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Abstract

Applying a combinatorial lemma a new sufficient condition for the
indecomposability of integer polynomials is established.

1 Introduction

In [3], Bilu and Tichy proved an explicit finiteness criterium for the polyno-
mial diophantine equation f(x) = g(y). Their result generalizes a previous
one due to Schinzel [8, Theorem 8], who gave a finiteness criterium under
the assumption (deg f,deg g) = 1, see also [9]. These criteria are closely
connected with decomposability properties of the polynomials f and g. A
polynomial f ∈ C[x] is called indecomposable (over C) if f = g◦h, g, h ∈ C[x]
implies deg g = 1 or deg h = 1. Two decompositions of f , say f = g1 ◦ h1

and f = g2 ◦ h2 are equivalent if there exists a linear function L such that
g2 = g1 ◦ L, h2 = L−1 ◦ h1 (see [8, pp. 14–15]).

The criterium of Bilu and Tichy has been already applied to several Dio-
phantine equations of the form fn(x) = gm(y), where (fn) and (gn) are se-
quences of classical polynomials (see [1, 2, 5, 7, 10, 11, 12]). In these results,
the indecomposability of corresponding polynomials was usually proved us-
ing some analytical properties of these polynomials. In particular, in [5], the
equation Fm(x) = Fn(y) was considered, where (Fn) is the sequence of Fi-
bonacci polynomials defined by F0(x) = 0, F1(x) = 1, Fn+1 = xFn(x)+Fn−1

for n ≥ 1. It was proved that Fn is indecomposable for even n, while for n
odd there is only one (up to equivalence) decomposition of Fn. In [4], general
criteria for indecomposability of polynomials were obtained in terms of the
degree and two leading coefficients. In particular, the above mentioned re-
sult from [5] now follows from the fact that Fn(x) = xn−1 +(n−2)xn−3 + · · ·
and gcd(n− 1, n− 2) = 1.
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In this paper, we will show that from these assumptions on the degree and
on the leading coefficients it is possible to obtain much stronger conclusions
related to the indecomposability of the polynomial.

2 Results

Lemma 1 Let l ≥ 2. Denote by Y the set of all l-tuples α = (α1, α2, . . . , αl)
of nonnegative integers satisfying

α1 · 1 + α2 · 2 + · · ·+ αl · l = l

1 ≤ α1 + α2 + · · ·+ αl ≤ m. (2.1)

Then ∑
α∈Y

(m− 1)!

(m−
∑l

i=1 αi)!
· l!∏l

i=1 αi! ·
∏l

i=1(i!)αi
= ml−1.

Proof. Let us denote by S(l, j) the Stirling number of the second kind, i.e.
the number of ways to partition a set of l elements into j nonempty subsets.
If we denote by αi the number of subsets with i elements, we immediately
obtain the following formula:∑

α ∈ Y

α1 + · · · + αl = j

l!∏l
i=1 αi! ·

∏l
i=1(i!)αi

= S(l, j). (2.2)

It is well known (see e.g. [6, Section 6.1]) that the Stirling numbers satisfy
the recurrence

S(l, 0) = 0, S(l, j) = S(l − 1, j − 1) + jS(l − 1, j), for j ≥ 1,

and the summation formula

l∑
j=0

x(x− 1)(x− 2) · · · (x− j + 1)S(l, j) = xl. (2.3)

Note that if x = m, where m is a nonnegative integer, then the terms with
j > m in (2.3) vanish. Also, S(l, j) = 0 for j > l. Therefore, we have

m∑
j=0

m!
(m− j)!

S(l, j) = ml. (2.4)
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Applying formula (2.2) and (2.4), we obtain

∑
α∈Y

(m− 1)!

(m−
∑l

i=1 αi)!
· l!∏l

i=1 αi! ·
∏l

i=1(i!)αi
=

m∑
j=1

(m− 1)!
(m− j)!

S(l, j) = ml−1.

Theorem 1 Let f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x] and h(x) = xk +

ck−1x
k−1 + · · ·+ c0 ∈ C[x], k ≥ 2. Assume that

f(x) = (h(x))m + b · (h(x))m−1 + H(x), (2.5)

with b ∈ C, H(x) ∈ C[x] and deg H(x) ≤ n − k − 2. Then ak+1
n−1 ≡ 0

(mod m).

Proof. Denote a := an−1. By comparison of the coefficients, we find
that

mck−1 = a, (2.6)(
m

2

)
c2
k−1 + mck−2 ∈ Z. (2.7)

From (2.6) and (2.7), it follows that

(m− 1)a2 + 2! ·m2ck−2 ∈ mZ

and
2! ·m2ck−2 ≡ a2 (mod m).

