
A GRASP Heuristic for the Delay-Constrained

Multicast Routing Problem

Nina Skorin-Kapov and Mladen Kos

Department of Telecommunications, Faculty of Electrical Engineering and Computing
University of Zagreb, 10000 Zagreb, Croatia.

nina.skorin-kapov@fer.hr; mladen.kos@fer.hr

Abstract

The increasing development of real-time multimedia network applications, many of which require multiple

participants, has created the need for efficient multicast routing algorithms. Examples of such applications

include video and tele-conferencing, video-on-demand, tele-medicine, distance education, etc. Several of them

require multicasting with a certain Quality of Service (QoS) with respect to elements such as delay or

bandwidth. This paper deals with Delay-Constrained Multicast Routing (DCMR) where the maximum end-

to-end delay in a multicast session is bounded. The DCMR problem can be reduced to the Constrained

Minimum Steiner Tree Problem in Graphs (CMStTG) which has been proven to be NP-complete. As a result,

several heuristics have been developed to help solve it. In this paper, we developed a GRASP heuristic for

the DCMR problem. Computational experiments on medium sized problems (50-100 nodes) from literature

and comparison with existing algorithms have shown that the suggested GRASP heuristic is superior in

quality for this set of problems.

Keywords: GRASP, multicast, constrained Steiner Tree, QoS

1

1. Introduction

Multicast is a mechanism which enables the simultaneous transmission of information to a group of destina-

tions in a network. In other words, it is a technique that logically connects a subset of nodes in a network.

The development of numerous real-time multimedia applications in the past several years has created an

increasing need for this type of distribution of information. Many applications (e.g. video-conferencing, dis-

tance education, video-on-demand, and applications in finance) require packets of information to be sent

with a certain Quality of Service (QoS). In this paper, we will discuss one of the most important QoS de-

mands which is the demand for a bounded end-to-end delay from the source to any destination in a multicast

session. Real-time applications do not allow the end-to-end delay to exceed a certain delay bound, which

represents a measure of the quality of service of that application.

In order to support these real-time applications and their respective QoS demands, networks require

efficient multicast routing protocols that provide the necessary Quality of Service while minimizing the use

of network resources. The routing algorithms used in these protocols usually attempt to find a minimum cost

tree that includes the source and all the destination nodes, while attempting to satisfy the delay constraint

and other QoS demands. Other QoS demands could include the minimum required bandwidth, the maximum

allowed packet loss ratio and the maximum delay jitter. The tree topology is most frequently used, since

it enables parallel sending of packets to multiple destinations and duplicating the packets is only necessary

where the tree branches.

Multicast routing is often reduced to the Minimum Steiner Tree Problem in Graphs (MStTG). Generally,

for a given graph G = (V,E), where V is a set of nodes and E is a set of edges, and a given subset of

nodes, D ⊆ V , a Steiner tree is one which connects all the nodes in D using a subset of edges in E. This

tree may or may not include nodes in V \ D. Nodes in V \ D which are included in the Steiner tree are

called Steiner nodes. The MStTG problem deals with searching for such a tree that is of minimal weight in a

weighted graph. This basically reduces to searching for the set of Steiner nodes that gives the best solution.

Since the MStTG problem has been proven to be NP-complete (Garey and Johnson (1979)), several heuristic

algorithms have been developed to solve it suboptimally. Examples of such heuristics are found in Haberman

and Rouskas (1997), Kompella, Pasquale, and Plyzos (1993), Zhang and Leung (1999), and Zhu, Parsa, and

Garcia-Luna-Aceves (1995).

The MStTG problem can be augmented to include additional constraints giving rise to the constrained

MStTG (CMStTG) problem. This paper is concerned with delay-constrained multicast routing (the DCMR

2

problem). This problem can be reduced to the Constrained Minimum Steiner Tree Problem in Graphs

(CMStTG), where the constraint is the maximum end-to-end delay from the source to any destination. This

problem refers to the search for the minimum Steiner tree that satisfies a delay constraint. We propose a

heuristic algorithm for solving the CMStTG problem based on the GRASP search method. The algorithm was

tested on small and medium sized problems (50 - 100 nodes) from SteinLib (Kock, Martin and Voß(2001)),

and the results were compared with the results of the TS −CST tabu search algorithm (Skorin-Kapov and

Kos (2003)) and Kompella et al.’s centralized CSTC algorithm (Kompella, Pasquale, and Plyzos (1993)).

SteinLib is a library of test data which includes optimal solutions for Steiner Tree problems and is available

on the WWW. Results indicate that the proposed GRASP method is superior to both algorithms in solution

quality. Further testing is required to determine more exact performance measures of this heuristic.

The rest of the paper is organized as follows. In Section 2 we formally define the DCMR problem, followed

by a short introduction to GRASP in Section 3. In Section 4 we describe our GRASP heuristic algorithm for

the DCMR problem. We introduce the test problem set and the experimental method in Section 5. In Section

6 we summarize the obtained computational results and finish with some concluding remarks in Section 7.

2. The Delay-Constrained Multicast Routing (DCMR) Problem Model

The communication network is modelled as a graph G = (V,E), where V is the set of nodes and E is the

set of edges. On the graph G we define the functions c(i, j) and d(i, j), where c(i, j) is the cost of using edge

(i, j) ∈ E and d(i, j) is the delay along edge (i, j) ∈ E. Given is a source node s and a set of destination

nodes S, where {s} ∪ S ⊆ V . The upper delay bound on the path from s to any node in S is denoted as ∆.

The delay-constrained multicast routing problem (DCMR) searches for a tree T = (VT , ET), where VT ⊆ V

and ET ⊆ E, while minimizing the cost of the tree, subject to the following constraints: {s} ∪ S ⊆ VT and

D(s, v) < ∆ for every v ∈ S, where D(s, v) =
∑

i,j d(i, j) for all edges (i, j) ∈ ET on the path from s to v in

T .

