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Abstract - Quantitative and qualitative models. Basic forms 
of qualitative space. Code and numerical patterns in 
qualitative space. Qualitative process models. Latent and 
contradicting models. Completeness and acceptability 
measure of qualitative models. Examples of qualitative 
models of production parameters of the oil well log, seismic 
signals from the oil deposits and laser welding process. 
Quacol algebra and possibilities of its extensions. Criteria for 
usage of specific algebraic operations. Comparison of model 
structures from the standpoint of accuracy, simplicity and 
solution stability. Conversion of qualitative models to its 
quantitative counterparts and determination of mean value 
and amplification factor of the quantitative model. 
Comparison of the interim step of the Medusa-T and 
Medusa-H algorithms. Numerical limits of circular 
qualitative models. 
  
“Reality resists imitation through a model.” 
 Erwin Schrödinger in “The Present Situation in 
    Quantum Mechanics”, part of Quantum Theory 
    and Measurement, Wheeler & Zurek, Princeton 
    University Press, New Jersey, 1983. 
 
 

I Introduction 
 
   Quality as a term seems to have more marketing then 
mathematical conotation. Strangely enough precision – the 
most seeken mathematical feature – is by far on the side of 
quality. The theoretical reason for this lays in the fact that 
a limit procedure in evaluation of differentiating certain 
process values depends on the quanta in mathematics and 
on shapes difference in the qualitative engineering – 
quanta being defined by the process noise and shapes by 
virtue of mental process like a pattern. Principal power of 
analytical difference between noise and pattern needs no 
further explanation. 
While not possessing the notion of zero and negative 
number the qualitative engineering approach circumvents 
the seventeen meaning of zero and each specific meaning 
of negative – specific to each process value. Finally the 
quantitative engineering manipulation of algebra in the 
named negative region is not correct with process values 
where for instance (-a)*(- b) = -ab that is a correct form for 
processes and a complete disaster in mathematics. For two 
simple sets of process variable data a = {5, 2} and b = {4, 
1} their multiple pairs are a*b = {20, 2}. Now if both 
variables are decreased for the same constant 3 the 
corresponding multiple pairs are {(5-3)* (4-3) = 2, (2-
3)*(1-3) = 2 } and the rank order has been distroyed by the 
multiplication operation. Applying the multiplication rule 

(-) * (-) = (-) one will get {2, -2} with the preservation of 
rank order during multiplication. This feature is 
enormously important in solving inequalities [1]. 
Qualitative modeling has been quite popular in mid-
ninetees of the 20th century. Due to the  inappropriate 
treatment of the algebra development, like SR1 or 
QUASIM, it gradually faded away. Still its results obtained 
in modeling were sound and very much appropriate. The 
reason for its relative decay was dropping out the basic 
circular feature of the information arising in information 
tools. Following Železnikar’s work on information nature 
and by practicaly postulating the circularity feature in 
1997, the QUACOL algebra is an usable tool for 
qualitative process modeling and thus enabled reinvention 
of qualitative modeling [2],[3].  

 
 

II Qualitative model – a similarity logic function 
 
   What is a qualitative model? A simple differential 
equation given with general parameters represents a 
qualitative model of a process. By exchanging general 
parameters with specific values i.e. at the very moment of 
calculation qualitative analytical model becomes a 
quantitative analytical model. By this very act it obtains 
the analytical expressiveness but loses the abstraction.  
Still simpler qualitative model is a behavioral similarity of 
process variables. If for instance by  seeking a model for 
the process variable A one finds another process variable B 
that behaves in a similar manner then B becomes a 
candidate for the model of A. Thus 
 
  AAModelB ∝= )(   (1). 
 
