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Abstract— The Tensor Product (TP) model transformation is
a recently proposed technique for transforming given Linear
Parameter Varying (LPV) models into affine model form, namely,
to parameter varying convex combination of Linear Time In-
variant (LTI) models. The main advantage of the TP model
transformation is that the Linear Matrix Inequality (LMI) based
control design frameworks can immediately be applied to the
resulting affine models to yield controllers with tractable and
guaranteed performance. The main objective of this paper is to
study how the TP model transformation performs in a real world,
experimental environment. The study is conducted trough the
example of a translational electromechanical system, the Single
Pendulum Gantry (SPG).

I. I NTRODUCTION

The affine model form is a dynamic model representation
whereupon LMI based control design techniques can imme-
diately be executed. It describes given LPV models by a
parameter varying convex combination of LTI models. The
TP model form is a kind of affine decomposition, where
the convex combination is defined by one variable weighting
functions of each parameter separately. Convex optimization or
linear matrix inequality based control design techniques can
immediately be applied to affine, hence to TP models [1]–
[3]. An important advantage of the TP model representation
is that the convex hull defined by the LTI models can readily
be modified and analyzed via the one variable weighting
functions. Furthermore, the feasibility of the LMI’s can be
considerably relaxed by modifying the type of the resulting
convex hull.

TP model transformation based control design was proposed
in recent papers [4], [5]. It is a numerical method capable
of transforming given Linear Parameter Varying (LPV) state-
space models (where the parameter vector may contain ele-
ments of the state vector as well) into a parameter varying con-
vex combination of linear time invariant (LTI) models, namely
to polytopic models. The convex combination is determined
in such a way that a set of linear matrix inequality (LMI)
control design theorems can immediately be applied to the
resulting polytopic model. Especially those LMIs which have
been developed under the Parallel Distributed Compensation
framework (PDC) [6]. Based on this TP model transformation
and PDC design concept the control solutions of complex and

benchmark problems were presented in papers [7]–[10] and at
the special session of IEEE Int. Conf. Fuzzy Systems 2004
[11] and at the IEEE Int. Conf. Intelligent Engineering Sys-
tems [12]–[14]. The advantage of the TP model transformation
based control design framework is that it can be uniformly
and automatically executed on a regular computer without
human interaction. Recently, the TP transformation is applied
for sliding surface sector design of a variable structure system
to reduce the chattering, which is the main problem of sliding
mode control [15].

The main contribution of this paper is that it investigates
the performance of the nonlinear TP model transformation
based control design in an experimental setup, and evaluates
and compares the results. The study is conducted through
the example of a translational electromechanical system, the
Single Pendulum Gantry (SPG), an educational testbed of
University of Zagreb.

The paper is organized as follows: Section II discuses
the theoretical background of TP model transformation based
control design. Section III describes mathematical model of
the experimental set up. Section IV explains the basic steps
of the controller design. Section V presents the experimental
results and Section VI concludes this paper.

II. T ENSORPRODUCT MODEL TRANSFORMATION BASED

CONTROL DESIGN

Consider the following parameter-varying state-space
model:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t), (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with input u(t), outputy(t) and state vectorx(t). The system
matrix

S(p(t)) =
(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, wherep(t) ∈Ω is time varying
N-dimensional parameter vector, and is an element of the
closed hypercubeΩ = [p1min, p1max]× [p2min, p2max]× ·· · ×
[pNmin, pNmax] ⊂ RN. The parameterp(t) can also include
some elements ofx(t).
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Fig. 1. Main steps of Tensor Product Model Transformation based Control
Design

Main steps of Tensor Product Model Transformation based
control design is shown in Fig.1. First, the nonlinear analytical
model (1) is sampled onΩ. In other words, certain linear
models are selected for certain operational points. The model
(1) is estimated by linear interpolation between the sampled
points. If all intervals ofΩ are sampledNs times, there are
NN

s sampled systemsSs, which is usually cannot be handled
numerically. That is why the next step is the reduction of
the number of the sampled systems. This reduction is based
on high order singular value decomposition (HOSVD). The
price which should be paid for the reduction is that nonlinear
interpolation is necessary between the well selected linear
models. In other words, model (1) is estimated by nonlinear
combination of some well selected linear systems. The final
step is the controller design based on linear matrix inequality
(LMI) for the all systems simultaneously. All

The TP model transformation starts with the given LPV
model (1) and results in the TP model representation

ẋ≈S
N⊗

n=1
wn(pn)

(
x
u

)
(3)

that can always be transformed to the typical form:

(
ẋ(t)
y(t)

)
≈

R

∑
r=1

wr(p(t))Sr

(
x(t)
u(t)

)
(4)

where ∥∥∥∥∥S(p(t))−
R

∑
r=1

wr(p(t))Sr

∥∥∥∥∥≤ ε.

