorithms in [57] and [86]. The input

parameters chosen for the delay constrained multicast routing algorithm GRASP-CST are

those used in Section 5.1.4.

The average number of wavelengths needed to successfully perform Multicast Routing

and Wavelength Assignment by each of the algorithms for the 50-node test networks are

shown in Table 5.5. The lower bound,LBW , is also shown. The best obtained solution for

each test case is marked in bold. The FFD_MC_RWA algorithm performed best in 7 cases,

the BFD_MC_RWA algorithm in 2 cases, the FFTD_MC_RWA algorithm in 13 cases and the

BFTD_MC_RWA algorithm in 6 cases. The FF_MC_RWA and BF_MC_RWA algorithms

did not obtain the best solution in any of the cases. For easier visualization of the obtained
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Figure 5.6: The deviation of the number of wavelengths required by the FF_MC_RWA,

BF_MC_RWA, FFD_MC_RWA, BFD_MC_RWA, FFTD_MC_RWA, and BFTD_MC_RWA algo-

rithms over the lower bound,LBW , for random networks with 50 nodes with average degrees (a) 3,

(b) 4, (c) 5, and (d) 6.

results, the deviation of the number of wavelengths required by the solutions obtained by

each of the algorithms over the lower bound are shown in Fig. 5.6 for networks with an

average degree of (a) 3, (b) 4, (c) 5, and (d) 6.

We can see from the results that the gap between the obtained solutions and the lower

bound decreases as the density of the network increases. This may be due to the fact that

RWA can be solved using less wavelengths in denser networks since more links are available

(i.e. the wavelength clash and continuity constraints are easier to meet). As a result, the op-

timal solution is closer to the ratio of the logical to physical degree in the network and, thus,

the lower bound as it is defined in Section 5.2.4 may be closer to the optimal solution. Fur-

thermore, we can see that sorting multicast requests in decreasing order of either the number

of destination nodes or the suboptimal multicast trees leads to better solutions, particularly



5. Multicast Routing and Wavelength Assignment 100

22

23

24

25

26

27

28

29

30

50 100 150 200 250

Number of requests

A
v

e
ra

g
e

c
o

s
t
o

f
m

u
lt
ic

a
s
t

tr
e

e
s

FF_MC_RWA
BF_MC_RWA
FFD_MC_RWA
BFD_MC_RWA
FFTD_MC_RWA
BFTD_MC_RWA
LBc

(a)

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

50 100 150 200 250

Number of requests

A
v

e
ra

g
e

c
o

s
t

o
f

m
u

lt
ic

a
s

t
tr

e
e

s

FF_MC_RWA

BF_MC_RWA

FFD_MC_RWA

BFD_MC_RWA

FFTD_MC_RWA

BFTD_MC_RWA
LBc

(c)

24.5

25

25.5

26

26.5

27

27.5

28

50 100 150 200 250

Number of requests

A
v

e
ra

g
e

c
o

s
t

o
f

m
u

lt
ic

a
s

t
tr

e
e

s

FF_MC_RWA
BF_MC_RWA
FFD_MC_RWA
BFD_MC_RWA
FFTD_MC_RWA
BFTD_MC_RWA
LBc

(b)

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

50 100 150 200 250

Number of requests

A
v

e
ra

g
e

c
o

s
t

o
f

m
u

lt
ic

a
s

t
tr

e
e

s

FF_MC_RWA
BF_MC_RWA
FFD_MC_RWA
BFD_MC_RWA
FFTD_MC_RWA
BFTD_MC_RWA
LBc

(d)

Figure 5.7:The average cost of the multicast trees established by the FF_MC_RWA, BF_MC_RWA,

FFD_MC_RWA, BFD_MC_RWA, FFTD_MC_RWA, and BFTD_MC_RWA algorithms and the

lower bound,LBC , for random networks with 50 nodes with average degrees (a) 3, (b) 4, (c) 5,

and (d) 6.

in dense networks. Since more resources are available in denser networks, more requests

can be packed into a single ‘bin’ (i.e. copy of graphG) and thus the advantage of sorting the

requests becomes more evident.

Routing demands according to the ‘best fit’ strategy leads to solutions inferior to those

obtained using the ‘first fit’ strategy with respect to the number of wavelengths for the cases

tested. However, these algorithms obtain solutions which consistently establish lower cost

multicast trees. The average cost of the multicast trees established by the FF_MC_RWA,

BF_MC_RWA, FFD_MC_RWA, BFD_MC_RWA, FFTD_MC_RWA, and BFTD_MC_RWA

algorithms and the lower bound,LBC , are shown in Fig. 5.7 for the 50-node test networks

with an average degree of (a) 3, (b) 4, (c) 5, and (d) 6. Here we can see the gain of using the

‘best fit’ strategy.
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Furthermore, we tested the algorithms on the set of 18 benchmark network topologies

from problem set B from SteinLib [45]. Recall that Steinlib is a publicly available library of

test data for Steiner tree problems. The characteristics of the networks are shown in Table

5.7. The costs,c(i, j), of the edges in each network topology are those given in [45]. The

delay of an edge,d(i, j), was set to the same value as the cost. To limit the delay from

the source to each destination node we set the delay bound to a value proportional to the

maximum delay of the shortest delay path inG between the source and any destination

node included in the multicast request. In other words, for multicast request(si, Si, ∆i),

∆i ≡ β ·max{SD(si, v)|v ∈ Si} whereSD(si, v) =
∑

(j,k) d(j, k) for all edges(j, k) on

the shortest delay path between nodessi andv in G. Such a delay bound was suggested in

[40]. β was set here to 2. For each network, we generated 5 random sets of 30 multicast

requests with the number of destination nodes ranging from 1 to 29.

The average number of wavelengths and the average cost of the multicast trees ob-

tained by each of the algorithms and the lower bounds are shown in Table 5.6. Here,

FFD_MC_RWA seemed to perform best. The gain of sorting multicast requests is not as

prominent since these networks are fairly sparse. Still we can see that at least one of the

‘decreasing’ algorithms obtained the best solution in all of the cases tested. The ‘best fit’

strategy here again consistently obtained lower cost multicast trees.

We can see from the obtained results that sorting multicast requests in non-increasing

order, with respect to either of the evaluation functions presented in this thesis often helps to

obtain solutions using fewer wavelengths. Sorting with respect to the number of destination

nodes is simpler and yet seems a good measure of size for the cases tested. This seems

logical since the number of nodes in the multicast sessions varied significantly. If multicast

groups are primarily composed of a similar number of destination nodes, and more so if

they are spread out across the network, sorting according to the cost of their corresponding

suboptimal trees may perform better. With respect to the method of routing the requests,

the algorithms that route light-trees using the ‘best fit’ strategy, as we define it in this paper,

helps to consistently reduce the cost of the multicast trees. The ‘first fit’ strategy, however,

in more cases obtains solutions using fewer wavelengths. As a result, if wavelength are very

scarce, it is probably better to use FFD_MC_RWA or FFTD_MC_RWA. If the cost metric

is critical, BFD_MC_RWA or BFTD_MC_RWA should be used. Since all these algorithms

are one-pass greedy algorithms, running both methods of sorting and choosing the better

solution seems reasonable.

Another point which should be mentioned is that in addition to efficiently solving the

staticMC_RWA problem, the FF_MC_RWA and BF_MC_RWA algorithms can be used for
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dynamicMC_RWA. Namely, for thedynamicMC_RWA problem, multicast requests arrive

dynamically and must therefore be established in a specific order. To solve the dynamic

MC_RWA problem using the FF_MC_RWA and BF_MC_RWA algorithms, multicast re-

quests inτ are simply established in the specific order in which they arrive according to the

corresponding ‘first fit’ or ‘best fit’ strategies.

5.2.6 Summary and Future Work

In this section, heuristic algorithms are proposed for the Multicast Routing and Wavelength

Assignment problem in wavelength-routed optical networks. These algorithms are extended

to solve delay-constrained multicasting as well. All the suggested heuristics are greedy algo-

rithms based on classical bin packing algorithms. Proposed are methods for sorting multicast

requests according to two different evaluation functions in order to minimize the number of

wavelengths used. A method of routing multicast trees on specific wavelengths, referred to

as the ‘best fit’ strategy, is suggested to minimize the cost of the established trees. The algo-

rithms were tested on random networks and a set of test networks from [45] and the results

were compared with analytical lower bounds. Both methods of sorting multicast requests

proved efficient with respect to the number of wavelengths used, while using the ‘best fit’

strategy consistently lowered the cost of the multicast trees. The encouraging results indi-

cate that further research in this field is worthwhile. Further work will include developing

heuristics for Multicast Routing and Wavelength Assignment with multiple QoS demands.

Networks with limited splitting capabilities will also be studied.
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Table 5.5: The average number of wavelengths required by the FF_MC_RWA, BF_MC_RWA,

FFD_MC_RWA, BFD_MC_RWA, FFTD_MC_RWA, and BFTD_MC_RWA algorithms and the

lower bound,LBW , for random networks with 50 nodes.

Avg.

