
Predicate Abstraction based Verification Framework: First results

Edgar Pek and Nikola Bogunović
Department of Electronics, Microelectronics,

Computer and Intelligent Systems
Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb
Phone: (01) 6129-999 int. 548 Fax: (01) 6129-653 Email: edgar.pek@fer.hr

Abstract— The Analysis of software artifacts is steadily
advancing due to the increase in computational power and
new verification methodologies. As a result there is a trend
to approach the verification of the implementation level
code and systems with unbounded state space rather than
verification of abstract hand-built models of code.

We consider a methodology which enables the verification
of systems with unbounded state space. This methodology is
called predicate abstraction. The predicate abstraction en-
able automatic construction of the finite abstraction from the
infinite system. The finite abstraction has more behaviours
than original system and preserves safety properties.

In this work we present first results in our implementation
of the framework for the predicate abstraction.

I. I NTRODUCTION

Computer programs can be described as formal descrip-
tions constructed by programmers and executed by com-
puters. The behaviour of the program during execution
can be observed by its users (e.g. other programs). The
programmer attempts to create the program that conforms
to the behaviour expected by the user. Any discrepancy
between actual and expected program behaviour could
happen because the programmer didn’t understand the
user requirements, the user misunderstood the program’s
specification, the programmer designed a flawed program
or because the computer executed the program incorrectly.

In this work we are concerned with the formal ver-
ification, in which program composition has semantics
independent of its execution on computer and the program
properties are well defined as well as their semantics. In
other words, our concern are the flawed programs.

Modern approach to formal verification puts greater
emphasis to the analysis of implementation level de-
scriptions, instead of to manually constructed high-level
code [1]. Our previous work on protocol verification [2],
[3], [4] has been mostly concerned with manually ob-
tained (ad-hoc) abstractions. Thus, we have noted the need
for the new direction.

We have recognised that abstraction is a key element
of a modern approach to automated verification of transi-
tion system properties that combines both deduction and
exploration. We have chosen predicate abstraction [5] as
the abstraction methodology.

This paper describes first results on the implementation
of the predicate abstraction framework. The emphasis is
on description of the mapping between a semantic level
representation and a representation that is amenable to
reasoning using decision procedures. The framework is

being implemented in object-oriented setting using C++,
and we use well-known open source tools, Lex and Yacc.

Predicate abstraction, the abstraction methodology, is
described in the first section. Actual implementation of the
methodology, called counter-example driven refinement is
discussed in Section III. After that we explicate precise
the model of computation (Section IV).

Section V describes the automated theorem prover
that provides support for a representation and decision
procedures that are used in the process of predicate
abstraction. Preliminary results on our implementation
of the predicate abstraction framework is given in the
Section VI. Concluding observations are presented in the
Section VII.

II. PREDICATE ABSTRACTION

In this section we will describe predicate abstraction,
the methodology based on a combination of the two
dominant approaches in formal verification: deduction and
exploration.

Deductive formal verification is based on the construc-
tion of the proof that the program satisfies a property. One
of the techniques used in deductive approach is induction.
Proof by induction often requires that inductive properties
are suitably strengthened. Process of strengthening the
invariants is usually achieved through careful manual
analysis of failed proof attempts, which is a tedious task.

In the formal verification based on the exploration of
the state space, the program is represented as transition
among the states. The states of all possible executions are
thoroughly examined in order to detect possible violation
of the program properties. Since the basic idea of explo-
ration is to analyse all the states from the computation
space, it must be achieved in a finite number of steps.
This constraint makes this approach less general than
deduction.

Concrete program

Abstract program

Deduction Exploration

Result

properties
Program

Fig. 1. Predicate abstraction as the synergy of deduction and
exploration



Predicate abstraction is a methodology based on the
synergy of deduction and exploration as shown in Figure
1. It is based on the observation that specific properties
or classes of properties can be checked by examining
an abstraction of the program using exploration. Valid
abstract program is constructed from the concrete pro-
gram using deduction. The analysis of abstract programs
against properties is based on the exploration. The use
of abstraction enables verification of the programs for
which deduction and exploration would be individually
unfeasible.

The theoretical aspects of predicate abstraction are
quite intricate. This methodology is based on the abstract
interpretation [6], and it was first described by Graf and
Saidi in [5].

Predicate abstraction is a parametric abstraction tech-
nique that constructs a finite-state abstraction of an infinite
state system. The first step in the predicate abstraction is
to provide a set of predicates (defined over an infinite
state system). If there aren predicates, then a state of
the original program maps to a bit-vector of lengthn,
where each bit has a value equivalent to the value of
the corresponding predicate in that state. The obtained
finite-state abstraction is amenable to the symbolic model
checking [7].