Here,ε symbolizes the approximation error,wr(p(t)∈ [0,1]
are the coefficient functions. Let the size ofSr is O× I in the
followings. For further details about TP model transformation,
please, refer to [4], [5], [16]. The convex combination of the
LTI vertex systems is ensured by the conditions:

Definition 1 The model (4) is convex if:

∀r ∈ [1,R],p(t) : wr(p(t)) ∈ [0,1] (5)

∀p(t) :
R

∑
r=1

wr(p(t)) = 1 (6)

This simply means thatS(p(t)) is within the convex hull of
the LTI vertex systemsSr for any p(t) ∈Ω.

The matrixS(p(t)) has a finite element TP model represen-
tation in many cases (ε = 0 in (4)). In this case, the TP model
is said to be exact.

The TP model transformation finds the minimal number of
LTI systems in exact case. If finite element TP model does
not exist then the TP model transformation helps the trade-off
between the number of LTI vertex systems and theε [5]. The
TP model transformation offers options to generate different
types of the weighting functionsw(·). Different weighting
functions determine different types of convex hulls of the given
LPV model. For instance in the case of generating tight convex
the TP model transformation results in LTI systems, where as
many of the LTI systems as possible are equal to theS(p(t))
over somep(t) ∈ Ω and the rest of the LTI’s are close to
S(p(t)) (in the sense ofL2 norm).

As an alternative way of LMI based control design the PDC
framework was introduced by Tanaka and Wang [6]. The PDC
design framework determines one LTI feedback gain to each
LTI vertex systems of a given TP model. The framework starts
with the LTI vertex systemsSr , and results in the vertex LTI
gainsFr of the controller. These gainsFr are computed by the
LMI based stability theorems. After having theFr , the control
value u(t) is determined by the help of the same TP model
structure as used in (4):

u(t) =−
(

R

∑
r=1

wr(p(t))Fr

)
x(t). (7)

The LMI theorems, to be solved under the PDC framework,
are selected according to the stability criteria and the desired
control performance. For instance, the speed of response,
constraints on the state vector or on the control value can be
considered via properly selected LMI based stability theorems.

III. C ASE STUDY OF THESINGLE PENDULUM GANTRY

The Single Pendulum Gantry system is used for educational
purposes at University of Zagreb, Croatia. It is an experimental
testbed, and the goal is to design, compare and evaluate several
controller approaches. For more details about the testbed,
please, refer to [17], [18].

Let us consider the stabilization problem as shown in
Figure 2. Only a brief discussion is presented here, for
detailed description, please, refer to [17], [18]. Lettingx =(
x1 x2 x3 x4

)T =
(
xc ẋc α α̇

)T
, the equations of mo-

tion in linear parameter-varying state-space form is:

ẋ = A(x)x+B(x)u, (8)
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Fig. 2. Schematic of the Single Pendulum Gantry model

where

A(x) =




0 1 0 0
0 a1/ax a2/ax a3/ax

0 0 0 1
0 a4/ax a5/ax a6/ax


 ,B(x) =




0
b1/ax

0
a2/bx


 ,

a1 = −(Ip +Mpl2
p)

(
ηgK2

gηmKtKm

Rmr2
mp

+Beq

)

a2 =
M2

pl2
pgcos(x3)sin(x3)

x3

a3 = (M2
pl3

p + lpMplp)sin(x3)x4 +MplpBpcos(x3)

a4 = Mplpcos(x3)

(
Beq−

ηgK2
gηmKtKm

Rmr2
mp

)

a5 =
−(Mc +Mp)Mplpsin(x3)

x3

a6 = −(Mc +Mp)Bp−M2
pl2

pcos(x3)sin(x3)x4

ax = (Mc +Mp)Ip +McMpl2
p +M2

pl2
psin2(x3)

b1 = −(IpMplp)2 ηgKgηmKt

Rmrmp

b2 = −Mplpcos(x3)
ηgKgηmKt

Rmrmp

The parameters of the experimental system are given in
Table I.