It is important to note that we assume to have centralized information about the network topology.

We also assume that the delay of an edge is a constant value which represents the sum of the propagation

delay along the edge and the switching delay at the previous node. The cost of an edge is not necessarily

proportional to its delay. The cost of an edge can represent various values such as the actual cost or the

transfer capacity of the link.

3

3. The GRASP metaheuristic

GRASP (Greedy Randomized Adaptive Search Procedure) is an iterative metaheuristic used in a wide array

of combinatorial optimization problems. Every GRASP iteration consists of two phases: a construction phase,

followed by a local search phase. The construction phase builds a feasible solution by applying a randomized

greedy algorithm. The randomized greedy algorithm builds a solution by iteratively creating a candidate list

of elements that can be added to the partial solution and then randomly selecting an element from this list.

Creating this candidate list, called the restricted candidate list (RCL), is done by evaluating the elements

not yet included in the partial solution with a certain greedy function that depends on the specifications

of the problem. Only the best elements according to this evaluation are included in the RCL. The size

of this list can be limited either by the number of elements or by their quality with respect to the best

candidate element. After every iteration of this greedy algorithm, the restricted candidate list is updated.

The construction phase ends when all the elements needed to create a feasible solution are included. This

solution is usually of good quality and offers fast local convergence as a result of the greedy aspect of the

algorithm used. Since this greedy algorithm is randomized, exploration of the solution space is diversified.

The solution obtained in the construction phase is not necessarily locally optimal, so a local search phase

is applied. This phase uses a local search algorithm which iteratively replaces the current solution with a

better neighboring solution until no better solution can be found. This algorithm can use different strategies

for neighborhood evaluation and for moving from one feasible solution to another. It can either search for

the best neighboring solution or just choose the first improving one.

After applying the desired number of GRASP iterations, the best solution found overall is produced as

the final result. Success of a particular GRASP metaheuristic depends on a number of different factors.

Some of the most important include the efficiency of the randomized greedy algorithm used, the choice

of the neighborhood structure, and the neighborhood search technique. A more detailed description of the

GRASP procedure is described in Resende and Ribeiro (2003). GRASP algorithms have been used to help

solve the Minimum Steiner Tree Problem in Graphs (MStTG) in Martins et al. (1999), Martins et al. (2000),

and Ribeiro, Uchoa, and Werneck (2002), along with many other optimization problems. To the best of our

knowledge, this method has not been applied to the Constrained MStTG problem or to multicast routing in

general.

4

4. Description of the GRASP − CST Algorithm

While solving the DCMR problem using our GRASP heuristic, the problem is first reduced to the Constrained

Minimum Steiner Tree Problem in Graphs (CMStTG). In this problem, the constraint is the maximum end-

to-end delay from the source node to each destination in the multicast group.

It has already been mentioned that for a given weighted graph G = (V, E) and a set of nodes D ⊆ V , a

minimum Steiner tree is such a tree which connects all the nodes in D using a subset of edges in E that give

the minimum total weight. The constrained minimum Steiner tree is such a tree which is of minimum weight

while satisfying the given constraint(s). In our problem, we distinguish between one source node s and a

group of destination nodes S, so for ud D = {s} ∪ S. Nodes in V \D, which are included in the constrained

Steiner tree, are called Steiner nodes.

4.A. Graph Reductions

Before implementing the GRASP method, reducing the size of the graph in accordance with the specifics

of the problem is desirable. If we decrease the number of potential Steiner nodes in the graph, the solution

space becomes smaller and there are less potential solutions among which to search. We will apply a few of

the standard graph reductions described in Zhou, Chen and Zhu (2000), with a slight modification due to

the added delay constraint.

First, we prune the graph of all non-destination nodes (nodes in V \D) that are of degree 1 since they

will surely not be included in the solution. Secondly, we observe that the adjacent edge of every destination

node that is of degree 1 will always be in the Steiner tree. As a result of this, we can deem the adjacent

node of every such destination node as a destination node itself (if it is not already deemed as such). This

reduces the size of our problem, since it reduces the number of non-destination nodes among which we have

to decide which are to be included in the Steiner tree.

For further reduction, we do the following: for every non-destination node k that is of degree 2 with

adjacent nodes i and j, we can replace edges (i, k) and (k, j) from E with one edge (i, j), where c(i, j) =

c(i, k) + c(k, j) and d(i, j) = d(i, k) + d(k, j). Node k is then deleted from the graph. If there already exists

an edge (i, j) in E, we compare its cost and delay parameters to those of the newly constructed edge. If one

of these edges has both a lesser cost and a lesser delay, we can eliminate the other from E. Otherwise, both

edges remain in E. This is because for various delay bounds the cheaper edge with the greater delay may

not satisfy the delay constraint while the more expensive one might. After performing these reductions, we

execute our GRASP search algorithm on the reduced graph.

5

Begin GRASP

//Initialization:
Input nodes V and E from graph G
Input s := source node; S := destination nodes;
s ∪ S = D;
Input α, ∆, GraspIt, RandSeed, ItWithoutImprovement;
Reduce graph G;
//current incumbent solution
X := [x1 · · ·x|V \D|], xi ∈ [0, 1], i = 1, . . . , |V \D|
C, D := ∞; //cost and delay of the current incumbent sol

//the first iteration of GRASP finds the pure greedy solution (α = 1)
Xpot := ConstructGreedyRandSol(1, RandSeed, ∆);
if a feasible solution exists (∆ can be met) then

X := TS − CST (ItWithoutImprovement, Xpot, ∆);
C := cost of DCST (X);
D := delay of DCST (X);

end if

//the remaining iterations of GRASP use α > 1
i := 0;
while i < GraspIt − 1 do

Xpot := ConstructGreedyRandSol(α, RandSeed, ∆);
if a feasible solution exists (∆ can be met) then

