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Abstract—In this paper a new class of globally stable degree or direct transmission term. These conditions are gen-
finite dimensional repetitive control[er for robot manipulator is  erally not satisfied in robot control applications because they
proposed. The passivity based design of the proposed repetitive gre jmply acceleration measurement. Further, the positive

controller avoid the problem of tight stability conditions and feedback | dt te th iodic si ld
slow convergence of the conventional, internal model based, eedback loop used to generate the periodic signal decreéases

repetitive controllers. The passive interconnection of the con- the stability margin. In the end, the repetitive controller
troller with nonlinear mechanical systems provide stability is likely to make the system unstable. To enhance the

margin which is the same as stability margin of the controller  robustness of these repetitive control schemes, the repetitive
with exact feed-forward compensation of robot dynamics. The ,,qate rule is modified to include the so-called Q-filter [2],
simulation results illustrate the convergence properties of the ) L .
proposed controller. [3].Unfortun§tely, the use of the Q-filter eliminates the ability
of the tracking errors to converge to zero. Therefore, the
I. INTRODUCTION trade-off between stability and tracking performance has
been considered to be an important factor in the repetitive

An important subject in control of mechanical systems igontrol system.
tracking periodic reference signals and attenuating periodic The another problem is that, due to infinite dimensional
disturbances. Many tracking systems, such as computer digiinamics of delayed line, a large memory space is required
drives, rotation machine tools, or robots, have to deal witfpr digital implementation of the control law. To overcome
periodic reference and/or disturbance Signals. A promisirmis prob]em, in [6] a finite dimensional approximation of
control approach for achieving tracking of periodic refergelayed line is proposed in the form of cascade connection
ences signal is learning control or repetitive control. of N harmonic oscillators and one integrator.

In most of the conventional approaches to robot trajectory The advantages of internal model controllers are that it
control, including parametric adaptive control, it is necessany linear, making analysis and implementation easier. The
to compute in real time the so called inverse dynamicgisadvantages are that the stability is almost entirely gov-
equations of the robot or regression matrix. However, dugrned by the feedback loop of the repetitive compensator. The
to the model uncertainties, it is difficult to derive the exactrequency response of the system is altered and robustness
description of the system. In other side, using neural nefo noise and unmodelled dynamics is reduced.
works for learning feed-forward control has some drawback: The external model controllers are based on feedforward
slow converges and relatively large tracking error. compensation of inverse dynamics. The disturbance model

There have been many studies in the topic of repetitivie adjusted adaptively to match the actual disturbance. The
control for controlling of mechanical systems in an iterativecentral idea in [4] is that the disturbance can be represented
manner. In contrast with conventional approaches to robak a linear combination of the basis functions like Fourier
trajectory control, repetitive control schemes are easy to ingeries expansion. On this way, an adaptive control law with
plement and do not require exact knowledge of the dynamiegressor matrix containing basis functions is obtained. In [5]
model. unknown disturbance functions are represented by integral

Repetitive controllers can be classified as being eith@&quations of the first kind involving a known kernel and
internal model based or external model based [1]. Controlletsknown influence functions. The learning rule indirectly
using the internal model are linear and have periodic signaktimates the unknown disturbance function by updating the
generators [2], [3]. In external model controllers the disturinfluence function.
bance model is placed outside the basic feedback loop [4], The main advantage of the external model approach is
[5]. that there are no significant influence on the stability margin

