Experimental Control Design by TP Model
Transformation

Fetah Kolonic Alen Poljugan
Faculty of Electrical Engineering and Computing Faculty of Electrical Engineering and Computing
University of Zagreb University of Zagreb
Unska 3 HR-10000 Zagreb Croatia Unska 3 HR-10000 Zagreb Croatia
fetah.kolonic@fer.hr alen.poljugan@fer.hr

Abstract— The Tensor Product (TP) model transformation is benchmark problems were presented in papers [7]-[10] and at
a recently proposed technique for transforming given Linear the special session of IEEE Int. Conf. Fuzzy Systems 2004
Parameter Varying (LPV) models into affine model form, namely, [11] and at the IEEE Int. Conf. Intelligent Engineering Sys-
to parameter varying convex combination of Linear Time In- -
variant (LTl) models. The main advantage of the TP model tems [12]-{14]. The' advantage of the TP mOdeI transformatlon
transformation is that the Linear Matrix Inequality (LMI) based ~ based control design framework is that it can be uniformly
control design frameworks can immediately be applied to the and automatically executed on a regular computer without

resulting affine models to yield controllers with tractable and human interaction. Recently, the TP transformation is applied
guaranteed performance. The main objective of this paper is 10 {4 g)iding surface sector design of a variable structure system

study how the TP model transformation performs in a real world, ¢ d the chatteri hich is th - bl  slidi
experimental environment. The study is conducted trough the 0 reduce the chattering, which 1s the main problem or sliding

example of a translational electromechanical system, the Single mode control [15].
Pendulum Gantry (SPG). The main contribution of this paper is that it investigates

the performance of the nonlinear TP model transformation
based control design in an experimental setup, and evaluates
The affine model form is a dynamic model representatiaand compares the results. The study is conducted through
whereupon LMI based control design technigues can immtite example of a translational electromechanical system, the
diately be executed. It describes given LPV models by $ingle Pendulum Gantry (SPG), an educational testbed of
parameter varying convex combination of LTI models. Th&niversity of Zagreb.
TP model form is a kind of affine decomposition, where The paper is organized as follows: Section Il discuses
the convex combination is defined by one variable weightirtge theoretical background of TP model transformation based
functions of each parameter separately. Convex optimizationawntrol design. Section Il describes mathematical model of
linear matrix inequality based control design techniques céme experimental set up. Section IV explains the basic steps
immediately be applied to affine, hence to TP models [1Bf the controller design. Section V presents the experimental
[3]. An important advantage of the TP model representatisasults and Section VI concludes this paper.
is that the convex hull defined by the LTI models can readily
be modified and analyzed via the one variable weightinél'
functions. Furthermore, the feasibility of the LMI's can be
considerably relaxed by modifying the type of the resulting Consider the following parameter-varying state-space

I. INTRODUCTION

TENSORPRODUCTMODEL TRANSFORMATION BASED
CONTROL DESIGN

convex hull. model:

TP model transformation based control design was proposed x(t) = A(p(t))x(t) +B(p(t))u(t), 1)
in recent papers [4], [5]. It is a numerical method capable
of transforming given Linear Parameter Varying (LPV) state- y(t) = C(p())x(t) + D(p(t))u(t),

space models (where the parameter vector may contain &lgth input u(t), outputy(t) and state vectox(t). The system
ments of the state vector as well) into a parameter varying cQfatrix

vex combination of linear time invariant (LTI1) models, namely A(p®) B(p(t)

to polytopic models. The convex combination is determined S(p(t)) = (C(p(t)) D(p(t))) e ROX! 2

in such a way that a set of linear matrix inequality (LMI)

control design theorems can immediately be applied to tieea parameter-varying object, wheuét) € Q is time varying
resulting polytopic model. Especially those LMIs which havél-dimensional parameter vector, and is an element of the
been developed under the Parallel Distributed Compensatidased hypercub& = [plmin, P1max X [P2min, P2max X -+ - X
framework (PDC) [6]. Based on this TP model transformatiofpNmin, PNma) € RN. The parametep(t) can also include
and PDC design concept the control solutions of complex asdme elements of(t).
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Definition 1 The model (4) is convex if:
Analytical TP Model LM stabilit .
nalytca ? Vode Wi stabily welLRpD : wen)epy (5)
) 1 Y wi(p(t) =1 ()
A h 4 r=1
Discretization Feasible
on a sample solution for the < This simply means tha$(p(t)) is within the convex hull of
grid LM system the LTI vertex systems, for anyp(t) € Q.
. I The matrixS(p(t)) has a finite element TP model represen-