Xpot := TS − CST (ItWithoutImprovement, Xpot,∆);
Cpot := cost of DCST (Xpot);
Dpot := delay of DCST (Xpot);
if Cpot < C then

X := Xpot; C := Cpot; D := Dpot;
end if

end if

end while

endGRASP

Fig. 1. Pseudocode of the GRASP − CST algorithm

4.B. The GRASP − CST Algorithm

We will refer to our GRASP heuristic as the Greedy Randomized Adaptive Search Procedure - Constrained

Steiner Tree (GRASP − CST) algorithm. As already mentioned, the GRASP method is an iterative meta-

heuristic algorithm where each iteration is composed of two phases: the construction phase and the local

search phase. The construction phase builds a feasible solution with a randomized greedy algorithm which is

further improved by executing a local search algorithm in the local search phase. After executing the desired

number of iterations, the best found solution over all the iterations is kept. The efficiency and quality of

various GRASP heuristic algorithms vary depending on the design of these two phases.

Potential solutions in our heuristic are potential constrained Steiner trees represented by binary sets

consisting of |V \ D| bits. Each bit corresponds to a different node in V \ D. Nodes whose corresponding

bits are set to zero in a given configuration are Steiner nodes. Nodes whose corresponding bits are set to 1

are not included in the constrained Steiner tree. Each configuration corresponds to a potential constrained

Steiner tree because there exists the possibility that for some configurations no constrained Steiner Tree

6

can be found. Such is the case if a configuration leaves the graph unconnected because then no Steiner tree

exists. Another possibility is that for a given configuration, we cannot find a Steiner tree that satisfies the

given delay bound. We denote the cost of such solutions as infinite.

The pseudocode of the GRASP − CST algorithm is shown in Fig. 1. Details of the construction and

local search phase follow.

4.B.1. The Construction Phase

In order to construct a good starting solution which is feasible with respect to the delay constraint, we do

the following: we construct a constrained Steiner tree T which initially consists of only the source node s

(i.e. T = {s}). Next, we create a candidate list by evaluating the cost of adding each destination node not

yet included in the solution (nodes in D \ T) to the existing tree while making sure that the delay from the

source to this candidate destination node is less than the given delay bound.

To perform this evaluation, we compute the shortest paths with respect to the cost function from each

unconnected destination node to the existing tree (which in this first iteration consists only of the source

node) using Dijkstra’s single-source shortest paths algorithm (Cormen (1997)). For each node i ∈ D \ T ,

we denote its shortest path to the existing tree with respect to cost as ShCPath(i). We also compute the

shortest paths from each destination node to the source node with respect to the delay function. This path

is denoted as ShDPath(i). These paths can include any unconnected destination or non-destination node in

the graph (V \ T).

Note that the shortest delay paths are computed with respect to the source node s and not the existing

tree T . In other words, they are only computed in the first iteration of the construction phase when T = {s}.
This is because our delay constraint is defined as the maximum end-to-end delay from the source to any

destination node in the multicast session. These shortest delay paths computed in this first iteration of the

construction phase serve as our ‘back up’ paths when our shortest cost paths violate the delay constraint.

The shortest delay path found for each destination node must satisfy the given delay constraint, otherwise

no feasible solution exists.

We define the value of adding each unconnected destination node i to the existing tree, as the cost of its

respective shortest cost path (ShCPath(i)) if this path satisfies the delay constraint, otherwise as the cost of

its respective shortest delay path (ShDPath(i)). We denote this value as ConnecCost(i) and its respective

path as ConnecPath(i). We then sort these candidate nodes with respect to the value of these determined

connection costs.

To create a restricted candidate list (RCL), we include only those nodes i ∈ D \ T for which

7

Begin ConstructGreedyRandSol(α, RandSeed, ∆)

T := s;
XgreedyRand := [x1 · · ·x|V \D|], xi ∈ [0, 1], i = 1, . . . , |V \D|;
if the delay of ShDPath(i) > ∆, for any i ∈ S then

exit the GRASP − CST algorithm; // no feasible solution exists
end if
for all i ∈ S do

Find ShCPath(i) and ShDPath(i) from s;
if delay of ShCPath(i) < ∆ then

ConnecPath(i) := ShCPath(i);
ConnecCost(i) := cost of ShCPath(i);

else
ConnecPath(i) := ShDPath(i);
ConnecCost(i) := cost of ShDPath(i);

end if
end for

while D * T do
BestConnecCost := min(ConnecCost(i)), i ∈ D \ T ;
Make RCL of all i ∈ D \ T where ConnecCost(i) ≤ α · BestConnecCost;
Node k = random(RCL, RandSeed);
T = T ∪ ConnecPath(k);
Update ConnecCost and ConnecPath for all D \ T

end while

for all nodes in T \ D do
Set their corresponding bits in XgreedyRand to 0;

end for

return XgreedyRand;
endConstructGreedyRandSol

Fig. 2. Pseudocode of the construction phase of GRASP − CST

ConnecCost(i) ≤ α·ConnecCost(j), where α ≥ 1 and j ∈ D\T for which ConnecCost(j) ≤ ConnecCost(k),

for every k ∈ D \ T . If α = 1, then the algorithm is pure greedy. This means that only the node(s) with the

least connection cost can be in the RCL. If α > 1, the RCL can also include other nodes whose connection

costs are good, but not necessarily best.

We now choose a candidate node at random from the RCL. We add this chosen node i, i ∈ D \ T , along

with all the other nodes found along its respective connection path ConnecPath(i) to tree T . We update

the connection costs and paths of the remaining unconnected destination nodes (D \ T) by computing

their shortest paths to any of the newly connected nodes. If any of these computed paths improve their

existing connection costs while satisfying the delay constraint, their respective connection costs and paths

are updated. This procedure ends when all the destination nodes are included in the tree (D ⊆ T).