The internal model controllers are based on a delayeaf the control system. The map between the feedforward
integral action of the fornfl —exp(—s7))~! which produce function error and the tracking errors is strictly passive. Thus,
an infinite number of poles on imaginary axes. Howevethe control system is robust to the imprecise estimation of
the asymptotic convergence can only be guaranteed undke robot inverse dynamics. The disadvantage are that the
restrictive conditions in the plant dynamics - zero relativanalysis and implementation are more complex than for the



internal model based algorithms. have
In this paper a new class of internal model based repet-

itive controllers for robot manipulators is proposed. The 1M ()2 = M(y)zll < Farlle = yll 1=, ©)
proposed finite dimensional repetitive controller is founded  [C(z, 2)w — C(y, v)w|| < ke1llz — || lw]l +

on passivity based design and has structure in the form of + keoll 2| |z —yll Jwll, (7)
parallel cc_mngction oV Iingar oscillators and one integrgtor. lg(z) — gl < kyllz — yll, 8)
The passive interconnection of the controller with nonlinear o <k I )
mechanical systems has no influence on the stability margin 1€, y)2ll < keallyll l1=1)
which is the same as stability margin of controller with exact 11l. CONTROL PROBLEM FORMULATION

feed-forward compensation of robot dynamics [7], [8]. A. Finite-Dimensional Repetitive Controller

This paper is organized as follows. The robot dynamics o i . ]
The periodic reference trajectory(t) with the periodT

and its main properties are presented in Section Il. In - h -

Section IIl a class of finite dimensional internal modefc@n Pe represented in the form of Fourier series
based repetitive controllers is introduced and conditions for N

global asymptotic stability are established in Section IV. The  ¢,(t) = ag + Z[ak cos(kwt) 4 by, sin(kwt)], (10)
passivity properties of proposed controllers are considered in k=1

Section V. The simulation results are presented in Section V|, o

) : : . . Wherew = 2% is the fundamental frequency, ang, a; and
Finally, the concluding remarks are emphasized in Sectlobr}C arewsomeT: known constant vectorg y, ang, ax

VI We consider the control law given by
Il. ROBOT DYNAMICS ) )yt N
N N . u=—Kpg—Kpj—kp'|dld—Krzo— ) Qrix, (11)
The model ofn-link rigid-body robotic manipulator, in the b1
absence of friction and disturbances, is represented by 5+ 2wz, = Qu(d + ad), k=1,..,N, (12)

M(q)i+ Clg,9)d + g(a) =, 1 Fo=d+aq, (13)
where§ = ¢ — g4, ¢ = ¢ — ¢4 are the joint position error
and velocity, respectivelyy, is the time periodic desired
joint position represented by (10kp, Kp, K7, Qi (k =
1,..., N) aren x n constant positive-definite diagonal matrix,

whereq is then x 1 vector of robot joint coordinateg, is
the n x 1 vector of joint velocities,u is then x 1 vector
of applied joint torques and forced{ (q) is n x n inertia
matrix, C'(q, ¢)q is thenx 1 vector of centrifugal and Coriolis 1) .
torques andy(q) is then x 1 vector of gravitational torques kp_ anda are some positive constants.

and forces, obtained as the gradient of the robot potential The deswed. joint posmorqd Is assumed to be twice
energyU(q) continuously differentiable. In other words, we assume that

oU (q) exist a finite upper bounds on the norm of the desired
g(q) = . (2) velocity and acceleration, denoted Wy.||a; and ||Ga|laz-
9 The nonlinear derivative termg)nqné in control law (11)
We assume that the matrig'(q,q) is defined using the is introduced to ensure global asymptotic stability of closed-
Christoffel symbols. loop system [13].
The following well known properties of the robot dynam- The parallel interconnection oV harmonic oscillators
ics, [9], [10], [11], [12], are important for stability analysis. (12) and integrator (13) represents the internal model of
Property 1 The matrix M(q) — 2C(q,4) is skew- the periodic reference signal;(¢) including higher order

symmetric, i.e., harmonics which are induced by nonlinear robot dynamics,
. so that conditionV > N must be satisfied.
2T (M(q) —2C(q,¢))z =0, VzecR" 3) Remark 1 Note that repetitive controller (11)-(13) is not
o a finite dimensional approximation of delayed line as the
This implies repetitive controller proposed in [6]
M(q) = C(g,9) + Clg,9)"- 4) AR |
Gre) = {11 5 a4
Property 2 The inertia matrix) (q) is a positive definite k=1

symmetric matrix which satisfies which can be interpreted as a cascade connectidi liiear