The sign ∝  stands for similarity operation. But what is 
similarity? In its discussion of fallability of modern logic 
mathematicians state that the only operator lacking in logic 
is the similarity operator. Thus if we postulate similarity as 
the fourth logical symbol ),,,( ∝¬∧∨  and 
correspondently two-element algebra consisting of the 
“truth” and “false” values as Τ  and ⊥  it is worth to 
introduce first order logic with the similarity operation.        
It is clear how to define Boolean operations on limited and 
unlimited qualifiers; the Boolean operations are denoted 
using the usual symbols ),,,( ∝¬∧∨  for each 

propositional function F i.e. 21 QQ ∨  is a function such 

that )(2)(1)( FQFQFQ ∨= . Since Mostowski gave 



the theory of the propositional functions of qualifiers 
earlier for ),,( ¬∧∨  [4], we shall only briefly discuss the 
same features for similarity operation. Here two qualifiears 
are disposable: existential qualifier ∃  and general qualifier 
∀ . Introducing a limited qualifier Qs and I an arbitrary set 
with I* = I x I x I… its Cartesian power i.e. the set of 
infinite sequences (x1, x2, …) with xj ∈ I for j = 1, 2, … . 
A mapping F of I* into ⊥>Τ< ,  is called a propositional 
function on I provided that it satisfies the following 
condition: there is a finite K of integers such that if x = (x1, 
x2, …) ∈  I* , y = (y1, y2, …) ∈  I* and xj = yj for j ∈ K, 
then F(x) = F(y).  
Let us define the rank operator ℜ  as a limited qualifier on 
I. It assigns a rank value to each element xi of I as an 
individual variable S ranging from {1,2,…,k} to each 
functional variable of the degree k. The case of individual 
variable S possessing the same rank of its particular 
elements i and j can be dropped off by adding a small 
amount of noise to each particular variable S. Each element 
of two S  variables will be called an I-valuation consisting 
of rank comparison of correspondent elements. Thus  
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      (2), 
 
presents the formula that is true in I if (2) exhibits logical 
Τ and satisfiable in I if it exhibits true value for some parts 
of p. The degree of satisfiability can be measured as the 
rank correlation coefficient.   
A latent similarity model C of the process variable A is a 
model that satisfies (1) i.e. it is similar to the variable B as  

BBModelC ∝= )( . The modeling operation is not a 
process transitive operation and thus not firmly bounded to 
A. It leads in the extreme to the effects that if increasing B 
means increasing a certain process value x then C means 
decreasing the same value of x. Such models are process 
contradictory. 
In order to evaluate (2) for k = 9 it is worth to say that 
coincidence of having all ranks equal evaluates to 1/9! or 
approximately 2 in a million. 
Qualitative model is complete when it covers all essential 
process features regarding function A that is being 
modeled. Qualitative model is completely acceptable when 
it is convertible into a appropriate quantitative form. 
 
 
III. QUACOL algebra and its simple structural extension 

 
   QUACOL algebra is a circular evolutional algorithm 
using alternatively quantitative and qualitative aspects of 
the same data [3]. It consists basically of algebraic 
operations on process data series. Criteria of algebra 
usability demand fulfillment of the valuation given in (2). 
Algebra calculates also with S variable and its inverse, thus 
pushing forward positive correlation of the variable with 
given goal function or a set of goal functions. Thus if there 
is no direct model such as given in (1) two or more S 

variables are included (with their corresponding 
quantitative parts as well) and a general form is obtainable 
as 
  
 { } CopBAModel κ/,*,,)( −+∝   (3), 
 
where disposable algebraic operators are indicated in 
brackets and κ  is influence factor of the variable C in the 
B op C composition. When for instance there is 3.0=κ  
and algebraic operator is addition {+} then model variable 
B is complemented with 0,3 part of the model variable C in 
each of the k steps of the qualitative model. A broker can 
say that in order to folow dollars (A) one has to take a mix 
of 70% yen (B) and 30% euro (C), meaning that what was 
in a time point not enough in B was compensated by C and 
vice versa. Subtraction operator balances the difference 
between two model variables meaning that the amount of 
yen value to be bought should be diminished by the 30% of 
the euro value in order to follow dollar value.  
Simplicity, precision and stability are criteria for using 
algebraic operators when aiming at obtaining the modeling 
criterium given in (2). 
Numeric stability depends on determination of quantitative 
values for equal ranks – which is an unstable situation and 
on controlling marginal values for minimum and maximum 
value in quantitative part of the model.  
The case of equal ranks usually follows in the second step 
of the Medusa algorithm method, i.e where the difference 
between the model )(Bℜ and ))()(( BA ℜ−ℜℜ enters 
into calculation. This feature has been treated in the 
Medusa T algorithm as a simple quantitative data series 
imposing a lower hit rate in the algorithm then expected. 
The solution in Medusa H algorithm is proposed as a 
qualitative differential function of the expanded data series 
[6] permitting more direct comparison of the interpolation 
data series C in the model synthesis. In this way patterns 
are used and not quantitative values.   
Generally a QUACOL algorithm tends to instability when 
maximum value runs away from the numeric margins of 
the computer algorithm, or it demands immense 
complexity in its numeric application part regarding the 
same rank situation. 
In order to control numerical divergence in expressions of 
the type (3) a new analytic form for modeling in QUACOL 
algebra is proposed that is based on the general analytical 
form as 
 