Complexity tation in many cases & 0 in (4)). In this case, the TP model
Feedback is said to be exact.
gains
The TP model transformation finds the minimal number of
LTI systems in exact case. If finite element TP model does
not exist then the TP model transformation helps the trade-off
Fig. 1. Main steps of Tensor Product Model Transformation based Contloetween the number of LTI vertex systems and&ljB]. The
Design TP model transformation offers options to generate different
types of the weighting functionsv(-). Different weighting
functions determine different types of convex hulls of the given
Main steps of Tensor Product Model Transformation basggy model. For instance in the case of generating tight convex
control design is shown in Fig.1. First, the nonlinear analyticgde TP model transformation results in LTI systems, where as
model (1) is sampled oM. In other words, certain linear many of the LTI systems as possible are equal toSHEt))
models are selected for certain operational points. The moggk, somep(t) € Q and the rest of the LTI's are close to
(1) is estimated by linear interpolation between the samplggp(t)) (in the sense of, norm).
p?\lints. If all intervals ofQ are sampled\s times, there are  ag an alternative way of LMI based control design the PDC
Ng' sampled system§, which is usually cannot be handledyamework was introduced by Tanaka and Wang [6]. The PDC
numerically. That is why the next step is the reduction Qfesign framework determines one LTI feedback gain to each
the number of the sampled systems. This reduction is baggq yertex systems of a given TP model. The framework starts
on high order singular value decomposition (HOSVD). Thgii the LTI vertex systems, and results in the vertex LTI
price which should be paid for the reduction is that ”On“”e@rainsF, of the controller. These gairf§ are computed by the
interpolation is necessary between the well selected lingay pased stability theorems. After having tFe, the control

models. In other words, model (1) is estimated by nonline%Meu(t) is determined by the help of the same TP model
combination of some well selected linear systems. The finglcture as used in (4):

step is the controller design based on linear matrix inequality
(LMI) for the all systems simultaneously. All R

The TP model transformation starts with the given LPV u(t) =— (lef(p(t))':f) X(t)- ()
model (1) and results in the TP model representation =

reduction by
HOSVD

The LMI theorems, to be solved under the PDC framework,
XS % Wn(pn) (X> (3) are selected according to the stability criteria and the desired
n=1 u control performance. For instance, the speed of response,
that can alwavs be transformed to the tvpical form: constraints on the state vector or on the control value can be
y yp ' considered via properly selected LMI based stability theorems.

: R
(x(t)) ~ Zwr(p(t))sr (ﬁgg) 4) I1l. CASE STUDY OF THESINGLE PENDULUM GANTRY

The Single Pendulum Gantry system is used for educational

where purposes at University of Zagreb, Croatia. It is an experimental
R testbed, and the goal is to design, compare and evaluate several
S(p(t)) — r;Wr(p(t))Sf SE controller approaches. For more details about the testbed,

please, refer to [17], [18].

Here,e symbolizes the approximation errav (p(t) € [0, 1] _Let us consider the st_abilizaFion _problem as shown in
are the coefficient functions. Let the size®fis O x | in the Figure 2. Only a brief discussion is presented here, for
followings. For further details about TP model transformatiosietailed description, please, refer to [17], [18]. Letting-
please, refer to [4], [5], [L6]. The convex combination of théX1 X2 X3 X4) = (% X o @) ,the equations of mo-
LTI vertex systems is ensured by the conditions: tion in linear parameter-varying state-space form is:

x=A(X)x+B(x)u, (8)
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137x 137. The sampling results iA?; andB?;, wherei, j =
1...137. Then we construct the matrig}; = (A?] Bfl)
and after that the tensas® € RIF7<137<455 from . The
TP transformation is made by the beta version of a Matlab
toolbox. If we execute HOSVD on the first two dimensions of
S3 then we find that the rank @fS on the first two dimensions
are7 and2 respectively.