We claim that

l! ·mlck−l ≡ al (mod m), for l = 1, 2, . . . , k − 1. (2.8)

Consider the following system of equations

α0 · k + α1 · (k − 1) + · · · = mk − l

α0 + α1 + · · · = m (2.9)
αi ∈ Z, αi ≥ 0.

Let X denote the set of all solutions of the system (2.9). Then the coefficient
with xn−l on the right hand side of (2.5) is equal to∑

(α0, α1, . . .) ∈ X

m!∏
αi!

cα1
k−1c

α2
k−2 · · · .
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The solutions of system (2.9) correspond to the solutions of system (2.1)
from Lemma 1. Now we have that( ∑

(α1, . . . , αl) ∈ Y

(α1, . . . , αl) 6= (0, . . . , 0, 1)

m!

(m−
∑l

i=1 αi)!
∏l

i=1 αi!
cα1
k−1c

α2
k−2 · · · c

αl
k−l

)
+mck−l (2.10)

is an integer. If (α1, . . . , αl) 6= (0, . . . , 0, 1), then αl = 0 and, by induction
hypothesis, the summands in (2.10) have the form

(m− 1)!

(m−
∑l

i=1 αi)!
· al + mT∏l

i=1 αi!
∏l

i=1(i!)αi ·ml−1
,

for an integer T . Multiplying by l!ml−1, we obtain∑
(α1, . . . , αl) 6= (0, . . . , 0, 1)

(m− 1)!

(m−
∑l

i=1 αi)!
· l!al∏l

i=1 αi!
∏l

i=1(i!)αi
+ l!mlck−l ∈ mZ.

Indeed, (m−1)!

(m−
Pl

i=1 αi)!
is obviously an integer, and l!Ql

i=1 αi!
Ql

i=1(i!)αi
is also an

integer since it is the number of all partitions of {1, . . . , l} in α1 blocks of
size 1, α2 blocks of size 2, ... , αl blocks of size l. Now the congruence (2.8)
follows directly from Lemma 1 and the fact that for α = (0, . . . , 0, 1) ∈ Y ,
it holds

(m− 1)!

(m−
∑l

i=1 αi)!
· l!∏l

i=1 αi!
∏l

i=1(i!)αi
= 1.

By considering the coefficients with xn−k, we obtain

k!mkc0 + bmk−1k! ≡ ak (mod m). (2.11)

From the coefficient with xn−(k+1) (and writing formally c−1 = 0), we obtain

m · c−1 + m(m− 1)ck−1c0 + (terms without c0) + (m− 1)bck−1 ∈ Z.

Using (2.6) and (2.11), we get

(m− 1)a
(

ak

k!mk
− b

m
+

ms

k!mk

)
+ (terms without c0) +

(m− 1)ab

m
∈ Z,

for an integer s. Multiplying this relation by (k + 1)!mk, the sum of terms
without c0, multiplied by (k + 1)!mk, is congruent to kak+1 modulo m.
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Indeed, the corresponding sum from Lemma 1 does not contain solutions
(0, . . . , 0, 1), (1, 0, . . . , 0, 1, 0) ∈ Y , and the contribution of these solutions is

(m− 1)!
(m− 1)!

· (k + 1)!
(k − 1)!

+
(m− 1)!
(m− 2)!

· (k + 1)!
k!

≡ −k (mod m).

Hence, we obtain

(k + 1)(m− 1)ak+1 + kak+1 ≡ 0 (mod m),

which clearly implies ak+1 ≡ 0 (mod m).

Remark 1 Let us note that the assumption (2.5) of Theorem 1 implies that
in the Laurent series expansion of (f(x))1/m (in powers of 1

x) the coefficient
of 1

x vanishes. On the other hand, from (f(x))1/m = xk(1+an−1x
−1+· · ·)1/m

one can show that this coefficient has the form ak+1
n−1 + Am

1+Bm , for integers
A,B, which leads to conclusion that ak+1

n−1 ≡ 0 (mod m).

Corollary 1 If f(x) = xn + an−1x
n−1 + · · · ∈ Z[x] is a monic polynomial

satisfying gcd(an−1, n) = 1, then f is indecomposable.