As already mentioned, the greedy aspect of the construction phase provides good solution quality and

fast local convergence. The random aspect of the construction phase enables diversified exploration of the

solution space. Diversification allows the search procedure to visit various areas of the solution space that

may contain the optimal solution. Since the pure greedy algorithm gives high quality average solutions, our

GRASP heuristic is designed in such a way that the first iteration of GRASP−CST performs its construction

8

phase with α = 1 (pure greedy). The remaining GRASP −CST iterations perform their construction phases

with α > 1. This is done so that we have a pretty good solution even after the first GRASP −CST iteration

and then search for an even better one in the remaining number of iterations, depending on how much

execution time we are willing to spend. In other words, since there is a trade off between solution quality

and execution time, this method ensures that if in a certain situation it is more important to produce a

solution in less time, we can run GRASP −CST for only a few iterations, or even one, and we will still get

a reasonably good result.

The pseudocode of the construction phase of GRASP − CST is shown in Fig. 2.

4.B.2. The Local Search Phase

Since the feasible solution built in the construction phase is not necessarily locally optimal, applying a local

search procedure to find the local optimum is desirable. A better solution might also be close by, but not

necessarily local. For this purpose we designed the search phase of GRASP − CST to enable us to explore

further than just the local optimum if desired. Local search algorithms usually iteratively replace the current

solution with a better neighboring solution until no better solution can be found. GRASP − CST enables

us to specify the desired ‘number of iterations without improvement’ so that the search procedure does not

necessarily terminate at the first local optimum.

We use the tabu search heuristic algorithm TS−CST suggested in Skorin-Kapov and Kos (2003) with a

modification enabling us to specify the desired number of iterations without improvement. We also modify

this algorithm so its initial solution is that obtained in the construction phase of GRASP − CST instead

of that suggested in Skorin-Kapov and Kos (2003). Here, we will briefly describe the TS − CST algorithm.

As already mentioned, potential solutions are represented by binary sets consisting of |V \ D| bits. Each

bit corresponds to a different node in V \ D. Nodes whose corresponding bits are set to zero in a given

configuration of bits are Steiner nodes. Nodes whose corresponding bits are set to 1 are not included in the

constrained Steiner tree. The neighborhood of a certain potential solution includes all those solutions whose

binary sets differ from the chosen solution by exactly one bit. In other words, neighboring solutions are all

those solutions obtained by either adding or removing exactly one Steiner node.

In each iteration of the TS − CST algorithm, we start with some current solution, explore all its neigh-

boring solutions and then choose the best neighboring solution which becomes the new current solution in

the next iteration. This procedure is called an move. TS − CST is a tabu search heuristic, which means

that it has a memory structure of variable size called a tabu list which prevents the algorithm from visit-

ing previously visited solutions. Therefore, when exploring the neighborhood of the current solution, those

9

Begin TS-CST(ItWithoutImprovement, Xpot, ∆)
TabuList := {}; i := 0; iter := 0;
XTS−CST := Xpot; //the initial solution is that found in the construction phase
CTS−CST := cost of DCST (XTS−CST);
DTS−CST := cost of DCST (XTS−CST);
Xi := Xpot;
while iter < ItWithoutImprovement do

Cit := ∞; Xit := {};
for n = 1, . . . , |V \ D| do

if n is not on TabuList then

Xneighbor = Flip bit n in Xi;
Evaluate Xneighbor; //find DCST (Xi)
Cneighbor := cost of DCST (Xneighbor);
if unfeasible (∆ cannot be met or graph unconnected) then

Cneighbor := ∞;
end if

if Cneighbor < Cit then

Cit := Cneighbor; Xit := Xneighbor; nit := n;
end if

end if

end for

if Cit = ∞ (no feasible neighbor was found) then

nit := i modulo |V \ D| + 1;
add nit to TabuList;

else

Xi := Xit;
end if

if Cit < CTS−CST then

XTS−CST := Xit, CTS−CST = Cit, DTS−CST = Dit;
else

iter = iter + 1; //increment iterations without improvement
end if

Add nit to TabuList; i := i + 1; //total iterations performed (with or without improvement)
end while

return XTS−CST ;
endTS-CST

Fig. 3. Pseudocode of the local search phase of GRASP − CST

neighboring solutions that are forbidden by the tabu list are ignored. Following every iteration or move, the

tabu-list is updated circularly by adding the last performed move (or some attribute of this move) to the

list and removing the oldest member. For our purposes, the size of tabu-list is set to one which is enough to

prevent the algorithm from oscillating between neighboring solutions.

In order to evaluate each neighboring solution and select the best one to become the current solution

in the next iteration, the following is done: First all the non-Steiner non-destination nodes (that is, those

nodes whose corresponding bits are set to 1) are eliminated from graph G along with all their adjacent edges.

Next, a spanning tree of the remaining graph that attempts to minimize the cost while satisfying the delay

constraint is found. This is referred to as the Delay Constrained Spanning Tree (DCST). To find the DCST,

a modified version of Prim’s Minimum Spanning Tree algorithm (Cormen (1997)) is used so as to yield a

solution in which the end-to-end delay from the source to every destination node is less than the given delay

10

bound ∆. The tree initially consists of only the source node. Then the algorithm subsequently searches for

the closest node to the existing tree by examining all its adjacent edges. That edge which is cheapest but

whose addition to the tree does not exceed the delay bound is chosen and added to the existing tree. The

procedure is finished when all the nodes are included in the tree. The value of each neighboring solution is

defined as the cost of the found Delay Constrained Spanning Tree.