A. TP model representations of the Single Pendulum Gantry

Observe that the nonlinearity is caused by state values
x3(t) and x4(t). The operation range of the pendulum’s tip
is limited to ±25deg for safety reasons, and the angular
acceleration for the motor is maximum0.7 rad

s . For the TP
model transformation we define the transformation space as
Ω = [−27

180π, 27
180π]× [−0.8,0.8] (note that these intervals can

be arbitrarily defined). Let the density of the sampling grid be

137×137. The sampling results inAs
i, j andBs

i, j , wherei, j =
1. . .137. Then we construct the matrixSs

i, j =
(
As

i, j Bs
i, j

)
,

and after that the tensorSs ∈ R137×137×4×5 from Ss
i, j . The

TP transformation is made by the beta version of a Matlab
toolbox. If we execute HOSVD on the first two dimensions of
Ss then we find that the rank ofSs on the first two dimensions
are7 and2 respectively.

The singular values are as follows in the dimensionx3:
σ1,1 = 1609.4, σ1,2 = 206.72, σ1,3 = 12.604, σ1,4 = 10.719,
σ1,5 = 2.3109, σ1,6 = 0.14075, σ1,7 = 0.001854, and in the
dimensionx4: σ2,1 = 1622.7, σ2,2 = 10.965. This means that
the SPG system can be exactly given as convex combination
of 7× 2 = 14 linear vertex models (theL2 numerical error
of the TP model transformation for exact model is less than
10−12). The TP model transformation describes SPG system
as:

S(p) =
14

∑
r=1

wr(x3,x4)(Arx+Bru) . (9)

As in most cases it is to expensive in computational sense
to work with 14 affine models, and in real world situations the
actuators accuracy is much worth than the modelling accuracy,
it is possible to reduce the model. If we only keep the four
biggest singular values in dimensionx3 and keep the two
singular values in dimensionx4, the system can be reduced to
8 affine models. The theoretical maximumL2 approximation
error is the sum of the discarded singular values the means
σ1,5 + σ1,6 + σ1,7 = 2.4535, however by checking the actual
L2 error for 10000 test points, an average maximal error of
0.080307is received. Thus, the system can be reduced to a
system of half the complexity while it is still accurate enough
for real world experiments. The resulting basis functions are
depicted in Figure 3.

The LTI system matrices of the affine model are:

A1 =




0 1.0000 0 0
0 −11.2630 1.2457 −0.0192
0 0 0 1.0000
0 22.8870 −24.2374 −0.0311


 B1 =




0
1.4794

0
−3.0061




A2 =




0 1.0000 0 0
0 −11.2906 1.2657 0.0270
0 0 0 1.0000
0 23.1794 −24.3744 −0.1306


 B2 =




0
1.4830

0
−3.0455




A3 =




0 1.0000 0 0
0 −11.8223 1.6427 0.0052
0 0 0 1.0000
0 28.5811 −26.9299 −0.0852


 B3 =




0
1.5528

0
−3.7540




A4 =




0 1.0000 0 0
0 −12.4388 2.1008 0.0066
0 0 0 1.0000
0 35.3681 −30.0863 −0.0901


 B4 =




0
1.6338

0
−4.6455




A5 =




0 1.0000 0 0
0 −11.2630 1.2457 0.0275
0 0 0 1.0000
0 22.8870 −24.2374 −0.1316


 B5 =




0
1.4794

0
−3.0061




A6 =




0 1.0000 0 0
0 −11.2906 1.2657 −0.0185
0 0 0 1.0000
0 23.1794 −24.3744 −0.0324


 B6 =




0
1.4830

0
−3.0455



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TABLE I

PARAMETERS OF THESPGSYSTEM

Description Parameter Value Units
Equivalent viscous damping coefficient Beq 5.4 N ms/rad
Viscous damping coefficient Bp 0.0024 N ms/rad
Planetary gearbox efficiency ηg 1 —
Motor efficiency ηm 1 —
Gravitational constant of earth g 9.81 m/s2

Pendulum moment of inertia Ip 0.0078838 kg m2

Rotor moment of inertia Jm 3.9001e-007 kg m2

Planetary gearbox gear ratio Kg 3.71 —
Back electro-motive force constant Km 0.0076776 Vs
Motor torque constant Kt 0.007683 Nm/A
Pendulum length from pivot to COG lp 0.3302 m
Lumped mass of the cart system Mc 1.0731 kg
Pendulum mass Mp 0.23 kg
Motor armature resistance Rm 2.6 Ω
Motor pinion radius rmp 0.00635 m
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Fig. 3. Weighting functions of the TP modelon dimensionsx3(t) andx4(t)

A7 =




0 1.0000 0 0
0 −11.8223 1.6427 0.0053
0 0 0 1.0000
0 28.5811 −26.9299 −0.0855


 B7 =




0
1.5528

0
−3.7540




A8 =




0 1.0000 0 0
0 −12.4388 2.1008 0.0063
0 0 0 1.0000
0 35.3681 −30.0863 −0.0894


 B8 =




0
1.6338

0
−4.6544




A linearized model is selected for the conventional state
feedback control design

A lin =




0 1 0 0
0 −11.651 1.521 0.0049
0 0 0 1
0 26.845 −26.109 −0.0841


 Blin =




0
1.530

0
−3.526


 (10)

IV. CONTROLLER DESIGN

We compare the control performances to various different
alternative solutions.

