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Abstract— In this paper a new class of globally stable
finite dimensional repetitive controller for robot manipulator is
proposed. The passivity based design of the proposed repetitive
controller avoid the problem of tight stability conditions and
slow convergence of the conventional, internal model based,
repetitive controllers. The passive interconnection of the con-
troller with nonlinear mechanical systems provide stability
margin which is the same as stability margin of the controller
with exact feed-forward compensation of robot dynamics. The
simulation results illustrate the convergence properties of the
proposed controller.

I. I NTRODUCTION

An important subject in control of mechanical systems is
tracking periodic reference signals and attenuating periodic
disturbances. Many tracking systems, such as computer disk
drives, rotation machine tools, or robots, have to deal with
periodic reference and/or disturbance signals. A promising
control approach for achieving tracking of periodic refer-
ences signal is learning control or repetitive control.

In most of the conventional approaches to robot trajectory
control, including parametric adaptive control, it is necessary
to compute in real time the so called inverse dynamics
equations of the robot or regression matrix. However, due
to the model uncertainties, it is difficult to derive the exact
description of the system. In other side, using neural net-
works for learning feed-forward control has some drawback:
slow converges and relatively large tracking error.

There have been many studies in the topic of repetitive
control for controlling of mechanical systems in an iterative
manner. In contrast with conventional approaches to robot
trajectory control, repetitive control schemes are easy to im-
plement and do not require exact knowledge of the dynamic
model.

Repetitive controllers can be classified as being either
internal model based or external model based [1]. Controllers
using the internal model are linear and have periodic signal
generators [2], [3]. In external model controllers the distur-
bance model is placed outside the basic feedback loop [4],
[5].

The internal model controllers are based on a delayed
integral action of the form(1−exp(−sT ))−1 which produce
an infinite number of poles on imaginary axes. However,
the asymptotic convergence can only be guaranteed under
restrictive conditions in the plant dynamics - zero relative

degree or direct transmission term. These conditions are gen-
erally not satisfied in robot control applications because they
are imply acceleration measurement. Further, the positive
feedback loop used to generate the periodic signal decreases
the stability margin. In the end, the repetitive controller
is likely to make the system unstable. To enhance the
robustness of these repetitive control schemes, the repetitive
update rule is modified to include the so-called Q-filter [2],
[3].Unfortunately, the use of the Q-filter eliminates the ability
of the tracking errors to converge to zero. Therefore, the
trade-off between stability and tracking performance has
been considered to be an important factor in the repetitive
control system.

The another problem is that, due to infinite dimensional
dynamics of delayed line, a large memory space is required
for digital implementation of the control law. To overcome
this problem, in [6] a finite dimensional approximation of
delayed line is proposed in the form of cascade connection
of N harmonic oscillators and one integrator.

The advantages of internal model controllers are that it
is linear, making analysis and implementation easier. The
disadvantages are that the stability is almost entirely gov-
erned by the feedback loop of the repetitive compensator. The
frequency response of the system is altered and robustness
to noise and unmodelled dynamics is reduced.

The external model controllers are based on feedforward
compensation of inverse dynamics. The disturbance model
is adjusted adaptively to match the actual disturbance. The
central idea in [4] is that the disturbance can be represented
as a linear combination of the basis functions like Fourier
series expansion. On this way, an adaptive control law with
regressor matrix containing basis functions is obtained. In [5]
unknown disturbance functions are represented by integral
equations of the first kind involving a known kernel and
unknown influence functions. The learning rule indirectly
estimates the unknown disturbance function by updating the
influence function.

The main advantage of the external model approach is
that there are no significant influence on the stability margin
of the control system. The map between the feedforward
function error and the tracking errors is strictly passive. Thus,
the control system is robust to the imprecise estimation of
the robot inverse dynamics. The disadvantage are that the
analysis and implementation are more complex than for the



internal model based algorithms.
In this paper a new class of internal model based repet-

itive controllers for robot manipulators is proposed. The
proposed finite dimensional repetitive controller is founded
on passivity based design and has structure in the form of
parallel connection ofN linear oscillators and one integrator.
The passive interconnection of the controller with nonlinear
mechanical systems has no influence on the stability margin
which is the same as stability margin of controller with exact
feed-forward compensation of robot dynamics [7], [8].