In each iteration of the TS−CST algorithm, the cost of the corresponding DCST of each neighbor of the

current solution is found (except for those forbidden by the tabu list), and the best among them is chosen

to pass into the next iteration. This solution does not necessarily have to improve the current solution. If

it does not, we increment the number of iterations performed without improvement. If in some iteration i

no feasible solution in the neighborhood of the current solution exists, we choose a non-feasible neighbor

in a pseudo-random manner to become the new current solution in order to prevent the algorithm from

getting stuck. This can be done in various ways. In our algorithm, we chose to flip the nth bit of the current

solution, where n = (i)modulo(|V \D|+1), and this becomes the new current solution in the next iteration.

For a more detailed description of the TS − CST algorithm refer to Skorin-Kapov and Kos (2003). After

running TS − CST for the desired number of iterations without improvement the algorithm ends. If we set

the number of iterations without improvement to 1, we find the local optimum. If this number is greater

than one, we expand the search beyond the local optimum.

The pseudocode of the local search phase of GRASP − CST is shown in Fig. 3.

5. The Set of Test Problems and the Experimental Method

We implemented GRASP −CST , along with the TS−CST algorithm (Skorin-Kapov and Kos (2003)) and

Kompella et al.’s centralized CSTC algorithm (Kompella, Pasquale, and Plyzos (1993)), in C++. We tested

the above mentioned algorithms on problem set B from Steinlib (Kock, Martin and Voß(2001)) using the

experimental method suggested in Skorin-Kapov and Kos (2003) which will be briefly described. All three

algorithms were executed on a PC powered by a Pentium 2 450MHz processor.

Steinlib is a publicly available library of test data for the Minimum Steiner Tree Problem in Graphs

(MStTG). Since the Delay-Constrained Multicast Routing (DCMR) problem that is the topic of this paper

reduces to the Constrained MStTG problem the test data as such is not sufficient. Since the edges in the

test data have only a cost function assigned, their respective delay values are generated randomly. Set D is

the set of nodes given in the test data that must be spanned by the Steiner tree. The first node in set D is

chosen to serve as our source s. The remaining nodes in D \ {s} are destination nodes S.

11

Table 1. Characteristics of the problem set and the solution quality obtained
while simulating the MStTG problem (∆ = ∞)

GRASP-CST TS-CST CSTc

Probl. |V| |D| |E| Copt

�
GRASP-

CST (%)

DGRASP-

CST

�
TS-CST

(%)

DTS-

CSTC

�
CSTc

(%)

DCSTc

B01 50 9 63 82 0 30 0 30 0 30

B02 50 13 63 83 0 55 0 55 8.43 55

B03 50 25 63 138 0 78 0 78 1.45 78

B04 50 9 100 59 0 58 0 58 0 58

B05 50 13 100 61 0 43 1.64 39 4.92 26

B06 50 25 100 122 0 93 0 93 4.92 65

B07 75 13 94 111 0 51 0 51 0 51

B08 75 19 94 104 0 49 0 49 0 49

B09 75 38 94 220 0 66 0 66 2.27 51

B10 75 13 150 86 0 66 0 66 13.95 78

B11 75 19 150 88 0 65 11.36 91 4.55 75

B12 75 38 150 174 0 66 0 75 0 125

B13 100 17 125 165 0 38 0 38 6.06 53

B14 100 25 125 235 0 70 1.28 80 1.28 70

B15 100 50 125 318 0 81 0 81 2.52 77

B16 100 17 200 127 0 63 7.09 95 7.87 64

B17 100 25 200 131 0 59 1.53 71 2.29 66

B18 100 50 200 218 0 113 0 113 3.67 80

The algorithms were then run with a high enough value of the delay bound so as not to act as a constraint.

(The delay bound ∆ cannot actually be set to ∞ since the time complexity of the CSTC algorithm is

O(∆|V |3)). These obtained solutions are really the solutions to the (unconstrained) MStTG problem since

the delay values of the edges play no role in constructing the Steiner tree. If the cost of the obtained solution

is that supplied by the test data, we know that it is optimal. After running each algorithm, the cost of

the obtained Steiner tree along with the maximum end-to-end delay from the source to any destination is

calculated. The deviation (δ) of the calculated cost above the optimal cost supplied by the test data and the

corresponding maximum end-to-end delay (D) are shown in Table 1.

The inhibiting factor in the Delay-Constrained Multicast Routing problem is, of course, the value of the

delay bound. This means that the smaller the delay bound, the stronger the constraint. For this reason,

the following is done: The smallest of the three corresponding maximum delay values found for each test

12

Table 2. Solution quality for ∆1 = min(DGRASP−CST , DTS−CST , DCSTC) + 1

GRASP-CST TS-CST CSTC

Probl.
�

1 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01* 31 82* 30 0.170 82* 30 0.290 82* 30 0.591

B02* 56 83* 55 0.199 83* 55 0.310 90 55 1.152

B03* 79 138* 78 0.329 138* 78 0.410 140 78 1.692

B04* 59 59* 58 1.041 59* 58 2.664 75 58 1.421

B05 27 62 26 1.292 76 26 3.143 63 26 0.561

B06 66 126 65 1.762 126 63 2.403 128 65 1.571

B07* 52 111* 51 0.430 111* 51 0.890 118 51 3.153

B08* 50 104* 49 0.480 104* 49 0.661 110 39 3.034

B09 52 231 48 0.830 231 48 0.670 225 51 3.134

B10* 67 86* 66 2.733 86* 66 12.467 106 51 4.606

B11* 66 88* 65 2.254 92 61 14.020 99 57 4.516

B12* 67 174* 66 6.057 180 54 11.315 182 66 4.717

B13* 39 165* 38 1.361 165* 38 2.913 187 38 5.197

B14* 71 235* 70 1.252 239 64 3.634 238 70 9.874

B15 78 330 61 1.702 330 61 3.444 328 71 10.975

B16* 64 127* 63 4.737 149 58 33.478 146 54 9.624

B17* 60 131* 59 8.862 131* 59 33.569 165 50 9.033

B18 81 219 80 11.175 219 80 24.404 226 80 12.367

problem while simulating the MStTG problem (Table 1), is chosen. This value is then incremented by 1, and

set as delay bound ∆1. The cost (C) and maximum delay values (D) that correspond to the Steiner trees

obtained by testing the algorithms with delay bound ∆1 , along with their execution times (T), are shown

in Table 2. The algorithms are then tested for two more delay bounds: ∆2 (Table 3) and ∆3 (Table 4). ∆2

is 10% greater than ∆1, rounded up to the nearest integer, while ∆3 is 10% less than ∆1, rounded down to

the nearest integer.