The singular values are as follows in the dimensian
011 = 16094, O12 = 20672, 013 = 12.604, 014 = 10.719,
015 = 2.3109 016 = 0.14075 017 = 0.001854 and in the
dimensionxs: 021 = 16227, 022 = 10.965 This means that
the SPG system can be exactly given as convex combination
of 7x 2= 14 linear vertex models (thé, numerical error
of the TP model transformation for exact model is less than
10712). The TP model transformation describes SPG system

as:
14
Fig. 2. Schematic of the Single Pendulum Gantry model S(p) = ZlWr(XBaX4) (Arx+Bru). ©)
r=
As in most cases it is to expensive in computational sense
where to work with 14 affine models, and in real world situations the
0 1 0 0 0 actuators accuracy is much worth than the modelling accuracy,
0 ai/a. ar/a. a:/a b /a. it_is possi_ble to reduce the model._lf we only keep the four
A= | o lé g 2{) ) 3/1 “|.B(x) = 1(/) “|.  biggest singular values in dimensiog and keep the two
0 as/ax as/ax ag/a a0/by singular values in dimensioxy, the system can be reduced to
X X X

8 affine models. The theoretical maximum approximation
5 error is the sum of the discarded singular values the means
a = —(lp+My2) NgKgNmKiKm o 015+ 016+ 017 = 2.4535 however by checking the actual
P Rmrﬁqp L, error for 10000 test points, an average maximal error of
M%|SgCOS()@)Sin(X3) 0.080307is received. Thus, the system can be reduced to a

a = system of half the complexity while it is still accurate enough
- X3 _ for real world experiments. The resulting basis functions are
= (Mplg+1pMplp) sin(x3)x4 + Mpl pBp cos(x3) de}lgicted in Figure 3. _
NoK2NmK K he LTI system matrices of the affine model are:
gf”gllm m
= Myplpcogx3) [ Beg— —=——
PP a Rl 2p 0 10000 0 0 0
. 0 -112630 12457 —0.0192 1.4794
s — —(Mc+ Mp)Mplpsin(xs) Ay= (0 5 0 10000 Bl( . )
X3 0 228870 —242374 -—0.0311/ —3.006
ag = —(Mc+Mp)Bp—M3l3cogxs)sin(xs)Xs
- o 222 0 10000 0 0 0
a = (Mc+Mp)lp+McMplg+Mlgsin®(xs) p,_ |0 112906 12657 00270 | [ 14830
2 NgKgNmkKe 0 0 0 10000 0
b1 = —(IpMplp) TR 0 231794 —243744 —0.1306/ —3.0455
r
b I ngl?gpan‘ 8 11'2%(2)23 16227 00852 1 5%28
= —Mplpcogxz)——— _ - |t
2 p'p X3) Rmfmp Az=1p 0 0 100002/ Bs = 0
, ) ) 0 285811 —269299 -0.085 —3.7540
The parameters of the experimental system are given in
0 10000 0 0 0
Table I.
0 —124388 21008 00066 1.6338
. . As=1o 0 0 10000 | B4=| "o
A. TP model representations of the Single Pendulum Gantry 0 353681 —300863 —0.0901/ _4.645
Observe that the nonlinearity is caused by state values 0 10000 0 0 0
x3(t) and x4(t). The operation range of the pendulum’s tip _ [0 -112630 12457 00275 ) o _ [ 14794
is limited to +25deg for safety reasons, and the angular 8 223870 24%374 %ofgfa 3806
acceleration for the motor is maximuth?%’. For the TP o e e
model transformation we define the transformation space as 0 10000 0 0 0
Q = 725 &5 x [~0.8,0.8] (note that these intervals can Ag = 8 _1102906 12857 _10(')%%%5 Bs = 1'45330
be arbitrarily defined). Let the density of the sampling grid be 0 231794 —243744 —0.0324 —3.0455
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TABLE |
PARAMETERS OF THESPGSYSTEM