Degree

No. Of

Requests

LBW FF_

MC_

RWA

BF_

MC_

RWA

FFD_

MC_

RWA

BFD_

MC_

RWA

FFTD_

MC_

RWA

BFTD_

MC_

RWA

50 30.6 36.4 36.4 35.2 35.8 35.0 35.4

100 55.6 67.2 68.0 66.0 65.6 65.6 65.8

3 150 82.4 101.4 102.8 98.0 97.8 97.6 98.2

200 109.6 135.0 136.8 130.0 131.2 130.4 132.0

250 135.8 166.6 169.6 162 163.4 161.8 163.2

50 24.2 28.4 28.7 27.4 27.4 27.2 27.4

100 46.0 51.8 52.0 50.8 50.8 50.8 50.8

4 150 70.6 79.6 80.6 78.4 78.8 78.2 78.6

200 92.6 105.4 106.0 103.6 104.4 103.8 104.2

250 115.8 131.4 132.4 130.0 130.6 130.2 130.4

50 16.6 19.2 19.4 18.8 19.2 18.8 19.2

100 33.2 37.8 39.0 36.6 36.4 36.2 36.8

5 150 49.8 57.8 59.4 55.4 55.6 55.6 55.4

200 67.8 76.6 79.2 74.0 75.0 73.4 74.2

250 84.4 95.6 98 93.2 93.6 92.0 93.4

50 17 18.4 18.6 18.4 18.2 18.4 18.0

100 33.4 36.0 37.0 35.6 35.6 35.8 35.4

6 150 49.8 54.0 55.2 53.6 53.6 53.2 53.2

200 66.8 71.6 72.8 70.4 70.6 70.4 70.8

250 83.4 88.4 89.8 88.4 88.0 88.2 87.6
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Table 5.6: The average number of wavelengths and cost of the multicast trees established by the

proposed algorithms and the lower bounds for the B network data set from [45] for cases with 30

multicast requests andβ = 2.

Networks Lower

bounds

FF_

MC_

RWA

BF_

MC_

RWA

FFD_

MC_

RWA

BFD_

MC_

RWA

FFTD_

MC_

RWA

BFTD_

MC_

RWA

Wavelengths Used

B1,B2,B3 18.93 27.13 27.13 27.07 27.20 27.20 27.13

B4,B5,B6 17.6 21.47 21.40 20.93 21.00 21.00 20.93

B7,B8,B9 19.6 29.93 28.00 28.00 28.33 28.33 28.47

B10,B11,B12 17.27 21.3 21.73 20.87 20.73 21.00 21.00

B13,B14,B15 18.87 27.47 27.53 27.27 27.87 27.33 27.80

B16,B17,B18 18.47 23.40 23.47 23.47 23.33 23.67 23.33

Average Cost of Established Light-trees

B1,B2,B3 84.49 145.43 145.28 145.39 145.05 145.32 145.06

B4,B5,B6 52.47 115.74 114.81 117.52 113.21 117.48 112.82

B7,B8,B9 111.07 212.57 212.40 212.50 211.84 212.17 211.65

B10,B11,B12 101.12 169.20 166.50 172.10 165.30 171.57 165.48

B13,B14,B15 157.24 285.46 285.28 286.08 284.66 286.09 284.76

B16,B17,B18 93.23 204.43 203.08 206.08 199.65 206.11 200.57

Table 5.7:The B network data set from [45]

Networks Nodes Edges Avg. Degree

B1, B2, B3 50 63 1.26

B4, B5, B6 50 100 2

B7, B8, B9 75 94 1.2533

B10, B11, B12 75 150 2

B13, B14, B15 100 125 1.25

B16, B17, B18 100 200 2



Chapter 6

Virtual Topology Design

In this chapter we consider the design of virtual topologies in wavelength routed WDM op-

tical networks. Recall that this includes determining a set of potential lightpaths and then

solving the RWA problem for this set. We refer to a combination of these subproblems as

theVirtual topology andRouting andWavelengthAssignment problem (V RWA). Finally,

packet switched traffic must be routed over the established virtual topology. This will be

referred to asTraffic Routing (TR). Determining a good virtual topology with respect to

various optimization criteria is a complex problem. Most algorithms suggested for virtual

topology design are evaluated by considering a single optimization criterion to be the mea-

sure of quality of their obtained solutions. In this chapter, we discuss various objectives for

virtual topology design and introduce an objective criterion which we callvirtual hop dis-

tancewhich is independent of the traffic matrix. We discuss its importance and derive an

effective lower bound.

The majority of approaches used to solve the virtual topology design problem decompose

it into sub-problems and use highly intractable MILP formulations. These problems are most

often solved using LP-relaxations and various rounding techniques. Here, we suggest alter-

native rounding schemes used to determine virtual topologies from LP-relaxations. These

methods have shown to be effective not only for congestion, but with respect to packet and

virtual hop distances as well. Routing and wavelength assignment is not considered. To de-

termine virtual topologiesandperform routing and wavelength assignment (i.e. theV RWA

problem), we propose very effective yet simple and fast greedy algorithms motivated by

HLDA [76]. The variations between the algorithms are each meant to better satisfy dif-

ferent optimization criteria. Traffic routing over the virtual topology is done using the LP

formulation suggested in [48].

We analyze the performance of the proposed algorithms with respect to several aspects
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of the obtained solutions. To asses their quality, we compare some of our results to that

of existing algorithms for virtual topology design and with their respective analytical lower

bounds. Furthermore, we analyze the benefits and drawbacks of establishing multiple light-

paths between pairs of nodes. We discuss the trade-offs associated with each algorithm and

the network scenarios in which it may perform best.

The rest of this chapter is organized as follows. In Section 6.1, we informally define

the V RWA problem and discuss related work in Section 6.2. Various objective criteria

and lower bounds are discussed in Sections 6.3 and 6.4, respectively. Alternative rounding

schemes used to determine virtual topologies from solutions obtained by LP-relaxations are

presented in Section 6.5. In Section 6.6, we suggest greedy heuristic algorithms for the

V RWA problem. Numerical results and a detailed analysis of the obtained results are given

in Sections 6.7 and 6.8. We finish with some suggestions for further research and a chapter

summary in Section 6.9.

6.1 Problem Definition

The physical optical network is modelled as a graphGp = (V,Ep), whereV is the set of

nodes (|V | = N ) andEp is the set of physical edges. Edges are assumed to be bidirectional

(each representing a pair of optical fibers - one fiber per direction) and have assigned weights

representing their length or cost. Given is a long term traffic matrixΛ = (λsd), s, d ∈ V,

where each element represents the average traffic flow from a source nodes to a destination

noded. The number of available wavelengthsW on each link, and the number of available

transmittersTr and receiversRe at each node, are given. We include an additional parameter

(valueh) which represents an upper bound on the physical length1 of a lightpath.

The V RWA problem searches for a set of lightpaths which creates a virtual topology

on top of the physical topology. The virtual topology can be modelled as a directed graph

Gv = (V, Ev). Each directed edge inEv represents one lightpath(i, j), i, j ∈ V , defined by

the source nodei and destination nodej of the lightpath. No more thanTr lightpaths can

share the same source node, and no more thanRe lightpaths can share the same destination

node. In other words,Tr andRe are the maximum out-degree and in-degree, respectively,

of any node inGv. Furthermore theV RWA problem searches for a set of physical paths

P = {P1(i1, j1), . . . , P|Ev |(i|Ev|, j|Ev |)} in Gp, each corresponding to one lightpath or virtual

link from Gv, and assigns wavelengths to these paths. PathsPk(ik, jk) andPl(il, jl) where

k 6= l, k, l = 1, . . . , |Ev|, cannot be assigned the same wavelength if they share a common

1Length can be considered in terms of hops or actual distance.
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edge inGp. At mostW distinct wavelengths can be assigned to the paths inP . The length

of any pathPk(ik, jk), k = 1, . . . , |Ev|, is upper bounded by valueh.

There are several objectives to consider when solving theV RWA problem. The most

common is to design such a virtual topologyGv and the corresponding routing and wave-

length assignment which enables trafficΛ to be routed overGv with the minimal congestion.

It is also desirable that the virtual topology have small packet and virtual hop distances and

yet consist of a small number of lightpaths to reduce total transceiver cost. With respect to

routing and wavelength assignment, the number of distinct wavelengths used and the lengths

of physical routes of individual lightpaths should both be minimized.

6.2 Related Work

In networks equipped with wavelength converters, the virtual topology design problem is

less complex since the wavelength continuity constraint does not apply. An exact mixed

integer linear formulation (MILP) for complete virtual topology design in WDM networks

with full wavelength conversion is given in [5]. The objective is to minimize the average

packet hop distance. Heuristic algorithms for the same problem are suggested in [66].

In [76], the authors formulate a MILP for virtual topology design with the objective to

minimize congestion. There is no constraint on the number of wavelengths used. The authors

suggest various heuristic algorithms, the best of which are the LP Logical Design Algorithm

(LPLDA) and the Heuristic Topology Design Algorithm (HLDA). LPLDA relaxes the

integer constraints in the MILP formulation and rounds the variables representing the virtual

topology. Routing and wavelength assignment is not considered.

HLDA has become a well-known heuristic algorithm for theVRWAproblem which con-

siders a limited number of wavelengths in networks with no wavelength conversion. Traffic

Routing (TR) is solved subsequently using an LP formulation which minimizes congestion.

HLDA attempts to establish lightpaths between pairs of nodes in decreasing order of their

corresponding traffic. These lightpaths are routed on the shortest available path and assigned

the lowest available wavelength found on that path. After establishing a lightpath between

a pair of nodes, the value of their corresponding traffic is decreased by the value of the next

highest traffic demand and all the demands are again sorted in decreasing order. This allows

multiple lightpaths to be established between pairs of nodes with high traffic. After the pro-

cedure terminates, transceivers may be left over at some nodes in the network. If such is

the case,HLDA establishes lightpaths at random between these nodes until all the available

resources are exhausted. This algorithm, although simple, performs very well with respect
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to congestion.

In [100] the authors propose a heuristic for theV RWA problem which does the follow-

ing. Lightpath routing is predetermined such that each potential lightpath is routed on its

shortest physical hop path. Wavelengths are subsequently assigned to as many lightpaths

as possible (without violating the wavelength clash and continuity constraints) in descend-

ing order of traffic. Degree constraints (transceivers) are not considered. This approach

performs well with respect to resource utilization although it tends to lead to unconnected

virtual topologies when resources are scarce. A drawback is that lightpaths are routed on

predetermined paths which significantly limits the possibilities.