Since the GRASP − CST algorithm gave the optimal solution to all 18 test problems for the MStTG

problem, we know the maximum delay that corresponds to all of the optimal solutions. As a result, if the

delay bound of the CMStTG problem is set to a value greater than the maximum delay of the optimal

solution to the MStTG problem, we know that this optimal solution to the MStTG problem is also optimal

for the CMStTG problem. Such problems are marked with ‘*’ in Tables 2 and 3 to let us know that the

13

Table 3. Solution quality for ∆2 = 1.1 ·∆1

GRASP-CST TS-CST CSTC

Probl.
�

2 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01* 35 82* 30 0.160 82* 30 0.281 82* 30 0.680

B02* 62 83* 55 0.199 83* 55 0.310 90 55 1.302

B03* 87 138* 78 0.331 138* 78 0.410 140 78 1.872

B04* 65 59* 58 1.031 59* 58 2.634 64 58 1.571

B05 30 62 26 1.252 76 29 3.114 66 27 0.631

B06 73 124 72 1.961 124 72 2.463 128 65 1.752

B07* 58 111* 51 0.450 111* 51 0.901 118 51 3.554

B08* 55 104* 49 0.509 104* 49 0.670 110 39 3.374

B09 58 221 57 0.850 221 57 0.740 225 51 3.534

B10* 87 86* 66 3.044 86* 66 12.447 99 63 6.078

B11* 73 88* 65 2.283 92 61 14.009 93 57 5.128

B12* 74 174* 66 5.227 174* 66 11.456 175 71 5.127

B13* 43 165* 38 1.391 165* 38 2.923 187 38 5.768

B14* 79 235* 70 1.351 238 74 4.004 238 70 11.085

B15* 86 318* 81 2.674 318* 81 3.854 322 50 12.677

B16* 71 132 50 4.987 149 58 33.709 137 64 10.754

B17* 66 131* 59 8.573 134 59 32.858 148 49 9.914

B18 90 219 80 10.867 222 84 25.045 226 80 13.839

optimal solution for these cases is known. For problems where we do not know the optimal solution, we

simply compare the performance of the three implemented algorithms. Unfortunately, to the best of our

knowledge, there is no test data available for the CMStTG problem.

To determine appropriate values for the input parameters for the GRASP−CST algorithms, a number of

experiments were performed. The goal was to use a small number of GRASP iterations and a small number

of iterations in the local search phase to reduce execution time, and yet obtain good solutions for this set of

problems. Regarding the local search procedure, we first set the number of iterations without improvement

to 1 to make it a strictly local neighborhood search. However, the neighborhood of the TS−CST algorithm

used in the local search procedure proved too restrictive. One of the reasons for this is the neighborhood

structure of the TS − CST algorithm. Namely, since potential solutions are represented by a set of Steiner

nodes, and the neighborhood is defined as all those solutions where the status of only a single node is

changed, the neighborhood of a current solution often consists of all infeasible solutions (i.e. unconnected

14

Table 4. Solution quality for ∆3 = 0.9 ·∆1

GRASP-CST TS-CST CSTC

Probl.
�

3 CGRASP-

CST

DGRASP-

CST

TGRASP-

CST (s)

CTS-

CST

DTS-

CST

TTS-CST

(s)

CCSTc DCSTc TCSTc

(s)

B01 27 - - - - - - - - -

B02 50 91 43 0.281 91 43 0.260 91 43 1.062

B03 71 144 59 0.400 144 59 0.360 155 70 1.761

B04 53 62 35 0.860 64 42 2.554 80 48 1.232

B05 24 66 19 1.221 75 21 3.184 66 18 0.480

B06 59 138 58 1.302 127 53 2.604 135 52 1.091

B07 46 - - - 118 33 0.900 128 32 2.813

B08 45 107 36 0.429 107 34 0.720 111 34 2.703

B09 46 - - - - - - - - -

B10 60 88 51 2.464 91 57 12.798 100 51 4.106

B11 59 89 43 2.263 94 57 13.629 99 57 4.116

B12 60 177 56 6.329 190 58 12.046 200 57 4.217

B13 35 172 28 0.971 - - - 217 34 4.607

B14 63 240 62 1.292 246 55 3.524 243 50 8.953

B15 70 330 61 2.293 330 61 3.454 330 63 9.974

B16 57 129 51 5.877 153 55 33.919 146 54 8.502

B17 54 136 53 7.209 158 53 25.316 159 50 8.272

B18 72 223 67 11.816 227 69 25.716 228 70 10.914

trees). Allowing more flexibility drastically improved results. To provide this flexibility, we set the number of

iterations without improvement to 2 and, thus, allowed 2 nodes to be changed with regards to their status

as Steiner nodes before obtaining a solution better than the current one. This little nudge beyond the first

local optimum significantly improved results. Of course, raising the value of this parameter even further

could potentially lead to even better solutions but testing indicated that the gain on solution quality was not

significant with respect to the increase in execution time. Also, for several of the cases tested, the obtained

solutions were optimal. Thus, further raising this value seemed unnecessary.