III. C OUNTEREXAMPLE-DRIVEN REFINEMENT

Counterexample-driven refinement is one of the ap-
proaches in practical implementation of predicate abstrac-
tion. The process of predicate abstraction can be described
in the following terms:

1) Definition of the predicates
2) Construction of an abstract state graph
3) Abstract state space exploration

Definition of the predicates is not well defined procedure,
and it usually depends on an application. Most common
approach is to provide predicates that appear in desired
system properties. We will address this issue later in this
section.

The construction of an abstract state graph provides
an over-approximation of the set of reachable states.
This is sufficient for the analysis of an invariant system
properties.

An abstract state space exploration is usually accom-
plished by model checking a boolean abstraction of the
concrete program.

In the process of verification one of the first concerns
is to determine properties of the system one wants to
check. Therefore, we now provide a formal treatment of
an invariant system properties.

Definition 1. An invariant for a transition system is a
predicate, P, on a states, such that if P(q) is true, and
q

a
→ r for some state, r, then P(r) is also true.

Using an induction we can formulate the following
theorem:

Theorem 1 (Invariant theorem). Let P be invariant for
a transition system. IfP holds for the initial state, then
P holds for all reachable states.

Proof: The proof of the theorem can be done by
induction on length of finite executions.

When checking an invariant property it is sufficient
to check an abstraction that has more behaviours than
original program. In other words, an abstraction over-
approximates the behaviours of the original program
(Fig. 2). This is a basic concept of abstract interpreta-
tion [6].

Abstract system

Concrete system

Unsafe

Fig. 2. Example of an abstraction and a possible relation with the
unsafe states

Note that in the Figure 2 the unsafe properties are
not abstracted for the sake of simplicity. If the invariant
property holds of the over-approximation then it holds
for the concrete system (original program). However, if
the invariant does not hold for the abstraction, it may
or may not hold for the original program. In that case,
the verification process yields a ”false negative”. In the
context of model checking, this means that the result is
the spurious counterexample. One can determine if the
counterexample is spurious using an automated theorem
prover. The basic idea, as stated in [8], is to build a
formulaf(t) from the tracet such thatf(t) is satisfiable
if and only if the tracet is a concrete (feasible) execution
trace. An automatic theorem prover is used to establish
whetherf(t) is satisfiable. If thef(t) is not satisfiable
(the counterexample is spurious), then it is necessary to
refine the abstraction by adding new predicates (which
eliminate the spurious counterexample).

Previously mentioned verification process is actually
symbolic model checking [7] procedure. It is being re-
peated after each refinement until all false counterexam-
ples are eliminated.

The process of predicate abstraction with
counterexample-driver refinement is depicted in Figure 3.

IV. T RANSITION SYSTEMS

In this section we will discuss our choice of system
representation and how it was implemented. We have
decided that system should be expressive enough but still
not too complicated. Thus, we have opted for the Labelled
Transition System (LTS) representation [9].

Definition 2 (Labelled Transition System). A labelled
transition systems (LTS) is a tripleT = (S, Act,→),
where S is a set of states, Act is a set of actions, and
→⊆ S × Act × S is a transition relation. A transition
(s, a, s′) ∈→, can be described more intuitively ass

a
→

s′, and it states that system can evolve from states to



Finite
Transition

System

Transition
System

Predicate
Discovery

Predicate
Abstraction

specification
property

Invariant

Path

Analysis
Feasibility

specification

Invariant
property

Checking
Model

Concrete
counterexample

False

False

True

Fig. 3. A diagram of the counterexample-driven refinement

state s′ exchanging the actiona with it environment in
the process. Notations

a
→ s′ describestransition from s

to s′ labelled by actiona, ands′ is an a− successor of
s.

Labelled transition systems originate from concurrency
theory, where they are used as on operational model of
process behaviour.

In our work labelled transition system have been imple-
mented using the Fair Transition System (FTS) represen-
tation as described by [10] and implemented in Stanford
Temporal Prover (STeP) [11]. However, currently we are
using only a subset of the STeP’s FTS definition that
is necessary for the first phase of development. In the
sequel we will give details about Fair Transition System
specification.

A. Fair Transition System

Specification of the fair transition system [11] consists
of:

• Declaration of types and variables.
• An optional initial condition , which is assumed to

hold at the initial state of every computation.
• A set of transitions.
The transitions are expressed in terms oftransition

relations. A transition relation describes how the system
can change from one state to the next. The previous
intuitive description can be stated formally: the transition
relation is expressed by a formula over the set of primed
and unprimed variables. Transition relation in STeP can
be specified by a combination of five different fields. In
our implementation we have restricted to the two fields
which are necessary to describe the transition relation.
The two fields are:

• Theenable field contains theenabling condition.
The enabling condition is a formula that may not
contain any primed variables. The transition can be
executed only if the enabling condition is satisfied.