In [4], the first two authors considered also the decomposability problem
for even and odd polynomials. They have shown that a decomposition of an
odd polynomial is equivalent to a decomposition of the form G◦H, where G
and H are odd polynomials. On the other hand, let f = g ◦h be a decompo-
sition of an even polynomial f . Then h is an even polynomial, or g = G ◦L
and h = L−1 ◦H, where G is even, H is odd and L is a linear polynomial.
Furthermore, they proved the following indecomposability results:

(i) Let f(x) = xn + an−2x
n−2 + · · · ∈ Z[x] be an odd polynomial. If

gcd(an−2, n) = 1, then f is indecomposable.

(ii) Let f(x) = x2n + an−2x
2n−2 + · · · ∈ Z[x] be an even polynomial and

define g(x) = f(
√

x). Assume that gcd(an−2, n) = 1. Then every
decomposition of f is equivalent to one of the following decompositions:
f = g(x2), f =

(
xp(x2)

)2. The second case appears if and only if
g(x) = xp(x)2 for some polynomial p(x) ∈ Z[x].

Here we state generalizations of these results, which can be proved in the
same manner as Theorem 1. Alternatively, one can use the Laurent series
expansions, as in Remark 1. The only difference is that if the polynomials f
and h from Theorem 3 are even, than the assumption of Theorem 3 implies
vanishing of the coefficient of 1

x2 , instead of the coefficient of 1
x .
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Theorem 2 Let f(x) = xn + an−2x
n−2 + · · · + a1x ∈ Z[x] be an odd poly-

nomial. Assume that
f(x) = (h(x))m + H(x),

with h(x),H(x) ∈ C[x], deg h(x) = k and deg H(x) ≤ n − k − 3. Then the
polynomial h(x) is odd and it holds a

(k+1)/2
n−2 ≡ 0 (mod m).

Theorem 3 Let f(x) = xn + an−2x
n−2 + · · · + a0 ∈ Z[x] be an even poly-

nomial. Assume that
f(x) = (h(x))m + H(x),

with h(x),H(x) ∈ C[x], deg h(x) = k ≥ 1 and deg H(x) ≤ n − k − 3. If k

is odd, that the polynomial h(x) is odd and a
(k+1)/2
n−2 ≡ 0 (mod m), and if

k is even, then h(x) is even and a
(k+2)/2
n−2 ≡ 0 (mod m).

As a corollary of Theorems 1–3, we obtain a new proof of the character-
ization of all decompositions of Fibonacci polynomials.

Corollary 2 (i) The Fibonacci polynomials Fn cannot be represented in
the form Fn(x) = (h(x))m + H(x), where m ≥ 2 and deg h + deg H ≤
n− 4.

(ii) The polynomial Fn is indecomposable for even n, while for odd n the
only decomposition (up to equivalence) of Fn is Fn(x) = fn(x2), where
fn(x) = Fn(

√
x).

Proof. The first statement of the corollary follows from Theorems 2 and
3. Indeed, if Fn(x) = (h(x))m + H(x), where m ≥ 2 and deg h + deg H ≤
n− 4, then deg H ≤ deg Fn−deg h− 3. Therefore, we may apply Theorems
2 and 3 to the polynomials Fn(x) = xn−1 + (n − 2)xn−3 + · · ·. We get
(n − 2)b(deg h+1)/2c ≡ 0 (mod m), for a divisor m > 1 of n − 1, which is a
contradiction.

Let us prove the statement (ii). Assume first that n is even. Then
Fn is an odd polynomial. If Fn is decomposable, then by [4, Lemma 2]
we have Fn = K ◦ L, where K and L are odd monic polynomials and
deg K, deg L ≥ 3. Hence, Fn(x) = (L(x))m + H(x), where m = deg K and
deg H ≤ (m− 2)deg L = deg Fn − 2deg L ≤ n− deg L− 4, a contradiction.

Assume now that n is odd. Then Fn is an even polynomial. Let Fn =
K ◦L be a decomposition of Fn, where K and L are monic polynomials. By
[4, Lemma 3], we may assume that L is odd or even polynomial. If L is odd
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and deg L ≥ 3, then K is even, and we have Fn(x) = (L(x))deg K + H(x),
where deg H ≤ n− deg L− 4, and we get a contradiction, as before.

Assume finally that L is an even polynomial, and define l(x) = L(
√

x).
Now we have fn = K ◦ l. Let K(x) = xm + bxm−1 + · · ·. If deg l ≥ 2,
then fn(x) = (l(x))m + b(l(x))m−1 + H(x), where deg H ≤ (m − 2)deg l =
deg fn − 2deg l ≤ deg fn − deg l − 2. Thus, we may apply Theorem 1,
and we obtain a contradiction. Hence, we conclude that deg l = 1 and
deg L = 2, and this implies that the decomposition Fn = K ◦L is equivalent
to Fn(x) = fn(x2).
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