Description Parameter Value Units
Equivalent viscous damping coefficient  Beq 5.4 N ms/rad
Viscous damping coefficient Bp 0.0024 N ms/rad
Planetary gearbox efficiency Ng 1 —
Motor efficiency Nm 1 —
Gravitational constant of earth g 9.81 m/s?
Pendulum moment of inertia lp 0.0078838 kg nm?
Rotor moment of inertia Jm 3.9001e-007 kg nm?
Planetary gearbox gear ratio Kg 371 —
Back electro-motive force constant Km 0.0076776 Vs
Motor torque constant Kt 0.007683 Nm/A
Pendulum length from pivot to COG Ip 0.3302 m
Lumped mass of the cart system Mc 1.0731 kg
Pendulum mass Mp 0.23 kg
Motor armature resistance Rm 2.6 Q
Motor pinion radius rmp 0.00635 m

1 7~ IV. CONTROLLER DESIGN

We compare the control performances to various different
alternative solutions.

o
©

o
©

o
2

°
>

A. Conventional controller based on pole placement

CONTROLLER 1: The poles of the closed loop linearized
system (10) with state feedback are selected in the following

o ¢
=

Weighting functions

°
~

way
- ;&ngui:r posftion: ;(; (radl) N —1.8182+1.9067
. ‘ ‘ ‘ ‘ ‘ ‘ u -20
: Poles=1 18182 1.9067 D
- 40
§ 0 The state feedback control is
£ u=—Fx, F=(160 88 —210 23 (12
D o3
2 o2 B. Derivation of TP based controllers
“ In the present case the controller (7) has the following form:

o

-15 -1 -05

0
Angular speed: X, (rad/sec)

8
U= — (ZWF (X37X4> FI') X, (13)
Fig. 3. Weighting functions of the TP modelon dimensiog&) andx4(t) r=

Two methods are presented to define the feedback gains
for the eight systems.

05 1 15

0 10000 0 0 0 .
a0 -118223 16427 00053 | . _ [ 15528 CONTROLLER 2: The feedback gaindg-; are selected
1o 0 0 10000 = 0 separately for the all systems to place closed loop system poles
0 285811 —269299 -—0.0855 —3.7540 to (11).
o 10000 0 o o CONTROLLER 3: We design here a controller capable
a_ [0 _124388 21008 00063 o [ 163 of asymptoucally stabilize the. SPG and satlsf_y the given
8= 1o 0 0 10000 8= 0 constraints. We apply the following LMIs. The derivations and
0 353681 300863 -0.0894 —4.654 the proofs of these theorems are fully detailed in [6].

A linearized model is selected for the conventional stafheorem 1 (Asymptotic stability) Affine model (4) with

feedback control design control value (7) is asymptotically stable if there exict> 0
and M, satisfying equations
0 1 0 0 0 o T _ ToT
A — |0 —1L651 1521 Q0049 | o [ 1530 ) XAr —AX+My By +BM; >0 (14)
n=1o 0 0 1 in = 0
0 26845 —26109 -0.084 —-3.526 for all r and
XA —AX —XAT —AX+ (15)

669



ICM 2006 * IEEE 3rd International Conference on Mechatronics

+M{B[ +B/Ms+M[B! +BsM, >0. there are no significant difference among the three responses.
The main difference appears in the control activity. According
to Fig. 6, theCONTROLLER 3 has the most smooth time
Sunctions.

for 1 < s < R except the pairs(r,s) such that
w; (p(t))ws(p(t)) = 0,Vp(t), and where the feedback gain
are determined form the solutioné and M, as

F=M,X L. (16) VI. CONCLUSION

This paper presented a method by which a controller can

In order to satisfy the constraints defined earlier, the fobe automatically designed for a non linear system using

lowing LMIs are added to the previous ones. commercial Matlab functions. The experimental results proved

that this method can produce a controller which can work in

Theorem 2 (Constraint on the control value) Assume that a real situation.
IIX(0)|| < @, wherex(0) is unknown, but the upper bourgl

is known. The constrainfu(t)||> < pu is enforced at all times ACKNOWLEDGMENTS
t > 0 if the LMIs The authors wish to thank for their financial support stem-
ming from the Hungarian-Croatian Intergovernmental Science
‘szl < X and Technology Cooperation Program.
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Fig. 4. The position of the loatll,, comparison of the performances of three controllers
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