• The assign field lists the assignments for those
variables whose next-state values can be described as
a function of the current-state (unprimed) variables.
The assignments listed in theassign field are made
in parallel. E.g.assign x:=y, y:=x actually
swaps the values ofx and y and is not just an
assignment ofy to x.

V. CVC L ITE

The automated theorem prover, which have been used
in the implementation of the predicate abstraction frame-
work, is described in this section.

CVC Lite (CVCL) [12] is a tool used for establishing
the validity (or satisfiability) of a first order formula overa
group of specific theories. It has been developed to replace
the Cooperating Validity Checker (CVC)1, which was
successor of the Stanford Validity Checker (SVC).

CVCL accepts as input one or more assertional formu-
las and a query formula. It then checks whether asser-
tional formula imply the query formula. Former intuitive
definition amounts to following:

Γ `?

L
ω (1)

Where, Γ is a set of assertion formulas,L represent
the set of specific theories (implemented in CVCL),
while ω stands for the formula which validity is being
established. Each formula belongs to first-order formulas
whose parameters (non-logical symbols) must be among
the union of theories.

The CVCL theories are:
• Equality with uninterpreted functions

This is the simplest supported theory, it contains an
arbitrary number of functions and predicates. The
functions and predicates are ”uninterpreted” which
means that theory doesn’t provide any additional
information about them, other that they are functions
and predicates.

• Arrays
CVCL consists of a theory of abstract arrays with
two operations:read and write. The first operation
is used to read from a location in an abstract array,
while with the second operation one can create a
new array by writing a new value to a location in a
existing array.

• Records and tuples
In CVCL simple aggregate types, such as a record
and a tuple can be described. Simple decision pro-
cedures is used to handle set of operations to create,
read from, write to these new datatypes.

1The name, CVC Lite, doesn’t imply that new tool is less powerful.
It means that this tool is easier to use, maintain and extended without
sacrificing functionality and performance



• Arithmetic
Decision procedures for arithmetic in CVCL support
theory of linear arithmetic over both reals and inte-
gers. Furthermore, any combination of real and inte-
ger variables can be handled with CVCL. However,
support for the nonlinear arithmetic is very limited.

All this decision procedures are very useful for wide
variety of verification tasks. One important novelty, which
is very useful in th protocol verification, is native support
for quantifiers. The quantifiers make the logic undecid-
able, but in many applications simple heuristics for the
quantifier instantiation can be sufficient.

VI. RESULTS

This section contains brief report about our imple-
mentation of the predicate abstraction framework. The
emphasis is on the parser for the fair transition system
(see Section IV-A). The result of the parsing process are
date structures expressed in terms of the CVCL structure
(expression, types, etc.).

Fair Transition System (FTS) parser inputs are: a fair
transition system model, a specification of invariants and
a definition of abstraction predicates. Input file is parsed
using well-known open source tools: Lex and Yacc. The
first part of the grammar for the Fair Transition System
is shown on Figure 4.

fts : TOK_TS declarations initExpn
transitions opt1

;

declarations : typeDecls varDecls
| varDecls
;

opt1 : {}
| invarSpecs
| absPreds
| invarSpecs absPreds
| absPreds invarSpecs
;

typeDecls : typeDecl
| typeDecls typeDecl
;

varDecls : varDecl
| varDecls varDecl
;

invarSpecs : invarSpec
| invarSpecs invarSpec
;

absPreds : absPred
| absPreds absPred
;

initExpn : TOK_INIT expn
;

transitions : transition
| transition transitions
;

...

Fig. 4. Part of the FTS grammar

One of the ideas in the implementation is to provide
interfaces on two different levels of abstraction. The first

interface provides access to the data structures that natu-
rally follow from the process of abstraction: the symbol
table, an initial expression, the transition representation.
For each transition it is necessary to describe enable
(guard) expressions and assign expressions. The second
interface is defined using CVCL primitives (expressions,
type, etc.). The main usage of that interface is application
of the decision procedures as provided by the CVCL
theorem prover (Section V).

The second interface is currently used to experiment
with the predicate discovery and the abstraction proce-
dure. Initially, we have put emphasis on the abstraction
procedure. The process of model checking is carried on
with the open-source model checker - NuSMV [13].

In the future work the main emphasis will be on
construction of the support for the custom data structure
representation in CVCL and handling of the quantifiers.
After that the procedure for an abstraction can be appro-
priately refined. The refined version should provide new
ways of handling a parameterised system by providing
new heuristics. The heuristic procedures are necessary
since the logic with quantifiers is undecidable.