In [73], the authors propose a method to reduce the complexity of the MILP formula-

tions for lightpath selection and routing. An approach to solving these two subproblems in

a combined manner is suggested. In [50], the authors propose a tabu search meta-heuristic

algorithm for defining the set of lightpaths to be established and routing packet switched traf-

fic over them. The trade-offs associated with establishing more expensive virtual topologies

with smaller congestion andvice versaare studied.

A MILP which minimizes congestion in networks with a limited number of wavelengths

and no wavelength converters is given in [48]. This formulation is not computationally

tractable, hence a heuristic approach is suggested. The MILP is relaxed and iteratively run

25 times using a cutting plane. The variables representing the virtual topology and physical

paths are rounded while a wavelength assignment heuristic is applied to assign wavelengths

to individual lightpaths. Traffic is routed over the virtual topology using a linear program-

ming formulation (LP) consisting of only the traffic constraints of the relaxed MILP. We will

refer to this heuristic asMILP +WA. One of the drawbacks of theMILP +WA heuristic

is the following. Supposing there areW available wavelengths on each fiber, the relaxed

MILP obtains a solution which satisfies this constraint. However, since the wavelength as-

signment algorithm which is subsequently applied gives suboptimal solutions, it does not

guarantee a successful wavelength assignment with at mostW wavelengths. As a result, the

MILP + WA algorithm does not necessarily give feasible solutions for all cases.

6.3 Optimization Criteria in Virtual Topology Design

A brief description of various optimization criteria in virtual topology design follows.
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6.3.1 Congestion

The most common optimization criterion in virtual topology design is the minimization of

congestion. Congestion is defined as the maximum traffic load on any virtual link.

6.3.2 Packet Hop Distance

If delay is an important issue, it is desirable to minimize the average number of lightpaths

traversed by a unit of traffic (packet) on its path from source to destination in the virtual

network. This is called the average packet hop distance and is a function of the virtual

topology and the long term traffic matrix.

6.3.3 Wavelengths Used

In order to leave more room for future expansion of the virtual topology, minimizing the total

number of distinct wavelengths used is desirable. In [56], the authors consider the maximum

number of lightpaths routed on any physical link to be a measure of the expandability of

the virtual topology. This is equal to the maximum number of wavelengths used on any

link, and is essentially the lower bound on the total number of distinct wavelengths used.

This measure of network expandability is only sufficient if the network is equipped with

wavelength converters at each node. If the network lacks wavelength converters, a request to

add a new lightpath may be rejected even though there exists a path on which all links have

available wavelengths due to the unavailability of thesamewavelength on the entire path.

If such is the case, reconfiguration or wavelength rerouting2 must be performed otherwise

the request is blocked. As a result, it seems that minimizing the total number of distinct

wavelengths used, instead of minimizing the maximum number of lightpaths on a physical

link, is a more appropriate objective criterion. Using less distinct wavelengths, i.e. leaving

more entirely free wavelengths, decreases the chances that a new request will be blocked due

to the wavelength continuity constraint.

6.3.4 Transceivers Used

Transmitters and receivers, commonly referred to as transceivers, are fairly expensive. As a

result, it is desirable to set up a virtual topology with fewer transceivers (i.e. fewer lightpaths)

as long as the congestion and average packet hop distance are acceptable.

2Wavelength rerouting is a mechanism that switches a certain number of existing lightpaths to a different

wavelength in order to create a wavelength continuous path for a new request.
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6.3.5 Physical Hop Length

In opaque networks in which electronic regeneration is performed at each node, minimizing

thephysicalhop length of individual lightpaths is important. Such networks require a trans-

mitter and receiver at the head and tail nodes, respectively, of each physical link included

in the lightpath. As a result, longer physical paths dramatically increase the cost of the net-

work. In addition, due to signal degradation, the minimization of the physical length of a

lightpath, not only in terms of hops but also in terms of actual distance, is desirable in all

WDM networks.

6.3.6 Virtual Hop Distance

An optimization criterion that has not been considered in research dealing with virtual topol-

ogy design is a measure which we refer to as the averagevirtual hop distance. The average

virtual hop distance is the average hop distance in the virtual topology between all source -

destination pairs. This is a function of the virtual topology alone and is entirely independent

of the traffic matrix. We feel that this criterion, in combination with the averagepackethop

distance, is relevant due to the following. If the averagepackethop distance is low but the

averagevirtual hop distance is high, this means that most of the lightpaths are concentrated

around a small number of nodes with high traffic. Since traffic can be prone to change,

and reconfiguration of the virtual topology can be costly due to service disruption, it seems

that such a virtual topology could perform poorly in the long run as traffic changes. On the

other hand, if the virtual topology has not only a low averagepackethop distance but a low

virtual hop distance as well, we know thatall the source - destination pairs are fairly well

connected. Therefore, in addition to performing well for current traffic trends, the virtual

topology would perform well for changing traffic and thus postpone reconfiguration for a

longer period of time.

Furthermore, ensuring a finite average virtual hop distance would eliminate unconnected

virtual topologies. Suppose that there is zero traffic between a pair of nodes in the current

traffic matrix. If such is the case, the hop distance between these nodes would not enter into

the calculation of the averagepackethop distance since there are no packets delivered be-

tween these two nodes. Therefore, without considering the average virtual hop distance, the

distance between these nodes could be arbitrarily long or the two could even be unconnected.

In the case of the latter, not even a single packet could be sent between these nodes without

reconfiguration of the virtual topology.
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6.3.7 Execution Time

The execution time of virtual topology design algorithms, although not a direct optimization

criterion for the virtual topology problem, is certainly an important aspect of the algorithms

to consider. Most algorithms proposed for virtual topology design have large execution times

and thus become intractable for larger networks.

6.4 Lower Bounds

Since the algorithms considered in this chapter are heuristics which obtain upper bounds

on the minimal objective function values, it is useful to have good lower bounds in order

to assess the quality of the sub-optimal solutions. In this chapter we develop a lower bound

for the average virtual hop distance, and our computational results demonstrate its efficiency.

Similar lower bounds were previously developed for the average packet hop distance, and for

congestion in [76]. For completeness, we briefly present these lower bounds as well. These

lower bounds are functions of the maximum logical degree in the network which the authors

consider to be a function of the node capabilities in the network. We suggest considering

link capabilities along with node capabilities to obtain lower values for the maximum logical

degree for some cases. This may, in turn, improve the lower bounds on congestion and

average packet hop distance for these cases. Lower bounds for the number of wavelengths,

transceivers and physical hop lengths are not relevant for our particular problem definition,

as will be discussed in section 6.4.4.

6.4.1 Lower Bound on the Average Packet Hop Distance

A lower bound on the average packet hop distance for the virtual topology design problem

with no constraint on the number of wavelengths is given in [76] and is as follows. Assuming

P = (psd) is the average traffic distribution matrix, i.e.psd is the probability that a packet is

from s to d, πi for 1 ≤ i ≤ N is a permutation of(1, 2, . . . , N) such thatpiπi(j) ≥ piπi(j′) if

j ≤ j′. If ∆l is the maximum degree of the virtual topology, the lower bound on the average

packet hop distance, which we will refer to asHLB
p , was shown to be

HLB
p =

N∑
i=1

m∑

k=1

N−1∑
j=nk−1+1

piπi(j) (6.1)

wherem is the largest integer such that
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N > 1 + ∆l + . . . + ∆m−1
l =

∆m
l − 1

∆l − 1
(6.2)

andnk =
∑k

i=1 ∆i
l for 1 ≤ k ≤ m− 1, nm = N − 1 andn0 = 0.

In [76], the maximum degree of the virtual topology∆l is considered to be bounded by

the node capabilities in the network, i.e. the maximum number of transmittersTr available

at any node, or the maximum number of ports the electronic switch at a node can handle.

Since we consider a limited number of wavelengthsW on each link, the maximum degree

of the virtual topology is not only bounded by node capabilities3, but by link capabilities as

well. Since the virtual degree cannot exceedW∆p, where∆p is the maximum degree of the

physicaltopology, we define the maximum degree of the virtual topology∆l to be

∆l = min(Tr,W∆p). (6.3)

If the virtual topology is required to be a regular topology, the virtual degree is bounded

by Wδp, whereδp is theminimumdegree of the physical topology. In that case the virtual

degree could be at most

∆l = min(Tr,Wδp). (6.4)

6.4.2 Lower Bound on Congestion

Using the lower bound for the average packet hop distance described above, a lower bound

on congestion

λLB
max =

r ·HLB
p

El

, (6.5)

was derived in [76], wherer is the total arrival rate of packets to the network andEl is the

number of directed links in the virtual topology. Better lower bounds for congestion were

obtained in [76] and [48] by iteratively solving the LP-relaxations of their respective MILP

formulations for the virtual topology problem using a cutting plane.

6.4.3 Lower Bound on the Average Virtual Hop Distance

We now derive a lower bound for the average virtual hop distance which we will refer to as

HLB
v . Since the average virtual hop distance is independent of the traffic matrix, the lower

3Here, we will consider the node capabilities to be bounded only by the number of transmittersTr at each

node.
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bound on the average virtual hop distance from any nodes ∈ V to all the other nodes in

the network is the same for each nodes. Therefore, the lower bound on the overall average

virtual hop distance in the network is the same as the lower bound for any one node.