2 T ) 12 oscillators and one integrator.
AmAMHIGI® < 4" M(q)g < Au{M}dl®,  (5)
B. Residual Robot Dynamics

Vr;h?rze)\r?é{rﬁ/[}xi?:dr;\]wi{]\?\/dlemtg; Sm(;tly poi;\tl'vf M= The dynamic model of robot manipulator (1) can be
uma aximum eigenvalues 81(q), respecively. rewritten in the following form

Property 3 (see e.g. [7], [8]) There exist positive constants ) ) .
kMa kCla kCQ andkg SUCh that for allﬁU, Y,z,v,w S an we M(Q)d + C(Q? q)q~ + h(d, Q> =Uu— f(qd, q'd7 dd)a (15)



where C. Error Equations
hG.q) = [M(q) — M(qa)lda + [C(q,d) — C(qa, 4a)lda + Introducing the change of variableg = 2 — 2, k =
+ 9(q) — 9(qa), (16) O 1o Vo with
is the so-calledesidual robot dynamicéntroduced in [14], 25 = —K; ao, (26)
[15] and zi = Q. by cos(kwt) — ag sin(kwt)], k=1,...,N,(27)
(94 4a: Ga) = M(qa)da + C(qa: da)da +9(aa):  (17) " the following error equations are obtained

represents the unknowaresired robot inverse dynamics

The function f(qq, 44, Ga) is a periodic function with the M(q)q +Cla:)q + h(g: @) = u+w(t; N +1), (28)

same fundamental frequency @gt) and can be represented . . ()21 2 ~ N .
by infinite Fourier series expansion u=—Kpq—Kpq—kp'llqlqd—Krzo — Z Qnzr, (29)
k=1
o _ z 2 2~ e ~ _
f(ad; 4, Ga) = ao + Z[@k cos(kwt) + by sin(kwt)], (18) ij +]i YAk = Qrla+aq), F=1. N, (30)
k=1 Zo =G+ aq, (31)

wherea, a, andb, are some unknown constant vectors. \here we used the Fourier series expansion (18) of the

The following property of the function(q, ¢) is important  f,nction £(qa, d4a Ga) and propertys; + k2w?zf = 0. The

in subsequent stability analysis. functionw(t; N +1) in (28) is the error in estimation of the
Property 4.By defining desired robot inverse dynamics which consists harmonics of
e1 = ky +karldallas + kealldall3s. (19) A1 order
¢a = kellalla, 20 0 .
2 = houlldalla (20) w(t N+1)= Y [arcos(kwt) + by sin(kwt)].  (32)
the norm of residual dynamics (16) satisfies (see [7], [8]) E=N+1
18(3, @)l < erllgll + e2gll- (21) Remark 2 From the equation (32) we can conclude that

the tracking error has zero harmonic content at the repetitive
frequency and its harmonics up 2 (whereN is the number
—(G+aq)"h(q,q) < aci]|d|® + e2llql® + of harmonic oscillators in the controller). Also, the bound on
+ (c1 + ac2)||d] 1ld]l- (22) the tracking error decreas_gs with In the limit N — oo the
above model of the repetitive controller works as well as the
The parameters; andc, can be estimated on the base ofideal infinity dimensional model in achieving perfect tracking