Regarding the remaining parameters, it was necessary to determine a good balance between parameter

α and the number of GRASP iterations. Parameter α should be large enough to enable a diversified search

and yet small enough to intensify the search around good solutions. Recall that candidates in the restricted

candidate list (RCL) are chosen according to the cost of adding them to the existing tree, i.e. if the cost

of adding a node is less than or equal to the cost of the best candidate multiplied by factor α, the node is

15

B
0
1

B
0
2

B
0
3

B
0
4

B
0
5

B
0
6

B
0
7

B
0
8

B
0
9

B
1
0

B
1
1

B
1
2

B
1
3

B
1
4

B
1
5

B
1
6

B
1
7

B
1
8

-5

0

5

10

15

20

25

30

D
e
v
ia

ti
o

n
(%

)

Test Problem

�
TS-CST/GRASP-CST

�
CSTc/GRASP-CST

Fig. 4. Deviation of the cost of the solutions obtained by TS − CST and CSTC

over GRASP − CST for ∆1

included in the RCL. Since the costs on edges in the networks ranged from 1 to 10, the costs of the paths

connecting various nodes to the existing tree often varied significantly. As a result, setting α to a value close

to 1 proved fairly restrictive, resulting in a construction phase that ran almost like a pure greedy algorithm.

This caused most of the GRASP iterations run to give the same solution. For most cases, this solution was

good but it could still be improved. Tests showed that setting α to 5 provided enough flexibility in the

construction phase to enable the GRASP − CST algorithm to perform a diversified search. Values higher

than 5 often obtained poor quality solutions in the construction phase and, thus, a large number of GRASP

iterations had to be run to obtain good solutions. When parameter α was set to 5, only 5 iterations of

GRASP − CST were required to obtain high quality results for this problem set.

It follows that the results shown in Tables 1-4 are those obtained with the following input values: the

number of GRASP iterations is set to 5, α is set to 5, and the number of iterations without improvement

of the local search procedure is set to 2. Parameters for testing the TS − CST algorithm are those chosen

in Skorin-Kapov and Kos (2003) where the number of iterations for problems B01-B09 is 25, while the

16

remaining problems are run for 40 iterations.

For easier visualization of the obtained results, the deviation of the cost of the solutions found by the

TS−CST and CSTC algorithms above the cost of the corresponding solution obtained by the GRASP−CST

algorithm for the middle delay bound (∆1) are shown in Fig. 4. The average deviation of the cost of the

constrained Steiner tree obtained by the TS − CST algorithm over that obtained by the GRASP − CST

algorithm (δTS−CST/GRASP−CST) is +3.01%. In the case of the CSTC algorithm (δCSTC/GRASP−CST), the

average deviation is +8.25%.

6. Computational Results

In Table 1, we can see that for the unconstrained multicast routing problem (reduced to the MStTG problem),

GRASP −CST gave the optimal solution in all cases, while the TS−CST and CSTC algorithms found the

optimal solution in 13 and 5 cases, respectively. These results indicate that the suggested GRASP heuristic

is efficient for the general problem of multicast routing. Regarding QoS multicasting with a bounded end-

to-end delay, Tables 2, 3 and 4 show the results of the algorithms for the CMStTG problem with various

delay bounds. GRASP − CST performed better than both the TS − CST and CSTC algorithms for all

three delay bounds. For ∆1, GRASP − CST gave better or equal solutions (marked in bold) for 16 out of

18 problems. For ∆2, this was the case for all 18 problems, while for ∆3, GRASP −CST performed better

or equal to the TS − CST and CSTC algorithms for 16 out of 18 problems.

Regarding optimality, we can see from Table 2 that for ∆1, GRASP −CST obtained the optimal solution

(denoted as ‘*’) in all 13 cases where the optimal solution is known. The TS − CST algorithm did so in

9 cases, while CSTC did so in only 1 case. For the problems for which the optimal solution is not known,

we compare the obtained results with lower bounds. Namely, the optimal solutions for the unconstrained

minimum Steiner tree problem (shown in Table 1) represent lower bounds on the solutions for the constrained

problem. For ∆1, the maximum deviation of a solution obtained by the GRASP − CST algorithm over its

corresponding lower bound was 5.00%. This occurred for problem B09. The largest deviations of solutions

obtained by the TS−CST and CSTC algorithms over the corresponding lower bounds were 24.59% (problem

B05) and 27.12% (problem B04), respectively. Note that for problem B04, the optimal solution is known.

Therefore, this deviation is the deviation over the optimal solution, and not just the lower bound.

We can see from Table 3 that for ∆2, GRASP − CST found the optimal solution in all but one of the

13 cases where the optimal solution is known. The TS − CST algorithm found the optimal solution in 9

cases, while the CSTC algorithm in 1 case. For ∆2, the solution obtained by the GRASP −CST algorithm

17

deviated most over the lower bound (in this case, the optimal solution) for problem B16. GRASP − CST

gave a solution more expensive by 5 units of cost (3.94%). The TS − CST algorithm deviated most for

problem B05, giving a solution more expensive by 15 units of cost (24.59%). The maximum deviation of the

CSTC algorithm was for problem B10. The obtained solution was 13 units (15.12%) more expensive than

the optimal solution.

For the smallest delay bound, ∆3, the optimal solutions are not known for any of the cases so we compare

with lower bounds from Table 1. We can see from the results in Table 4, that for ∆3 the GRASP − CST

algorithm deviated over the lower bound (for cases when a feasible solution was foundA) most by 13.11% for

problem B06. For cases where a feasible solution was found, the TS−CST algorithm deviated most over the

lower bound for problem B05, i.e. by 22.95%. The CSTC algorithm did so for problem B04 where it obtained

a solution 35.59% more expensive than the lower bound. All these results indicate that the GRASP −CST

algorithm is more robust than TS − CST and CSTC , and consistently gives high quality solutions.