VII. C ONCLUSION

In this work we have presented initial results ob-
tained in the implementation of the predicate abstrac-
tion framework. The predicate abstraction is a powerful
methodology for the formal verification since it provides
various new means to tackle the notorious state explosion
problem. It combines well known formal verification
methodologies, automated theorem proving and model
checking. The main components of predicate abstraction
implementation are predicate discovery, abstraction con-
struction and exploration of the abstraction. Each of these
components can be approached by various means.

In the implementation of the framework we have de-
cided to use simple, yet flexible internal representation in
terms of fair transition system. The fair transition system
is mapped to the CVCL primitives which is useful in the
process of predicate discovery.

The process of predicate discovery is sill to be defined,
but there are two main directions which we are going to
pursue. The first one is to infer the predicate from the
invariant system specifications. While, the second one is
to provide new predicates by examining counterexamples.
The second one forms the prominent approach in an im-
plementation of the predicate abstraction which has been
described in the Section III. The process of abstraction is
currently done as described in [5].

The exploration of the state space produced by the
process of abstraction is achieved by the symbolic model
checker NuSMV.

In the continuation of this project we should finish the
complete support for the representation of the quantifiers.
The main reason is in the fact that parametrisation prob-
lem is still largely unexplored. Other directions naturally
follow from the process of counterexample-driven refine-
ment and include predicate discovery, abstraction process
and exploration techniques.



REFERENCES

[1] G. J. Holzmann, “Trends in software verification,” inFME 2003:
Formal Methods, ser. Lecture Notes in Computer Science, D. M.
Keijiro Araki, Stefania Gnesi, Ed., vol. 2805. Springer-Verlag,
2003, pp. 40–50.

[2] N. Bogunović and E. Pek, “Verification of mutual exclusion
algorithms with SMV system,” inProceedings of IEEE Region
8 Eurocon 2003: Computer as a Tool, B. Zajc and M. Tkalčić,
Eds., vol. II. IEEE, September 2003., pp. 12–25.

[3] E. Pek and N. Bogunović, “Formal verification of communication
protocols in distributed systems,” inMIPRO 2003, Proceedings
of the Joint Conferences Computers in technical systems and
Intelligent systems, B. Leo and R. Slobodan, Eds., May 2003.,
pp. 44–49.

[4] ——, “Formal verification of logical link control and adaptation
protocol,” in Proceedings of the 12th IEEE Mediterranean Elec-
trotechnical Conference, MELECON 200, M. Maja, P. Branimir,
T. Željko, and B.Željko, Eds., May 2004., pp. 583–586.

[5] S. Graf and H. Saı̈di, “Construction of abstract state graphs with
pvs,” in CAV ’97: Proceedings of the 9th International Conference
on Computer Aided Verification. Springer-Verlag, 1997, pp. 72–
83.

[6] P. Cousot and R. Cousot, “Abstract intrepretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints,” inConference Record of the 4th
ACM Symposium on Principles of Programming Languages, Los
Angeles, CA, Jan. 1977, pp. 238–252.

[7] K.L. McMillan, “Symbolic Model Checking: An Approach tothe
State Explosion Problem,” Ph.D. dissertation, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, May 1992,
CMU-CS-92-131.

[8] T. Ball, “Formalizing Counterexample-driven Refinement with
Weakest Preconditions,” Microsoft Research, One Microsoft Way
Redmond, Tech. Rep. MSR-TR-2004-134, December 2004.

[9] M. Müller-Olm, D. Schmidt, and B. Steffen, “Model-checking:
A tutorial introduction,” in Static Analysis, ser. Lecture Notes
in Computer Science, A. Cortesi and G. Filé, Eds., vol. 1694.
Springer, 1999, pp. 330–354.

[10] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[11] Z. Manna, “STeP: The Stanford Temporal Prover,” STeP group,
Computer Science Department, Stanford University, Tech. Rep.
STAN-CS-TR-94-1518, July 1995.

[12] C. Barrett and S. Berezin, “CVC Lite: A new implementation
of the cooperating validity checker,” inProceedings of the16th

International Conference on Computer Aided Verification (CAV
’04), ser. Lecture Notes in Computer Science, R. Alur and D. A.
Peled, Eds., vol. 3114. Springer-Verlag, July 2004, pp. 515–518,
boston, Massachusetts.

[13] R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, and M. Roveri,
NuSMV 2.1 User Manual, 2002. [Online]. Available: http:
//nusmv.irst.itc.it/NuSMV/userman/v21/nusmv.pdf