From the inequality (21) follows

Fourier representation of desired periodic signal (10) of periodic reference signals [18]. Note that this conclusion
N is valid only for twice continuously differentiable periodic
ey = kClew(ak + bp), (23) reference signals, and cannot be generalized for arbitrary
P periodic reference signals, as shown in [2]. In that ideal case
N fon 2 the stationary state of the system (15), (11)-(13) is qq,
er = kg +kar Y KW (g + by) + gg? (4) G=da 2 =2 k=01,..,N.
k=1

where we used propertigsin(kwt)| < 1 and|cos(kwt)| < IV. STABILITY ANALYSIS

L. We consider stability of the unperturbed systems (28)-
Remark 1 One of the simplest motion control scheme for(31), wherew(t; N + 1) = 0, by Lyapunov’s direct method.
the system (15) is PD control with feedforward compensatiopirst, we propose appropriate Lyapunov function candidate.
[16], [17] Then, global stability conditions on the controller gains are
(25) established. Finally, LaSalle invariance principle is invoked

to guarantee the asymptotic stability.
The local asymptotic stability of the control law (25) is
proven in [7] and conditions for global asymptotic stabilityA. Construction of Lyapunov Function
are established in [8]. Implementation of control law (25) e . . . -
Multiplying equation (28) with output variablg, = (¢ +

requires the exact knowledge of matri , C(q,q) and ) . . .
a g o), C(q, d) aq), equation (30) with output variablg, = Z;, equation

vector g(q). However, due to the model uncertainties, it is

difficult to derive the exact dynamic model of the robofl31) With output variabley; = Kz and summing all

manipulator. The main idea of using controller (11)_(13Logether, we get the nonli_near differential form which can
is model-free feedback compensation of periodic functio e separated in the following way

f(qa, da, da)- This idea will be more clarified through deriva- d . . o

tion of the error equations of the closed-loop system. 2V (@4, %0, 21, 21, s 2y, 20) = = WG, 9), (33)

u=—Kpj— Kpi+ f(qa,daia)-



(for more details see e.g. [13]) wheié = V; + V5 is the The functionW is positive definite if the following condi-

Lyapunov function candidate tions are satisfied
1 o o ~ o 1 o - (1)
Vi = 5" M(9)q+oq" M(q)q+ 50" Kpd + kp' > aker, (43)
1 T 1 1) 3 )\m{KP} > ¢y, (44)
=+ 70“? KD(j+ 7akD ||6H ) (34) (Cl + 20&62)2
2 3 Am{K Av{M (45
) S . & KD} > oK et — oy T tar{M} +c2(45)
Va = 550TK150 t3 Z Z 2k + §w2 Z k*% %, (35)  We can see that condition (39) is trivially implied by con-
k=1 k=1 ditions (44)-(45). So, the conditions (43)-(45) are the final
and —W is its time derivative stability criterions which guaranty global stability. Finally,
- - D)oy 2T 2 - - - ... by invoking the LaSalle invariance principle, we conclude
W = §"Kpi+kp ldlli"d — od" M(a)i — ad"Ca.07  aqumototic stabiliy.
+ aq" Kpi+ (44 aq)"h(G, q). (36) Note that stability conditions (44)-(45), for = 1, are ex-
B. Stability Conditions actly the same as local stability conditions in [8]. The global

stability of repetitive controller (11)-(13) is achieved by the
nonlinear derivative term whose galhg) satisfies condition
(43). So, the proposed repetitive controller practically has no
any influence on stability margin of the closed-loop system
what is obvious from stability conditions which does not
contain interaction gain§);. This fact is a consequence of

The following step is determination of conditions for
positive definiteness of the functioli and positive semi-
definiteness of the functiof/.

1) Positive definiteness of Lyapunov functiorhe func-
tion V; is positive definite for any positive definite matrix