As noted in [76], if a network has a maximum logical degree of∆l, for some nodes ∈ V

there can be at most∆l nodes one hop away froms, at most∆2
l nodes two hops away, at

most∆3
l nodes three hops away, etc. An ideal virtual topology with respect to virtual hop

distance from some nodes to the remaining nodes in the network would be such a topology

in which nodes had∆l neighbors, each of which had∆l neighbors of their own without

creating a cycle, and so on, until all the nodes were connected. This would create a tree

structure of degree∆l, where only the last non leaf node could have a degree less than∆l,

depending on the total number of nodes in the network.

Let m be the largest integer such thatN ≥ 1 + ∆l + . . . + ∆m−1
l =

∆m
l −1

∆l−1
holds. In

the ideal virtual topology with respect to virtual hop distance from nodes, ∆l nodes would

be one hop away froms, ∆2
l nodes would be two hops away, etc., up until∆m−1

l nodes that

would be(m − 1) hops away. The remaining(N − 1) − (∆l + . . . + ∆m−1
l ) nodes would

bem hops away. It follows that the lower bound on the average virtual hop distanceHLB
v

would be that shown in (6.6).

HLB
v =

[∆l+2∆2
l +...+(m−1)∆m−1

l ]+m[(N−1)−(∆l+...+∆m−1
l )]

N−1

=
Pm−1

k=1 k∆k
l +m[(N−1)−Pm−1

k=1 ∆k
l ]

N−1

=
∆l[

(m−1)∆m
l −m∆m−1

l
+1

(1−∆l)
2 ]+m(N−∆m

l −1

∆l−1
)

N−1
(6.6)

6.4.4 Lower Bounds for Wavelengths, Transceivers and Physical Hop

Lengths

Lower bounds on the number of wavelengths, transceivers and average physical hop lengths

of the lightpaths are not relevant for our particular problem. The reason for this is that

according to our problem definition, these lower bounds have a value of 0. In other words,

we could have zero lightpaths giving us values of zero for the wavelengths and transceivers

used and physical hop lengths of lightpaths. This would, of course, give us infinite values

for congestion and average packet and virtual hop distances.

Lower bounds on the number of wavelengths and the physical lengths of the lightpaths

make sense when establishing fixed virtual topologies (i.e. for theRWA problem) or estab-

lishing virtual topologies with a required regular logical degree. The number of transceivers
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in these cases is constant. Lower bounds on the number of wavelengths needed for theRWA

problem and for the problem of designing virtual topologies with a fixed logical degree are

given in [83] and [76], respectively. A lower bound on the average physical hop length of

lightpaths for theRWA problem is simply the average of the shortest physical paths of all

the requested lightpaths. A lower bound on the average physical hop length of lightpaths for

virtual topologies with a required regular logical degree of∆l is the average of all the lengths

of the shortest paths from each nodei ∈ V to its∆l closest neighbors.

Lower bounds for wavelengths, transceivers, and physical hop lengths also make sense

for problems which require congestion, or average packet, or virtual, hop distances to be

under certain threshold values. Developing lower bounds for these problems is out of the

scope of this thesis and remains an area for further research.

6.5 Alternative Rounding Algorithms to Determine Vir-

tual Topologies From LP-Relaxations

MILP formulations for virtual topology design are most often solved using LP-relaxations

and various rounding techniques. Two such approaches,LPLDA [76] and what we refer to

asMILP +WA [48], do as follows. The binary variables representing the virtual topology,

as well as those describing the routing and wavelength assignment, are relaxed. After solving

the LP-relaxation, the virtual topology variables,bij, wherei andj represent the source and

destination nodes of a lightpath respectively, are rounded in the following manner. The

fractional values forbij are sorted in decreasing order and sequentially rounded to 1 if the

degree constraints are not violated (i.e. there are available transceivers). If a variablebij is

set to 1, that means that a lightpath will be established between nodesi andj.

Such a rounding scheme may not be very effective if there is a limited number of trans-

ceivers available in the network. The reason for this is that, in such cases, variables repre-

senting lightpaths between nodes with high traffic may not get a chance to be considered. For

example, suppose 20 lightpath variables all have a value of 0.9. It is possible that some of

these potential lightpaths never get a chance to be considered if the preceding lightpaths use

up the available transceivers and are thus rejected. If these 20 lightpaths were simply con-

sidered in random order, it is possible that the traffic between the source-destination nodes

of the rejected potential lightpaths is significantly higher than that between the established

lightpaths. In such cases, this high traffic would have to be routed over multiple lightpaths,

instead of being directly connected by a lightpath. Since establishing lightpaths between
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nodes with high traffic (maximizing single hop traffic) has been shown to significantly lower

congestion, as well as the average packet hop distance, we think that taking traffic trends into

consideration when rounding variables obtained by solving LP-relaxations may yield better

results. Giving ‘high traffic’ lightpath variables the advantage could prove worthwhile not

only if variables have thesamefractional values, but even in cases where the ‘high traffic’

variables havelower fractional values than the ‘low traffic’ variables. In fact, rounding some

‘high traffic’ variables to 1 even if their relaxed values are below 0.5 proved to be effective.

We propose the following rounding algorithms.

6.5.1 TheTW_LPLDA Algorithm

The fractional virtual topology variablesbi,j obtained by solving the LP-relaxation of the

MILP in [76] are multiplied by the values of their respective trafficλi,j. The variables

are then sorted in decreasing order and sequentially rounded to 1 if the degree constraints

are not violated (i.e. there are available transceivers). We will refer to this algorithm as

TW_LPLDA, for Traffic WeighedLPLDA. Alternatively, the variables could be multi-

plied by some factor representing the relative values of traffic normalized to a lower value,

and in this manner vary the influence of traffic on the rounding procedure.

6.5.2 TheFRHT Algorithm

TheFlexible Rounding ofHigh Traffic algorithm is as follows. The virtual topology vari-

ablesbij obtained by solving the LP-relaxation of the MILP in [76] are sorted in decreasing

order of their corresponding single hop traffic, i.e.λi,j. Each variable is then rounded to 1 in

sequential order if its value is greater than some parametera, where0 ≤ a ≤ 1, and if the

degree constraints are not violated. The algorithm could be run multiple times (depending

on the size of the network and the acceptable execution time) with various values fora, and

the best virtual topology could be selected.

6.6 Heuristic algorithms for the V RWA Problem: TSO_SP ,

TSO_FS, TSBS_SP , TSBS_FS

We propose four fast greedy algorithms for theV RWA problem in networks with no wave-

length converters. Traffic Routing over the virtual topology is solved subsequently using the

same LP which minimizes congestion used by theMILP + WA heuristic in [48].
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6.6.1 TheTSO_SP Algorithm

The TSO_SP algorithm is a simple virtual topology design algorithm whereTraffic is

SortedOverall and routed on theShortestPath available. AlgorithmTSO_SP is similar

to theHLDA algorithm suggested in [76] except that it does not establish multiple light-

paths between nodes, and does not subsequently assign lightpaths at random until all the

transceivers or wavelengths are exhausted. The reason for this is that our objectives include

minimizing the number of transceivers and wavelengths used.

The algorithm is as follows. Since we haveW available wavelengths, supposeW copies

of graphGp referred to asG1
p, . . . , G

W
p each representing one wavelength. This ‘layered

graph’ approach was first introduced in [9] for the Routing and Wavelength Assignment

problem. For each traffic demand inΛ in decreasing order of the traffic amount, the shortest

path available in any graphG1
p, . . . , G

W
p is found4. Suppose this path is found on graphGw

p ,

wherew ∈ {1, . . . , W}. If the length of this path is less thanh, and there is an available

transmitter and receiver at the source and destination nodes respectively, the lightpath is

established and assigned wavelengthw. The edges found along the path are deleted from

graphGw
p and the number of available transceivers is updated. The procedure terminates

when all the transceivers or wavelengths are exhausted, or until we have tried to establish a

lightpath between every source - destination pair in the network.

The pseudocode ofTSO_SP is shown in Fig. 6.1:

6.6.2 TheTSO_FS Algorithm

The TSO_FS algorithm is a virtual topology design algorithm whereTraffic is Sorted

Overall and routed on theFirst Satisfactory route available. The traffic demands are sorted

in decreasing order as inTSO_SP but onlyonecopy or layer of graphGp referred to asG1
p

is created. After routing the highest traffic demand on its shortest path inG1
p, to route the

second highest traffic demand we again try and route it inG1
p. If there is asatisfactorypath

in G1
p (i.e. if its length is less thanh), the lightpath is routed inG1

p even though there may be

a shorter path in the original graphG which we could have used if we routed the lightpath

on a higher layer as inTSO_SP . If there is no satisfactory path inG1
p, a second copy of

Gp, calledG2
p, is created on which we route the lightpath and assign to it wavelength 2. For

each subsequent traffic demand, we search for the shortest path in each existing graph in

sequential order until the first satisfactory route is found. If no satisfactory route is available

on any graph and there are less thanW graphs, a new one is created. If there already existW

4If the shortest path exists in more than one graph, the graph representing the lowest wavelength is chosen.
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TSO SP

Input:

Gp = (V, Ep);//physical network

Λ;//N ∗ N long term traffic matrix

W ; //available wavelengths

Tr, Re;//available transmitters and receivers respectively at each node

h; //max physical length of lightpath

Initialization:

Transmitters := {t1, . . . , tN}, ti = Tr, i = 1, . . . , N ; //available transmitters per node

Receivers := {r1, . . . , rN}, ri = Re, i = 1, . . . , N ; //available receivers per node

k = 1; //index of the potential lightpath under consideration

Begin:

Sort traffic demands between source - destination pairs in Λ in decreasing order creating a list τ = {(s1, d1), . . . , (s|τ |, d|τ |)} of potential

lightpaths, where |τ | = N ∗ (N − 1);
Create W copies (layers) of Gp : G1

p, . . . , GW
p ;

while k ≤ N ∗ (N − 1) and there are available tranceivers do

For demand (sk, dk) from τ , find its shortest path Pk available in G1
p, . . . , GW

p . (If more than one shortest path exists, route on lowest
wavelength layer);
if the length of Pk < h then

Establish lightpath (i, j), where i = sk , j = dk;
If routed on graph Gw

p , delete from Gw
p all edges in Pk and assign wavelength w to lightpath (i, j);

ti = ti − 1; rj = rj − 1;
end if

Remove (sk, dk) from τ ;
k = k + 1;

end while

End

Figure 6.1:Pseudocode of theTSO_SP algorithm.

graphs and the traffic demand cannot be routed on any graphG1
p,. . . ,GW

p , the corresponding

lightpath is not established.