A. Conventional controller based on pole placement

CONTROLLER 1: The poles of the closed loop linearized
system (10) with state feedback are selected in the following
way

Poles=




−1.8182+1.9067i
−20

−1.8182−1.9067i
−40


 (11)

The state feedback control is

u =−Fx, F =
(
160 88 −210 23

)
(12)

B. Derivation of TP based controllers

In the present case the controller (7) has the following form:

u =−
(

8

∑
r=1

wr(x3,x4)Fr

)
x, (13)

Two methods are presented to define the feedback gainsFr

for the eight systems.
CONTROLLER 2: The feedback gainsFr are selected

separately for the all systems to place closed loop system poles
to (11).

CONTROLLER 3: We design here a controller capable
of asymptotically stabilize the SPG and satisfy the given
constraints. We apply the following LMIs. The derivations and
the proofs of these theorems are fully detailed in [6].

Theorem 1 (Asymptotic stability) Affine model (4) with
control value (7) is asymptotically stable if there existX > 0
and M r satisfying equations

−XAT
r −ArX +MT

r BT
r +BrM r > 0 (14)

for all r and

−XAT
r −ArX−XAT

s −AsX+ (15)
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+MT
s BT

r +BrM s+MT
r BT

s +BsM r ≥ 0.

for r < s ≤ R, except the pairs (r,s) such that
wr(p(t))ws(p(t)) = 0,∀p(t), and where the feedback gains
are determined form the solutionsX and M r as

Fr = M rX−1. (16)

In order to satisfy the constraints defined earlier, the fol-
lowing LMIs are added to the previous ones.

Theorem 2 (Constraint on the control value) Assume that
‖x(0)‖ ≤ φ, wherex(0) is unknown, but the upper boundφ
is known. The constraint‖u(t)‖2 ≤ µ is enforced at all times
t ≥ 0 if the LMIs

φ2I ≤ X(
X M T

i
M i µ2I

)
≥ 0

hold.

Theorem 3 (Constraint on the output) Assume that
‖x(0)‖ ≤ φ, wherex(0) is unknown, but the upper boundφ
is known. The constraint‖y(t)‖2 ≤ λ is enforced at all times
t ≥ 0 if the LMIs

φ2I ≤ X(
X XCT

i
CiX λ2I

)
≥ 0

hold.

The bounds of the control value and the output is guaranteed
by Theorem 2 and 3. Thus we solve these LMIs for the
constrains together with the LMIs of Theorem 1 to guarantee
asymptotic stability. By using the LMI solver ofMATLAB

Robust Control Toolbox, the following feasible solution and
feedback gains are obtained for the controller:

F1 =
(
118.3947 51.3126 −45.6237 16.4703

)

F2 =
(
118.0638 51.3291 −46.1783 16.4069

)

F3 =
(
117.5669 52.2320 −50.2620 15.9900

)

F4 =
(
141.1224 63.2115 −56.1795 19.1934

)

F5 =
(
118.2570 51.2608 −45.6394 16.4747

)

F6 =
(
118.2075 51.3926 −46.1995 16.3999

)

F7 =
(
117.5665 52.2318 −50.2620 15.9900

)

F8 =
(
141.1182 63.2101 −56.1805 19.1918

)

V. EXPERIMENTAL RESULTS

The experimental results with the three controllers are
presented in Fig. 4-6, The reference was a pulse train. In the
first set of plots (Fig. 4) the time functions of the reference
and the load position is shown. In the second set of plots (Fig.
5), the time functions of the angle of the load are shown. As
it was expected, the performances ofCONTROLLER 1 and
CONTROLLER 2 are quite similar since they are set to have
the same poles. TheCONTROLLER 3 seems to be faster but

there are no significant difference among the three responses.
The main difference appears in the control activity. According
to Fig. 6, theCONTROLLER 3 has the most smooth time
functions.

VI. CONCLUSION

This paper presented a method by which a controller can
be automatically designed for a non linear system using
commercial Matlab functions. The experimental results proved
that this method can produce a controller which can work in
a real situation.
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Fig. 4. The position of the loadMp, comparison of the performances of three controllers
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Fig. 5. The the angle of the load (Mp), comparison of the performances of three controllers
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Fig. 6. The control signal, comparison of the performances of three controllers
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