R, so that passive interconnection of robot dynamics (1) with repetitive
VW= % (G+0d) M(q) (§+ od) — %aqu M(q)g+ controller (11)-(13).
L 1y V. PASSIVITY PROPERTIES OFREPETITIVE CONTROLLER
- §q (Kp +akp)d+ §akD lall™ (37) Consider dynamical systems represented by
Using property (5) we get 5= flou), )
Vv > %()\771{KP}+CX)\m{KD}7a2)\]w{M})Hq”2,(38) y = h(x,u), (47)

wherez € R”, y,u € R™, f(0,0) = 0 and h(0,0) =
0. Moreover f(z,u) and h(z,u) are supposed sufficiently
AidKp} + aXu{Kp} > a* Ay {M}. (39) smooth such that the system is well-defined.
. . _ o Definition 1.(see [19]) The system (46)-(47) is said to be
2) Negative semi-definiteness of time derivative of Lyasaqsive if there exists a continuously differentiable positive

punov function: The following step is derivation of the gemigefinite functior/ () (called the storage function) such
condition which ensure that time derivative of Lyapunoyy ..

that will be satisfied when

function is negative semi-definite function, i.&\, > 0. T : 2 2
First, notice that the upper bound on tegihC(q, ¢)§ in w'y 2 Vi) +eull”+ llyl” + pple), (48)
(36) can be estimated by where ¢, 4, and p are nonnegative constants, agdzx) :
o o o R™ — R is a positive definite function of. The termpi(x)
' C(a,9)q < akeallal 14l 4] < is called the state dissipation rate. Furthermore, the system

< kelldallar 141l ||q|| + ke |d]| HqHz ,(40) is said to be: passive = § = p = 0; input strictly passive
if 9 =p =0 ande > 0; output strictly passive it =p =0

where we used triangle inequaliyj(| < ||q| + [ldall- andd > 0; state strictly passive if =& = 0 andp > 0.
Applying properties (5), (22) and (40) we get Proposition 1.The robot dynamics
212 S R ~
W > (A {Kp} — adu{M} — ) [|g]|” + M(q)q+C(q,9)q + G, q) = ur +wi,  (49)
+ an{Kp} = e))[ldl* — (e + 2ae2) gl lal| + in closed-loop with nonlinear PD regulator
(1) IR . .
+ (k) — aken)|d] 1|d] > o. (41) u = ~Kpi — Kpi — k5|34, (50)

Finally, W can be bounded by a quadratic plus a cubig state strictly passive from the input torque to the output
function y1 = § + g, with a radially unbounded positive definite
~ T ~ . - .. .
lll lldll 1) a2 storage functiorl/; defined by (34) and the state dissipation
= [ G R H‘jH +(kp —ake)llgll al|”, (42) rate is given by,
with the matrixR given by wiy > Vi(q, q) + W (4, Q). (51)
R a(An{Kp} —c1) —1(c1 + 2ac2) Note thatV; is positive definite andl is positive semidef-
T | i1 +2ac) (An{Kp}—alu{M}—c) |  inite function if conditions (44)-(45) are satisfied.



Proposition 2.The system Proposition 4.The feedback interconnection of the system

. ~ (49)-(50) with the system (52)-(53) has finifg gainy < +

2kt KWz = Qpwa, k=1, N, (52)  wheres is defined by (57). For proof see e.g. [19]. ’

Zp = w2, (53) From above mentioned propositions follows two important

properties of the proposed repetitive controller. First, compar-

ing expression (61) with (51) and (54) we can conclude that

robot manipulator in closed loop with repetitive controller

has the same stability margin as both subsystems separately.
wng > Vg(go,gh 3, gN,gN), (54) In other words, passive feedback interconnection of the

proposed repetitive controller with robot dynamics doesn't
Note thatV; is positive definite for any positive definite gecrease stability margin what is characteristics for classical

is passive from the inputv, to the outputy, = Krzg +
fo:l Qrzr with a radially unbounded positive definite
storage functiorl; defined by (35),

matrix KI_-. _ _ internal model based repetitive controllers [2] and their finite
Proposition 3.The feedback interconnection of the systemjimensional representations [6]. Second, the map between
(49)-(50) with the system (52)-(53), the inverse dynamics estimation errer and output error

(55) ¢+ oq is strictly passive what means that the control system
is robust to the imprecise estimation of the robot inverse

is output strictly passive from the input torqueto the output ~ dynamics.