The motivation for sequentially ‘filling up’ wavelengths as described above is to mini-

mize the total number of distinct wavelengths used. This leaves more room for future ex-

pansion of the virtual topology. Routing lightpaths in such a manner may result in longer

physical paths as a trade off to using less wavelengths. This problem is solved by bounding

the physical length of the lightpaths (valueh) with an acceptable value. Separate hop bounds

for each source - destination could also be specified. Furthermore,TSO_FS is faster than

TSO_SP since it routes lightpaths on the first found satisfactory route, instead of searching

for the overall shortest path. This difference in execution time may be significant for larger

networks, particularly when a large number of wavelengths and transceivers are available.

The pseudocode ofTSO_FS is hoen in Fig. 6.2:

6.6.3 TheTSBS_SP Algorithm

TheTSBS_SP algorithm is a virtual topology design algorithm whereTraffic is SortedBy

Source and routed on theShortestPath available. When resources are scarce it seems the

above mentioned algorithms could obtain unconnected or poorly connected virtual topolo-

gies where lightpaths are concentrated around a small number of nodes with high traffic.

Such solutions may be infeasible. Intuitively it seems that a virtual topology more evenly
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TSO FS

Input:

Gp = (V, Ep);//physical network

Λ;//N ∗ N long term traffic matrix

W ; //available wavelengths

Tr, Re;//available transmitters and receivers respectfully at each node

h; //max physical length of lightpath

Initialization:

Transmitters := {t1, . . . , tN}, ti = Tr, i = 1, . . . , N ; //available transmitters per node

Receivers := {r1, . . . , rN}, ri = Re, i = 1, . . . , N ; //available receivers per node

k = 1; //index of the potential lightpath under consideration

Begin:

Sort traffic demands between source - destination pairs in Λ in decreasing order creating a list τ = {(s1, d1), . . . , (s|τ |, d|τ |)} of potential

lightpaths, where |τ | = N ∗ (N − 1);
Create 1 copy (layer) of Gp : G1

p;
GRAPHS := {G1

p};
while k ≤ N ∗ (N − 1) and there are available tranceivers do

For first demand (sk, dk) in τ , find the shortest path in each graph in GRAPHS in sequential order until the first satisfactory path Pk

is found
if the length of Pk < h then

Establish lightpath (i, j), where i = sk and j = dk;
If routed on graph Gw

p , delete from Gw
p all edges in Pk and assign wavelength w to lightpath (i, j);

ti = ti − 1; rj = rj − 1;
else if the length of Pk ≥ h and |GRAPHS| < W then

Create G
|GRAPHS|+1
p and route lightpath (i, j), where i = sk and j = dk , on shortest path Pk in G

|GRAPHS|+1
p ;

Delete edges in Pk from G
|GRAPHS|+1
p

Assign wavelength (|GRAPHS| + 1) to lightpath (i, j);

Add G
|GRAPHS|+1
p to GRAPHS;

ti = ti − 1; rj = rj − 1;
end if

Remove (sk, dk) from τ ;
k = k + 1;

end while

End

Figure 6.2:Pseudocode of theTSO_FS algorithm.

spread out among the nodes may perform better with respect to the average virtual hop dis-

tance, particularly when resources are very scarce. This line of thought is the basis for the

TSBS_SP algorithm.

TheTSBS_SP algorithm essentially works the same way as theTSO_SP algorithm,

but sorts the traffic demands (potential lightpaths) differently. Here the traffic originating

from each source is sorted separately. In other words, we haveN separate lists, one for

every node, each containingN−1 traffic demands to all of the remaining nodes in decreasing

order. A new list is created by taking the highest traffic demand from each node, starting with

the highest one overall, and continuing in decreasing order. Then the second highest traffic

demand from each node is selected and so on. This procedure is repeated until all the traffic

demands are in the list. The remaining steps of the algorithm are identical to those of the

TSO_SP algorithm described in Section 6.6.1. The pseudocodes of the algorithms are the

same except for the method of sorting the traffic demands.
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Figure 6.3:The 14-node NSF network

Table 6.1:Comparison of the congestion obtained using various rounding techniques in the NSF

network for traffic matrix p1.
 

FRHT 
T LB 

LPLDA 
[13] 

[2] 
MILP+WA 

[6] a=0.2 a=0.3 a=0.4 a=0.5 
TW_LPLDA 

2 126.18 243.43 147.68 145.74 181.98 218.29 244.00 231.93 191.91 
3 84.53 102.82 88.65 84.58 91.76 93.93 93.93 102.89 91.61 
4 63.43 82.03 65.91 70.03 67.38 65.85 72.52 66.12 65.86 
5 50.75 53.49 51.85 50.94 51.56 51.59 50.75* 50.75* 50.75* 
6 42.29 44.45 42.66 44.39 42.78 42.29* 43.11 43.01 45.34 
7 36.25 36.55 36.45 36.43 37.68 36.25* 36.25* 36.25* 36.25* 
8 31.72 32.27 31.75 31.77 33.28 31.92 31.98 31.72* 32.39 

6.6.4 TheTSBS_FS Algorithm

TheTSBS_FS algorithm is a virtual topology design algorithm whereTraffic is SortedBy

Source and routed on theFirst Satisfactory path available. TheTSBS_FS algorithm sorts

the traffic demands as done by theTSBS_SP algorithm but routes lightpaths on the first

satisfactory route as done by theTSO_FS algorithm. The pseudocode of theTSBS_FS

algorithm is identical to that ofTSO_FS except for the method of sorting the traffic de-

mands.
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Table 6.2:Comparison of the congestion obtained using various rounding techniques in the NSF

network for traffic matrix p2.

FRHT 
T LB 

LPLDA 
[13] 

[2] 
MILP+WA 

[6] a=0.2 a=0.3 a=0.4 a=0.5 
TW_LPLDA 

2 282.51 345.42 345.42 389.93 467.24 496.31 329.67 360.16 530.11 
3 189.62 195.71 195.71 217.8 189.78 189.78 189.78 189.78 189.78 
4 142.32 142.33 142.33 152.99 142.33 142.33 142.33 142.33 142.33 
5 113.87 113.87* 113.87* 113.87* 113.87* 113.87* 113.87* 113.87* 113.87* 
6 94.89 94.89* 94.89* 94.89* 94.89* 94.89* 94.89* 94.89* 94.89* 
7 81.33 81.33* 81.33* 81.33* 81.33* 81.33* 81.33* 81.33* 81.33* 
8 71.17 71.17* 71.17* 71.17* 71.17* 71.17* 71.17* 71.17* 71.17* 

 

6.7 Numerical Results

6.7.1 Results for Alternative Rounding Algorithms

We tested theTW_LPLDA andFRHT algorithms for the 14 node NSF network shown

in Fig. 6.3. Two traffic matrixes, p1 and and p2, which correspond to Tables III and IV in

[76], were considered. These traffic matrixes were used to test theLPLDA andMILP +

WA heuristics in [76] and [48], respectively. In traffic matrix p1, most of the traffic is

concentrated around 42 pairs of nodes, while traffic in p2 is more evenly distributed. The

number of transceiversT ranged from2 to 8. T represents the number of transmitters and

the number of receivers at each node, i.e. we assume thatTr = Re = T . T is therefore the

maximum in-degree as well as the maximum out-degree of each node in the virtual topology.

The LP-relaxations of the MILP formulation given in [76] were solved using the CLPEXv6

solver. After determining the virtual topology using the proposed rounding techniques, traffic

is routed over the virtual topology using an LP to minimize congestion with only the traffic

constraints in [48]. Routing and wavelength assignment is not considered.

FRHT was run with different values fora ranging from 0 to 1 in 0.05 increments. The

best results were obtained whena ranged from 0.25-0.45. We show results with a=0.2,

0.3, 0.4 and 0.5. The values for congestion obtained for traffic matrixes p1 and p2 by the

TW_LPLDA andFRHT rounding techniques are shown in Tables 6.1 and 6.2, respec-

tively. The lower bounds and results obtained byLPLDA andMILP + WA from [76]

and [48], respectively, are also shown. In [48], the authors compare their results to those in

[38], so these results are included in the tables. Since theMILP + WA algorithm has a

limited number of wavelengths, the best obtained solutions from Tables V and VI in [48] are

shown. It is important to note that theMILP + WA algorithm does not necessarily give
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Table 6.3:Comparison of the average packet hop distances obtained using various rounding tech-

niques in the NSF network for traffic matrix p1.

 
FRHT T LB 

LPLDA 
[13] a=0.2 a=0.3 a=0.4 a=0.5 

TW_LPLDA 

2 1.22 2.52 1.86 2.38 2.58 2.52 2.30 

3 1.10 1.88 1.67 1.69 1.65 1.88 1.67 

4 1.06 1.67 1.56 1.60 1.79 1.67 1.56 
5 1.04 1.92 1.52 1.50 1.53 1.54 1.50 

6 1.02 1.63 1.57 1.57 1.60 1.58 1.59 

7 1.01 1.57 1.56 1.56 1.57 1.60 1.57 

8 1.01 1.82 1.65 1.59 1.57 1.59 1.61 

better results as the number of wavelengths increases. In fact, for most cases when we tested

the algorithm withW higher than that shown in [48], the algorithm gave the same or even

poorer solutions. TheMILP + WA heuristic seems to perform best whenW is between

T − 1 andT + 1.