 { } −−+∝ CopBAModel κ/,*,,)(  

  { }{ }CopBmean κ/,*,,−+−  
      (4), 
 
where mean{} represents a mean value of the quantitative 
part of the model in brackets. Such form prevents 
instability observed in some process model calculations. B 
and C are only optionally given since the forms (3) and (4) 
are recursive goal driven forms and B can be in a next step 
the whole expression (4) and so on. 
Thus models with greater correlation can be built that 
enable appropriate quantitative model conversion.  
 



IV. Quantitative models from QUACOL algebra 
 

   When a model is completed in its qualitative form it 
contains quantitative data part with data that are principally 
very very far away from the expected quantitative model. 
Restauration of the quantitative part can be done from 
calibrated data so that for instance if we know that the third 
ranked value is 36 and the minimum tenth ranked value is 
4 then a linear model can be made that can 
intra/extrapolate the rest of the model. The slope of the 
conversion straight line equals to (36 – 4) / (10 – 3) = 
4,571… and the mean value is 24,571…  
No calibrated quantitative data and only similar 
quantitative known data can be a problem [7]. Further on 
no one can claim linearity of the quantitative model. In this 
case the recalculation of the mean value and amplification 
factor can be an outcome. Fitting can be done from similar 
already known data profiles such as known production data 
profiles of the oil well [7]. 

In such a way even the nonlinearities can be compensated. 
 

V. Experimental results 
 
   Tables 1, 2, and 3 present  the cases of different process 
models. Table 1 shows modeling possibilities on seismic 
data profiles of the Beni�anci crude-oil field. Correlation 
coefficient and stability of the numerical solution have 
been tested for cases from (3) and (4). The case of 
modeling working point of the power laser installation [5] 
are given in Table 2. with the same algorithm demands. 
Similarly data are given for modeling of the vertical profile 
of the Žutica oil field wel production data in Table 3.  
Authors are thankfull to the INA-Naftaplin experts from 
the Exploration Department and to Prof. Dieter Schuöcker 
from the Vienna University of Technology, Institute for 
Power Laser Research, for having the possibility to use 
their process data files for modeling purposes. 

 
Table 1. The model of Beni�anci oil-field seismics data; maximum number of algorithm iterations for particular algebraic operation with 
and without data equalization 
 
 Without equalization With equalization 
 + - * / Opt + - * / Opt 
Iteration 6 5 6 6 6 8 15 3* 3* 7 
Rank co-
rrelation 

0.901 0.84 0.88 0.88 0.92 0.989 0.934 0.934 0.934 0.989 

 
(*) third iteration data diverge for multiplication and division operations 
 
 
Table 2. The model of power laser parametrisation data; maximum number of algorithm iterations for particular algebraic operation with 
and without data equalization; many variables possess equal rank values 
 
 Without equalization With equalization 
 + - * / Opt + - * / Opt 
Iteration 13 10 6 6 6 6 7 6 6 6 
Rank co- 
relation 

0.93 0.96 0.87 0.87 0.95 0.92 0.95 0.88 0.88 0.95 

 
 
Table 3. The model of Žutica oil-well log geology data; maximum number of algorithm iterations for particular algebraic operation with 
and without data equalization 
 
 Without equalization With equalization 
 + - * / Opt + - * / Opt 
Iteration 5 5 4 3 3 5 5 2* 2* 3 
Rank co-
rrelation 

0.88 0.89 0.89 0.89 0.89 0.88 0.89 0.88 0.87 0.89 

 
(*) second iteration data diverge for multiplication and division operations 
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