Y = §+ ag, with a radially unbounded positive definite

wy = —Y2 + W, W2 = Y1,

storage functiont = V; + V5, VI. SIMULATION EXAMPLE
T ’ 2
wiyr 2 V A+ 8y % 6) " The manipulator used for simulation is a two revolute
where jointed robot (planar elbow manipulator) with numerical
ajag — ia% 57 values of robot parameters which have been taken from [20].
= ay + a2ay + aas’ (57) The desired periodic reference trajectories are
and
B 1+ > sin(kwt) _1 223: cos(kwt) (64)
a1 = An{Kp} — ady{M} — cs, (58) 1173 = h+1 a2z = R
as = a(A{Kp} — 1), (59)
az = c1 + 2acs. (60) Wherew = 2 rad/s and the number of oscillators is

N = 12. The controller gains are chosen in accordance
Proof. Insertingw; = —y» +w, we = y1 in (51) and (54) with stability conditions (43)-(45) as(p = diag{50, 50},
we get Kp = diag{50,50}, k) = 20 anda = 0.5. The matrix
i Loz .z . f integral gains and interconnection matrices are arbitrary
Ty > . ° : .
Wiy 2 VAG @ Zo 1, 21y s 20 2N) A WG ). (B oo ask; = diag{50,50} and Q) = diag{20, 20} for
Further, inserting inequality (41) with notation (58)-(60) ink =1,..., V.

(61), and comparing with (56) we get In Fig. 1. is shown the comparison of positions of robot
" ) 2 } L manipulators and the reference signals. In Fig. 2. we can
wiyr 2 V4a ||Q|| + ag |l — a3/l HCIH > see positions errors of the repetitive controllers (RC) with

> V+5||q"+aq‘||2, (62) Qr = 0for & = 1,...,12 (which is actually a nonlinear

] ) o ) PID controller) and positions errors of repetitive controllers
The final step is determination of the parameltevhich sat-  \jth (, = diag{20,20}. From the figure we can conclude
isfies the above mentioned inequality. Rearranging inequalififat the PID controller can not asymptotically tracking the
(62) and using property of scalar produgty < (|4l [|¢[.  periodic reference signal. In contrast with PID controller, the
we get the following inequality repetitive controller shows exponential convergence toward
B 2 L aevA2 ~ 11z an arbitrary small tracking error which depends on the
(a1 =9) Hg“ + (a2 = a®9)[1g]1* — (a5 +209) ]| [lal| = number of oscillatorsV.
_ ||f§ | (az — a?9) —%(a?, + 2ad) ||§|| >0 The dependence of tracking error and convergence rate on
4|l —3(as+2ad) (a1 —0) lal|] =" the number of oscillatora/ is illustrated in Fig. 3. From the
which is satisfied for figure we can see th_at the convergence rate is mdependent
on the number of oscillators. It is expected because the time
(a1 — 6)(az — a?8) > l(a?) + 2a6)2. (63) derivative of the Lyapunov function doesn't depend on the
4 number of oscillatorsN. In other side, increasing in the
Solving the inequality (63) with respect to parameitere get number of oscillators decrease the tracking error. So, there
(57). Note that, from the conditions of positive definitenesare no trade-off between convergence and accuracy, which is
of the matrix R in (42), the nominator on the right side of characteristics for most of the internal model based repetitive
inequality (57) is always positive. controllers.
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Fig. 2. The comparison of tracking errors for PID controller and repetitivélo]
controller (RC).

[11]

VII. CONCLUSIONS

In this paper a new class of finite dimensional repetitivélz]
controllers for robot manipulators is proposed. The proH3]
posed repetitive controller connects the main advantage of
internal model controllers - implementation simplicity, with{14]
robustness based on passivity of external model controllers.
Further research will be concentrated on the stability analys[ifs]
of proposed repetitive controller in combination with the
frequency estimators.
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