The best obtained solution for each case is marked in bold. If the obtained solution is

equal to the lower bound, i.e. the obtained solution is optimal, it is marked as ‘*’. We

can see that for traffic matrix p1 (Table 6.1), the best solution for cases with the number

of transceivers ranging from 4-8 was obtained by at least one of the proposed algorithms.

For the cases with 2 and 3 transceivers,MILP + WA performed best. For the number

of transceivers ranging from 5-8, at least one of the solutions obtained by the proposed

heuristics was optimal. For traffic matrix p2 (Table 6.2), all runs of the heuristic algorithms

for the number of transceivers ranging from 3-8 performed better than previously suggested

algorithms, while theFRHT algorithm witha = 0.4 performed best in all cases.

Since the average packet and virtual hop distances are functions of the obtained virtual

topologies, we show these results as well. The average packet hop distances for traffic ma-

trixes p1 and p2 for the proposed heuristics are shown in Tables 6.3 and 6.4, respectively.

Since we ran our rounding techniques on the LP-relaxation used byLPLDA, we found the

average packet and virtual hop distances for the the virtual topologies obtained byLPLDA

as well. In all cases, the best solution was found by eitherTW_LPLDA or FRHT . The

average virtual hop distances for traffic matrixes p1 and p2 are shown in Tables 6.5 and 6.6,

respectively. For all cases, at least one of the proposed approaches obtained a solution better

than or equal to that obtained byLPLDA.
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Table 6.4:Comparison of the average packet hop distances obtained using various rounding tech-

niques in the NSF network for traffic matrix p2.

 
FRHT T LB 

LPLDA 
[13] a=0.2 a=0.3 a=0.4 a=0.5 

TW_LPLDA 

2 1.22 1.66 2.97 3.36 3.54 2.72 3.01 

3 1.10 1.37 2.45 2.50 2.45 2.54 2.37 

4 1.06 1.28 2.58 2.57 2.42 2.57 2.37 
5 1.04 1.21 2.36 2.37 2.35 2.51 2.38 

6 1.02 1.15 2.51 2.54 2.46 2.45 2.44 

7 1.01 1.10 2.47 2.50 2.50 2.48 2.51 

8 1.01 1.06 2.60 2.56 2.62 2.66 2.42 

Table 6.5:Comparison of the average virtual hop distances obtained using various rounding tech-

niques in the NSF network for traffic matrix p1.

 
FRHT T LB 

LPLDA 
[13] a=0.2 a=0.3 a=0.4 a=0.5 

TW_LPLDA 

2 2.38 2.88 3.05 2.92 2.85 2.88 2.90 

3 1.85 2.10 2.08 2.09 2.10 2.10 2.13 

4 1.69 1.78 1.81 1.82 1.83 1.78 1.85 

5 1.62 1.65 1.66 1.65 1.63 1.64 1.65 

6 1.54 1.54* 1.54* 1.54* 1.54* 1.54* 1.55 

7 1.46 1.47 1.48 1.47 1.47 1.46* 1.46* 

8 1.38 1.39 1.38* 1.39 1.40 1.39 1.39 

6.7.2 Results for Heuristic Algorithms for theV RWA Problem

TheTSO_SP , TSO_FS, TSBS_SP , andTSBS_FS algorithms for theV RWA problem

were implemented in C++ and run on a PC powered by a P4 2.8GHz processor. To solve the

LP for traffic routing, the CPLEXv6 solver was used. The algorithms were tested on data

from the NSF backbone and the European optical core networks shown in Figures 6.3 and

3.3 respectively. Both of these networks consist of 14 nodes. The algorithms were tested for

the two already mentioned traffic matrixes: p1 and p2.

Furthermore, the algorithms were tested on 5 randomly generated 30 node networks for

which the probabilityPe of there being an edge between node was set to 0.2. Two types

of traffic matrixes were generated for each test case. The first was a uniform traffic matrix
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Table 6.6:Comparison of the average virtual hop distances obtained using various rounding tech-

niques in the NSF network for traffic matrix p2.
 

FRHT T LB 
LPLDA 

[13] a=0.2 a=0.3 a=0.4 a=0.5 
TW_LPLDA 

2 2.38 2.98 2.96 2.92 2.80 2.98 3.05 

3 1.85 2.05 2.02 2.03 2.07 2.05 2.14 

4 1.69 1.87 1.82 1.85 1.85 1.86 1.86 

5 1.62 1.67 1.68 1.69 1.67 1.66 1.68 

6 1.54 1.54* 1.55 1.55 1.55 1.54* 1.54* 

7 1.46 1.50 1.48 1.49 1.50 1.49 1.49 

8 1.38 1.41 1.40 1.40 1.41 1.41 1.41 

      

 

with traffic uniformly distributed over[0, 100] for each source-destination pair. The second

type of traffic matrix, which we will refer to as nonuniform, was generated by the method

used in [5] where a fractionF of the traffic is uniformly distributed over[0, C/a] while the

remaining traffic is uniformly distributed over[0, C∗Υ/a]. The values were set toC = 1250,

a = 20, Υ = 10 andF = 0.7 as in [5].

We ran theTSO_SP , TSO_FS, TSBS_SP , andTSBS_FS algorithms with the num-

ber of transceiversT ranging from2 to 13. The number of wavelengthsW ranged from

W = T − 1 to W = T + 1 for each value ofT . Value h which restricts the physical

length of a lightpath was set to max(diam(Gp),
√|Ep|) as suggested in [57] for a routing

and wavelength assignment algorithm. Length was considered in terms of hops.

In addition, to compare the congestion of the solutions obtained by the proposed algo-

rithms with those obtained by theMILP + WA algorithm (since it considers a limited

number of wavelengths), we ran the proposed algorithms with the valuesT andW corre-

sponding to those in [48]. In Fig. 6.4, we plot the corresponding values for congestion for

traffic matrixes (a) p1 and (b) p2. The lower bound on congestion, denoted asLB, and the

congestion obtained by theMILP + WA heuristic are taken from Tables V and VI in [48].

TheTSO algorithms performed better than theTSBS algorithms for traffic matrix p2

(Fig. 6.4.b), but had a few peaks when run for traffic matrix p1 (Fig. 6.4.a). All the greedy

algorithms give similar results as the number of transceivers and wavelengths increases and

for many cases are close to or equal to those obtained by theMILP + WA heuristic. For

a larger number of wavelengths, they often give the optimal solution, particularly for traffic

matrix p2. For some cases when resources are very scarce, the greedy algorithms perform

better thanMILP + WA.
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Figure 6.4: Comparison of congestion of the solutions obtained by theTSO_SP , TSO_FS,

TSBS_SP , TSBS_FS, andMILP + WA [48] heuristics and the lower bound (LB) for traffic

matrix (a) p1 and (b) p2 in the NSF network.

It is important to note that for many cases theMILP +WA algorithm uses more than the

available number of wavelengths since wavelength assignment is performed subsequently.

This occurs for the following test cases. For p1: (T=3, W=2), (T=4, W=2), (T=6, W=4),

(T=6, W=5), (T=7, W=5), (T=9, W=7), (T=9, W=8), (T=10, W=8), and (T=12, W=11),

while for p2: (T=2, W=1), (T=4, W=2), (T=6, W=4), (T=7, W=5), (T=9, W=7), (T=10,

W=8), (T=10, W=9), (T=12, W=11), and (T=12, W=12). These solutions are thus infeasible.

The execution times between theMILP + WA algorithm and the proposed greedy

algorithms differ substantially. As mentioned in [48], the average execution time to solve the

relaxed MILP in theMILP + WA heuristic took about 5 minutes on an IBM 43P/RS6000.

This is done iteratively 25 times and then a rounding heuristic is used which runs about

1 minute. The execution time of the wavelength assignment heuristic is not mentioned.

This means that the average execution time ofMILP + WA was at least 5*25+1 = 126

minutes = 2 hours and 6 minutes. The average execution times of theTSO_SP , TSO_FS,

TSBS_SP , andTSBS_FS algorithms for the same test cases when run on a PC powered

by a P4 2.8GHz processor were all under half a second5.

In Fig. 6.5 we plot the congestion of the solutions obtained for the European core network

for traffic matrixes (a) p1 and (b) p2 by each of the proposed algorithms and the lower bound

obtained by iteratively solving LP relaxations. All 4 algorithms behave similarly, although

theSP algorithms perform slightly better than theFS algorithms which tend to have peaks

5Note that the same LP was used for Traffic Routing in theMILP +WA heuristic and in combination with

the TSO_SP , TSO_FS, TSBS_SP , andTSBS_FS algorithms, so these execution times were omitted.

They ranged from 1 to 20 seconds depending on the values ofT andW .
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Figure 6.5: Comparison of congestion of the solutions obtained by theTSO_SP , TSO_FS,

TSBS_SP , andTSBS_FS heuristics for traffic matrix (a) p1 and (b) p2 in the European core

network.

for some test cases. All four algorithms performed almost the same with respect to conges-

tion when run for the 30 node networks with nonuniform and uniform traffic. Namely, the 30

node networks, which have an average degree of 6, are denser and better connected than the

NSF and European core networks. In such well connected networks there exist several edge

disjoint paths and therefore it is possible to set up several lightpaths even when wavelengths

are scarce. In other words, for most cases the algorithms terminated when all the available

transceivers were exhausted and not as a result of the lack of wavelengths. This means that

the virtual topologies obtained by each of the algorithms consist of the same number of light-

paths. Since several alternative paths are available and it is thus unlikely that a lightpath be

rejected due to unavailability of a physical route, the method of routing (i.e.SP andFS)

does not make much of a difference with respect to the obtained virtual topology. Further-

more, as the number of transceivers at each node increases, the method of sorting lightpaths

does not make a significant difference either with respect to the lightpaths established. It

follows that the congestion, average packet hop distance, virtual hop distance, and the num-

ber of transceivers used, do not differ significantly since these measures are functions of the

obtained virtual topology. The differences in the behavior of the proposed algorithms for the

30 node networks are evident with respect to other optimization criteria. These include the

number of wavelength used, physical hop length of the lightpaths, and execution time. Here,

theSP andFS aspects of the algorithms play a significant role.