This paper is organized as follows. The robot dynamics
and its main properties are presented in Section II. In
Section III a class of finite dimensional internal model
based repetitive controllers is introduced and conditions for
global asymptotic stability are established in Section IV. The
passivity properties of proposed controllers are considered in
Section V. The simulation results are presented in Section VI.
Finally, the concluding remarks are emphasized in Section
VII.

II. ROBOT DYNAMICS

The model ofn-link rigid-body robotic manipulator, in the
absence of friction and disturbances, is represented by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

whereq is then × 1 vector of robot joint coordinates,̇q is
the n × 1 vector of joint velocities,u is the n × 1 vector
of applied joint torques and forces,M(q) is n × n inertia
matrix,C(q, q̇)q̇ is then×1 vector of centrifugal and Coriolis
torques andg(q) is then× 1 vector of gravitational torques
and forces, obtained as the gradient of the robot potential
energyU(q)

g(q) =
∂U(q)
∂q

. (2)

We assume that the matrixC(q, q̇) is defined using the
Christoffel symbols.

The following well known properties of the robot dynam-
ics, [9], [10], [11], [12], are important for stability analysis.

Property 1. The matrix Ṁ(q) − 2C(q, q̇) is skew-
symmetric, i.e.,

zT (Ṁ(q)− 2C(q, q̇))z = 0, ∀z ∈ Rn. (3)

This implies

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (4)

Property 2. The inertia matrixM(q) is a positive definite
symmetric matrix which satisfies

λm{M}‖q̇‖2 ≤ q̇TM(q)q̇ ≤ λM{M}‖q̇‖2, (5)

whereλm{M} andλM{M} denotes strictly positive mini-
mum and maximum eigenvalues ofM(q), respectively.

Property 3. (see e.g. [7], [8]) There exist positive constants
kM , kC1, kC2 andkg such that for allx, y, z, v, w ∈ Rn, we

have

‖M(x)z −M(y)z‖ ≤ kM‖x− y‖ ‖z‖, (6)

‖C(x, z)w − C(y, v)w‖ ≤ kC1‖z − v‖ ‖w‖+
+ kC2‖z‖ ‖x− y‖ ‖w‖, (7)

‖g(x)− g(y)‖ ≤ kg‖x− y‖, (8)

‖C(x, y)z‖ ≤ kC1‖y‖ ‖z‖. (9)

III. C ONTROL PROBLEM FORMULATION

A. Finite-Dimensional Repetitive Controller

The periodic reference trajectoryqd(t) with the periodT
can be represented in the form of Fourier series

qd(t) = a0 +
N̄∑

k=1

[ak cos(kωt) + bk sin(kωt)], (10)

whereω = 2π
T is the fundamental frequency, anda0, ak and

bk are some known constant vectors.
We consider the control law given by

u = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q −KIz0 −

N∑
k=1

Qkżk, (11)

z̈k + k2ω2zk = Qk( ˙̃q + αq̃), k = 1, ..., N, (12)

ż0 = ˙̃q + αq̃, (13)

where q̃ = q − qd, ˙̃q = q̇ − q̇d are the joint position error
and velocity, respectively,qd is the time periodic desired
joint position represented by (10),KP , KD, KI , Qk (k =
1, ..., N ) aren×n constant positive-definite diagonal matrix,
k

(1)
D andα are some positive constants.
The desired joint positionqd is assumed to be twice

continuously differentiable. In other words, we assume that
exist a finite upper bounds on the norm of the desired
velocity and acceleration, denoted by‖q̇d‖M and ‖q̈d‖M .
The nonlinear derivative termk(1)

D ‖q̃‖ ˙̃q in control law (11)
is introduced to ensure global asymptotic stability of closed-
loop system [13].

The parallel interconnection ofN harmonic oscillators
(12) and integrator (13) represents the internal model of
the periodic reference signalqd(t) including higher order
harmonics which are induced by nonlinear robot dynamics,
so that conditionN ≥ N̄ must be satisfied.