Comparing the execution times of the algorithms is difficult since both GRASP − CST and TS − CST

can be terminated at any time depending on the desired number of iterations. CSTC on the other hand ends

deterministically. Even so, for the chosen number of iterations, GRASP − CST performed better than, or

equal, to TS − CST for all but one case with respect to solution quality and all but two cases where both

algorithms found a feasible solution with respect to execution time. Recall that the local search phase of

GRASP −CST uses the TS −CST algorithm. Comparison of the execution times of the algorithms tested

evidently shows that fewer iterations of TS−CST are run in the local search phase of GRASP−CST than in

the TS−CST algorithm itself as run in Skorin-Kapov and Kos (2003), and yet GRASP−CST obtains better

solutions. This shows that the construction phase of GRASP −CST often gives good solutions and that the

local search phase converges quickly. This is one of the main advantages of the GRASP metaheuristic.

The execution time of GRASP − CST did not exceed 12 seconds for even the largest problems, while

the execution time of TS − CST ran up to 33.919 seconds and yet produced a solution of inferior quality.

For the chosen number of iterations, GRASP − CST also performed better than the CSTC algorithm in

solution quality as well as in execution time. For each delay bound, GRASP −CST was faster for all but two

problems where both algorithms found a feasible solution. The average execution time of the GRASP−CST

algorithm run for the above specified number of iterations over all the tested problems for all three delay

bounds was 2.722 seconds. The average execution time for the TS−CST algorithm was 8.696 seconds, while

ANote that there are cases for all three algorithms where no feasible solution was found. Thus, the deviation over the lower
bound for these cases is infinite.

18

the CSTC algorithm on average ran for 5.012 seconds. We can see that the GRASP −CST algorithm gives

superior solutions in less time than both TS − CST and CSTC for this set of problems.

7. Conclusion

In this paper we proposed a GRASP heuristic algorithm for solving the Delay-Constrained Multicast Routing

problem. In the past couple of years there has been an increased development of numerous multimedia

network applications, many of which transfer information in real-time interactive environments to a group

of users. Many of these applications can tolerate only a bounded end-to-end delay and therefore require

delay-constrained multicast routing algorithms.

In the proposed algorithm, the Delay-Constrained Multicast Routing problem is first reduced to the

Constrained Minimum Steiner Tree problem and then the GRASP method is applied. Testing on small and

medium sized problems available in SteinLib has shown that the proposed algorithm gives near-optimal

solutions in moderate time for this set of problems. The results were also compared to those obtained by a

tabu-search algorithm (Skorin-Kapov and Kos (2003)) and Kompella et al.’s centralized algorithm (Kompella,

Pasquale, and Plyzos (1993)) for the same problem. The proposed GRASP heuristic algorithm outperforms

both of the above mentioned algorithms for this problem set.

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic proven to be efficient for

a wide array of optimization problems. This search procedure seems little used in research dealing with

QoS-driven multicast routing. The encouraging results obtained in this paper indicate that further research

in this field could be useful. Introducing multiple QoS demands to the multicast routing problem such as the

minimum bandwidth or the maximum delay jitter could be interesting for further avenues of research. The

adaptation of GRASP strategies to the problem of dynamic multicast routing, or rather re-routing when

multicast members join or leave the group during the lifetime of the connection, could also prove interesting.

19

References and Links

[1] T.H. Cormen, C.E. Leiserson, and R.L. Revest. (1997). Introduction to algorithms, Cambridge: MIT

Press.

[2] M.R. Garey and D.S. Johnson. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness, San Francisco: Freeman.

[3] B.K. Haberman and G. Rouskas. (1997). Cost, Delay, and Delay Variation Concious Multicast Routing,

Technical Report TR/97/03, North Carolina State University.

[4] T. Koch, A. Martin, and S. Voß. (2001). SteinLib: An Updated Library on Steiner Tree Problems in

Graphs. Available online at: http://elib.zib.de/steinlib.

[5] V. P. Kompella, J. C. Pasquale, and G.C. Plyzos. (1993). “Multicast routing problems”, IEEE/ACM

Trans. on Networking, 1(3), 286-292.

[6] S.L. Martins et al. (1999). “Greedy randomized adaptive search procedures for the Steiner problem

in graphs”, in P.M. Pardalos, S. Rajasejaran and J.Rolim (eds.), Randomization Methods in Algorith-

mic Design, Volume 43 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,

American Mathematical Society.

[7] S.L. Martins et al. (2000). “A parallel GRASP for the Steiner tree problem in graphs using a hybrid local

search strategy”, Journal of Global Optimization, 17: 267-283.

[8] M.G.C. Resende and C.C. Ribeiro. (2003). “Greedy randomized search procedures”. In F. Glover and G.

Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Academic Publishers.

[9] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. (2002). “A hybrid GRASP with perturbations for the Steiner

problem in graphs”, INFORMS Journal on Computing, 14: 228-246.

[10] N. Skorin-Kapov and M. Kos. (2003). “The Application of Steiner Trees to Delay/Constrained Multicast

Routing: a Tabu Search Approach”, Proc. Of Contel2003 - Conference on Telecommunications, Zagreb.

[11] Q. Zhang and Y.W. Leung. (1999). “An orthogonal genetic algorithm for multimedia multicast routing”,

IEEE Trans. on Evolutionary Computation, 3(1), 53-61.

[12] X. Zhou, C. Chen and G. Zhu. (2000). “A Genetic Algorithm for Multicasting Routing Problem”,

Proceedings of International Conference on Communication Technologies (ICCT2000), Beijing.

20

[13] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves, (1995). “A source based algorithm for delay-constrained

minimum-cost multicasting”, Proceedings of IEEE INFOCOM, Boston, MA.

21