When the algorithms were run for the NSF and European core networks, they usually

terminated when all the available wavelengths were exhausted. As a result, the established

virtual topologies differed somewhat leading to differences in congestion, average packet
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Figure 6.6:Comparison of average packet hop distance of the solutions obtained by theTSO_SP ,

TSO_FS, TSBS_SP , andTSBS_FS algorithms for traffic matrix (a) p1 and (b) p2 in the NSF

network.

hop distance, average virtual hop distance and the number of transceivers used. The average

packet hop distances of the solutions obtained by each of the proposed algorithms in the NSF

network are shown in Figure 6.6. The lower bound for the average packet hop distance is also

plotted, although it is not very effective. Even though the lower bound decreases as available

resources increase, the average packet hop distance of the obtained solutions increases. The

reason for this is that after solving theVRWAproblem using the greedy heuristics,TR is

solved with an LP which minimizescongestion. In solutions to theVRWAproblem which

establish more lightpaths due to more transceivers and wavelengths available, it is possible

to route packet switched traffic over longer paths (since more paths are available) to better

minimize congestion. This, however, is a trade-off to increasing the average packet hop

distance. As a result, the average packet hop distance increases even though the lower bound

decreases. The results for the European core network are analogous. We can see from the

graphs that theTSO algorithms perform better than theTSBS algorithms for most cases,

particularly for traffic matrix p2. This makes sense since the main objective of theTSO

algorithms is to establish lightpaths between nodes with the overall highest traffic without

considering overall connectivity. As a result, they maximize single hop traffic.

Sorting the traffic overall may not be desirable if traffic is prone to change since the

obtained virtual topology may be very poorly connected or even unconnected. This is par-

ticularly true for cases when the current traffic matrix has zero or very little traffic flowing

between some pairs of nodes, as is the case in traffic matrix p2. In Fig 6.7, the average

virtual hop distances of the solutions obtained by theTSO_SP , TSO_FS, TSBS_SP ,

TSBS_FS algorithms, and the lower bound for the NSF and European core networks for
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Figure 6.7:Comparison of the average virtual hop distance obtained by theTSO_SP , TSO_FS,

TSBS_SP , andTSBS_FS algorithms in the (a)NSF and (b) European core network for traffic

matrix p2.

traffic matrix p2, are shown. Several of the obtained values are close to the lower bound,

particularly for the NSF network. For test cases where there is no point plotted, the corre-

sponding algorithm did not obtain a feasible solution (i.e. a connected virtual topology), and

thus the average virtual hop distance is infinite. We can see that theTSBS algorithms yield

virtual topologies that are better connected overall and as a result may perform better as the

traffic matrix changes. The situation is analogous, but the algorithms differ less for traffic

matrix p1.

It is logical that the virtual topologies that are better connected overall establish more

lightpaths and therefore use more transceivers. The number of transceivers used to create

virtual topologies in the NSF and European core networks for traffic matrix p2 are shown

in Fig. 6.8. We can see that theTSO algorithms use fewer transceivers than theTSBS

algorithms, but as a trade-off to virtual hop distance.

To determine the behavior of the algorithms with respect to virtual connectivity for cases

when resources are very scarce, we ran each algorithm for the number of transceivers ranging

from 2-5 and the number of wavelengths ranging from 2-4. The cases where the algorithms

failed to find feasible solutions for the NSF and European core networks for traffic matrix

p2 are shown in Table 6.7. (The column entitledHLDA∗ will be explained later on.) We

can see that theTSO_SP andTSO_FS algorithms yielded infeasible solutions for the NSF

network in 4 and 2 cases respectively, while theTSBS_SP andTSBS_FS algorithms ob-

tained feasible solutions in all cases. For the European core network, bothTSO algorithms

yielded unconnected virtual topologies in 9 cases, while theTSBS algorithms did so in only

3 cases. All algorithms obtained feasible solutions for all cases for traffic matrix p1.
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Figure 6.8: Comparison of the number of transceivers used by theTSO_SP , TSO_FS,

TSBS_SP , andTSBS_FS algorithms in the (a) NSF and (b) European core network for traffic

matrix p2.

Recall that all four algorithms usually terminated due to lack of available wavelengths

when run for the NSF and European core networks. As a result, they use the same number of

distinct wavelengths. On the other hand, when run for the 30 node networks the algorithms

terminated when all the transceivers were used up. The average number of wavelengths used

in the 30 node networks for nonuniform and uniform traffic are shown in Fig. 6.9. We can

clearly see theFS algorithms use fewer wavelengths than theSP algorithms. Recall that

congestion, average packet and virtual hop distance, and the number of transceivers used,

were almost the same for the 30 node networks. Therefore, to establish virtual topologies

which perform equally well, theFS algorithms use significantly fewer wavelengths than the

SP algorithms. This leaves more room for future expansion of the virtual topology.

Since theFS algorithms route lightpaths on satisfactory, but not necessarily shortest

paths, it is to be expected that their corresponding physical hop lengths will be longer. The

average lengths of the established lightpaths in the 30 node networks for nonuniform traffic

are shown in Fig. 6.10. Results for uniform traffic are analogous. Since we limit the hop

distance to an acceptable value using parameterh, this is not necessarily a problem.

To determine the benefits of establishing multiple lightpaths between source-destination

pairs with respect to the various objective criteria, we implemented the well knownHLDA

algorithm [76] and compared it toTSO_SP . HLDA sorts traffic overall, routes it on the

shortest path available but also allows multiple lightpaths to be established between nodes

with heavy traffic. We eliminated step 4 of theHLDA algorithm which randomly estab-

lishes lightpaths until all the transceivers or wavelengths are exhausted. This step is elim-

inated since two of our objectives for theV RWA problem are to minimize the number of
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Table 6.7:Cases where the algorithms failed to find a feasible solution in the (a) NSF and (b) Eu-

ropean core networks for traffic matrix p2. (Cases marked ‘x’ are those where the obtained solutions

were infeasible.)

T W TSO_SP TSO_FS TSBS_SP TSBS_FS HLDA* 

2 2 X    X 
2 3      
2 4      
3 2 X    X 
3 3     X 
3 4      
4 2 X X   X 
4 3      
4 4      
5 2 X X   X 
5 3      
5 4      

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T W TSO_SP TSO_FS TSBS_SP TSBS_FS HLDA* 

2 2 X X   X 
2 3 X X   X 
2 4 X X   X 
3 2 X X X X X 
3 3      
3 4 X X   X 
4 2 X X X X X 
4 3 X X   X 
4 4      
5 2 X X X X X 
5 3 X X   X 
5 4     X 

 
(b) 

 

transceivers and wavelengths used. We refer to this algorithm asHLDA∗.

In Fig. 6.11 we plot the (a) congestion, (b) average packet hop distance, (c) number

of transceivers used and the (d) average virtual hop distance of the solutions obtained by

HLDA∗ andTSO_SP for the European core network for traffic matrix p1. The results ob-

tained for traffic matrix p2 as well as the results obtained for the NSF network for both traffic

matrixes are fairly similar. With respect to congestion,HLDA∗ performed slightly better.

This seems logical sinceHLDA∗ can establish multiple lightpaths where traffic is high.

Neither algorithm performed consistently better with respect to average packet hop distance.

The average packet hop distance obtained by theTSO_SP algorithm seems less dependent

on the available number of wavelengths than that obtained byHLDA∗ which tends to vary

more. In the 30 node networks,HLDA∗ andTSO_SP yielded virtual topologies with the

same values for congestion and average packet hop distance.

The number of wavelengths used by both algorithms was the same and is therefore not

plotted. TheTSO_SP algorithm used less transceivers as can be seen in Fig. 6.11.(d)

which makes sense since it cannot set up multiple lightpaths between nodes. The average

virtual hop distances of the obtained are shown in Fig. 6.11.(c). Even though the though

the TSP_SP algorithm established fewer lightpaths (i.e. used fewer transceivers), it ob-

tained virtual topologies with lower average virtual hop distances thanHLDA∗. As a result,

such virtual topologies are cheaper and yet better connected overall. For cases when wave-

lengths are scarce,HLDA∗ performed worst with respect to feasibility when compared to

the proposed algorithms (see Table 6.7).
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Figure 6.9:Comparison of the average number of distinct wavelengths used in the 30-node networks

for (a) nonuniform and (b) uniform traffic.

With respect to execution time, all the proposed algorithms are very fast. For the 30

node networks, all the algorithms ran under half a second. However, the execution times of

theSP algorithms grow faster with the number of available resources than those of theFS

algorithms. This makes sense since theSP algorithms search for the shortest path available,

while theFS algorithms establish a lightpath as soon as a feasible path is found. Since

today there can be over 100 wavelengths available, this growth in execution time could be

significant, particularly for larger networks. This could especially be important if lightpath

requests arrive dynamically over time, requiring new virtual topologies to be created in real

time. The differences in execution times of the proposed algorithms with respect toHLDA∗

become substantial as the network grows. We ran theHLDA∗, TSO_SP andTSO_FS

algorithms for a randomly generated network with 250 nodes and the probability of there

being an edges between nodes 0.02. The algorithms were run for cases with up to 8 trans-

ceivers. TheTSO_FS algorithm ran between 5-35 seconds, theTSO_SP ran between

25-135 seconds, whileHLDA∗ ran approximately an hour.

6.8 Discussion

Several conclusions can be drawn from the obtained results. If congestion is critical and the

network is fairly small, relaxing a MILP formulation for virtual topology design and applying

theTW_LPLDA or FRHT rounding techniques to obtain good virtual topologies seems

the best choice. TheFRHT algorithm could be run multiple times with various values fora,

and the best virtual topology could be selected. Routing and wavelength assignment would
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Figure 6.10:Comparison of the average physical length of the established lightpaths in the 30-node

networks for (a) nonuniform and (b) uniform traffic.

be performed subsequently using alternative heuristics for theRWAproblem. This method

does not necessarily guarantee a limited number of wavelengths.

For larger networks, such approaches may be intractable. The proposed greedy heuristics

are fast and yet perform well. When comparing the effects of sorting the traffic demands

differently, we can see that with respect to congestion and average packet hop distance, the

TSO algorithms in most cases perform better than, or as well as, theTSBS algorithms.

Even so, if traffic is prone to change,TSBS may be the wiser choice since these algorithms

yield better connected virtual topologies (i.e. have lower average virtual hop distances).

Lower virtual hop distances may postpone the need for reconfiguration for a longer period

of time, but as a trade-off to using more transceivers and thus increasing network cost. This

is particularly true in sparse networks. If wavelengths are very scarce,TSBS may also help

prevent from establishing unconnected virtual topologies. Since all the algorithms are fast,

for moderate size networks it may be best to run aTSO algorithm, and if no feasible solution

is found, run aTSBS algorithm. If congestion is critical and traffic is predicted to remain

constant for a long period of time, establishing multiple lightpaths as done byHLDA∗ may

be desirable. Otherwise, the gain of using multiple lightpaths does not seem significant, and

yet increases the network cost by establishing more lightpaths.

The method of routing and assigning wavelengths does not significantly affect the ob-

jective criteria which are functions of the virtual topology. These include congestion and

average packet and virtual hop distance. Still, theSP algorithms perform slightly better

than theFS algorithms for these criteria. The main advantage of theFS algorithms over the
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Figure 6.11:Comparison of the (a) congestion and (b) average packet hop distance, (c) transceivers

used and (d) average virtual hop distance of the solutions obtained by theTSO_SP andHLDA∗

algorithms for traffic matrix p1 in the European core network.

SP algorithms is that they perform routing and wavelength assignment using less distinct

wavelengths, particularly in dense networks. If virtual topology expansion is anticipated,

FS may be the better choice for routing. This is certainly not the case in opaque networks

since the resulting physical lengths of the established lightpaths are longer. For very large

networks with many available wavelengths, using anFS algorithm may be desirable due to

shorter execution times.

6.9 Summary and Future Work

In order to efficiently utilize resources in wavelength routed optical networks, it is necessary

to successfully solve the virtual topology design problem. This problem is very complex

and several aspects of the obtained solutions should be considered. In this chapter, efficient
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rounding techniques and greedy heuristic algorithms are proposed for the Virtual topology

and Routing and Wavelength Assignment problem in networks with no wavelength conver-

sion. The algorithms differ with respect to the order in which the lightpaths are established,

and the method of routing and assigning wavelengths. These variations are intended to im-

prove the performance of the algorithms with respect to various objective criteria such as

congestion, average physical and packet hop distances, and the number of transceivers and

distinct wavelengths used. Furthermore, proposed is a new criterion referred to as the av-

erage virtual hop distance, aimed at increasing the connectivity of the virtual topology. A

detailed analysis and testing on real and randomly generated networks with uniform and

nonuniform traffic indicate the advantages and disadvantages of the suggested variations.

Further avenues of research will include developing similar algorithms for virtual topology

design in networks with full or limited wavelength conversion. Designing virtual topologies

which support multicast traffic by establishing light trees will also be considered.



Conclusion

In this thesis we investigated optimization problems arising in the design of virtual topologies

in wavelength routed WDM networks. Specifically, we studied the Routing and Wavelength

Assignment (RWA) problem considering static and scheduled lightpath demands, as well

as static light-tree demands. Virtual Topology Design which includes determining a virtual

topology, RWA and routing packet switched traffic over the virtual topology, was also in-

vestigated. Successfully solving these problems is critical to efficiently utilizing resources

in optical networks. This is of great importance since the tremendous growth of data traffic

incurs an ever-increasing need for high-speed transport networks. Until optical burst and

packet switching technology matures, circuit switched (wavelength routed) optical networks

are the best candidate to satisfy these high bandwidth requirements.

Following a brief introduction to optical transmission and enabling technologies, as well

as a glance at the optical networking evolution, we discussed problems and issues arising

in wavelength routed networks. In Chapter 3 we tackled the Routing and Wavelength As-

signment problem of static lightpath demands. Highly efficient algorithms developed by

applying the classical bin packing problem were presented. The methods used to perform

RWA consistently minimize the number of wavelengths used and methods were suggested to

minimize the physical lengths of the lightpaths established. Lower bounds were developed

to help evaluate the efficiency of the proposed algorithms. Testing indicated that the algo-

rithms give optimal or near optimal solutions in many cases and significantly outperform an

established existing algorithm for the same problem.

In Chapter 4 we investigated RWA for the case of scheduled lightpath demands. Two

approaches were proposed. The first solves the problem by separately solving the routing

and wavelength assignment subproblems. We developed a tabu search algorithm for the

routing subproblem with a novel evaluation function and neighborhood reduction technique.

Wavelength assignment was solved using an existing graph coloring algorithm. The second

approach used to solve the scheduled RWA problem presented in this thesis is based on

highly efficient greedy algorithms. Comparison with an existing algorithm for the same
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problem shows the superiority of the suggested approaches. Furthermore, we developed a

new lower bound on the number of wavelength required to perform scheduled RWA.

Multicast Routing and Wavelength Assignment was studied in Chapter 5. We first inves-

tigated the problem of multicast routing which can be reduced to the classical optimization

problem of finding the minimum Steiner tree in a graph. This problem can be augmented to

include additional constraints which represent QoS (Quality of Service) demands included

in multicast requests. We developed a GRASP meta-heuristic algorithm to solve the mul-

ticast routing problem with the added constraint of a bounded end-to-end delay from the

source node to all the destination nodes in a multicast session. This algorithm was tested

on a benchmark set of problems and shown to outperform existing algorithms and provide

near-optimal solutions. The rest of the chapter deals with simultaneous multicast routing and

wavelength assignment. We developed greedy algorithms for multicast RWA based on bin

packing which use the suggested GRASP multicast routing algorithm in intermediate steps.

We developed lower bounds which indicate the efficiency of the proposed algorithms.

In the last chapter, the design of virtual topologies was studied. We investigated various

objective criteria for this problem and proposed an additional criterion aimed at improving

the connectivity of the virtual topology. It is also aimed at postponing the need for recon-

figuration in order to minimize the cost associated with connection disruption. We devel-

oped a highly efficient lower bound for this criterion, and discussed lower bounds for other

objective criteria. We proposed an approach to virtual topology design which uses novel

rounding techniques upon solving the LP-relaxation of the problem. Furthermore, we de-

veloped highly efficient greedy algorithms whose mutual variations are aimed at optimizing

various objective criteria. We conducted a detailed analysis of the advantages and drawbacks

associated with the proposed approaches.

Future avenues of research include developing similar methods for solving problems in

wavelength routed networks with sparse or full wavelength conversion. Optimal placement

of wavelength converters in networks with sparse wavelength conversion is also an important

problem to consider. In addition to wavelength converter placement, amplifier placement

is critical in the cost effective design of long-haul optical transport networks. Considering

transmission impairments, such as target BER (Bit Error Rate) levels, upon solving the RWA

problem could help improve the performance of such networks. Another possible future

venue is concerned with dynamic routing and wavelength assignment and the control and

management issues associated with this problem to further utilize network resources.
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Summary

This thesis investigates the problem of designing virtual topologies in wavelength routed

WDM (Wavelength Division Multiplex) optical networks. In such networks, a virtual topol-

ogy is created over the physical optical network by establishing all-optical connections,

called lightpaths, between pairs of nodes. Transport via a lightpath is entirely in the optical

domain. A virtual topology can also be composed of a set of light-trees which optically con-

nect a subset of nodes in the network. In order to establish a virtual topology, it is necessary

to determine a set of lightpaths/light-trees, find for them corresponding paths in the physical

topology and assign wavelengths to them. Finally, packet-switched traffic is routed over the

virtual topology. The thesis focuses on the problem of routing and assigning wavelengths to

lightpaths and light-trees, and the virtual topology design problem in WDM networks. These

problems are NP-complete so heuristic algorithms are needed to help solve them.

Proposed are efficient heuristic algorithms for the Routing and Wavelength Assignment

(RWA) of static and scheduled lightpath demands. Furthermore, developed is a heuristic

for multicast routing and algorithms for static multicast RWA. Virtual Topology Design is

investigated considering various objective criteria, and an additional objective criterion is

proposed. Efficient heuristic algorithms are developed to help solve this problem. To as-

sess the quality of the solutions obtained by the proposed algorithms, new analytical lower

bounds for the corresponding problems are developed.

Keywords

WDM, wavelength routed optical networks, routing and wavelength assignment, virtual

topology design, heuristic algorithms, lightpaths/light-trees, bin packing, optical multicas-

ting, tabu search, GRASP
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