Remark 1. Note that repetitive controller (11)-(13) is not
a finite dimensional approximation of delayed line as the
repetitive controller proposed in [6]

Grc(s) =
1
s

N∏
k=1

1
s2 + k2ω2

, (14)

which can be interpreted as a cascade connection ofN linear
oscillators and one integrator.

B. Residual Robot Dynamics

The dynamic model of robot manipulator (1) can be
rewritten in the following form

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = u− f(qd, q̇d, q̈d), (15)



where

h(q̃, ˙̃q) = [M(q)−M(qd)]q̈d + [C(q, q̇)− C(qd, q̇d)]q̇d +
+ g(q)− g(qd), (16)

is the so-calledresidual robot dynamicsintroduced in [14],
[15] and

f(qd, q̇d, q̈d) = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd), (17)

represents the unknowndesired robot inverse dynamics.
The functionf(qd, q̇d, q̈d) is a periodic function with the

same fundamental frequency asqd(t) and can be represented
by infinite Fourier series expansion

f(qd, q̇d, q̈d) = ā0 +
∞∑

k=1

[āk cos(kωt) + b̄k sin(kωt)], (18)

whereā0, āk and b̄k are some unknown constant vectors.
The following property of the functionh(q̃, ˙̃q) is important

in subsequent stability analysis.
Property 4.By defining

c1 = kg + kM‖q̈d‖M + kC2‖q̇d‖2M , (19)

c2 = kC1‖q̇d‖M , (20)

the norm of residual dynamics (16) satisfies (see [7], [8])

‖h(q̃, ˙̃q)‖ ≤ c1‖q̃‖+ c2‖ ˙̃q‖. (21)

From the inequality (21) follows

−( ˙̃q + αq̃)Th(q̃, ˙̃q) ≤ αc1‖q̃‖2 + c2‖ ˙̃q‖2 +
+ (c1 + αc2)‖q̃‖ ‖ ˙̃q‖. (22)

The parametersc1 and c2 can be estimated on the base of
Fourier representation of desired periodic signal (10)

c2 = kC1

N̄∑
k=1

kω(ak + bk), (23)

c1 = kg + kM

N̄∑
k=1

k2ω2(ak + bk) +
kC2c

2
2

k2
C1

, (24)

where we used properties| sin(kωt)| ≤ 1 and | cos(kωt)| ≤
1.

Remark 1. One of the simplest motion control scheme for
the system (15) is PD control with feedforward compensation
[16], [17]

u = −KP q̃ −KD
˙̃q + f(qd, q̇d, q̈d). (25)

The local asymptotic stability of the control law (25) is
proven in [7] and conditions for global asymptotic stability
are established in [8]. Implementation of control law (25)
requires the exact knowledge of matricesM(q), C(q, q̇) and
vector g(q). However, due to the model uncertainties, it is
difficult to derive the exact dynamic model of the robot
manipulator. The main idea of using controller (11)-(13)
is model-free feedback compensation of periodic function
f(qd, q̇d, q̈d). This idea will be more clarified through deriva-
tion of the error equations of the closed-loop system.

C. Error Equations

Introducing the change of variables̃zk = zk − z∗k, k =
0, 1, ..., N , with

z∗0 = −K−1
I ā0, (26)

z∗k = Q−1
k [b̄k cos(kωt)− āk sin(kωt)], k = 1, ..., N, (27)

the following error equations are obtained

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = u+ w(t;N + 1), (28)

u = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q −KI z̃0 −

N∑
k=1

Qk
˙̃zk, (29)

¨̃zk + k2ω2z̃k = Qk( ˙̃q + αq̃), k = 1, ..., N, (30)
˙̃z0 = ˙̃q + αq̃, (31)

where we used the Fourier series expansion (18) of the
function f(qd, q̇d, q̈d) and propertyz̈∗k + k2ω2z∗k = 0. The
functionw(t;N +1) in (28) is the error in estimation of the
desired robot inverse dynamics which consists harmonics of
N + 1 order

w(t;N + 1) =
∞∑

k=N+1

[āk cos(kωt) + b̄k sin(kωt)]. (32)

Remark 2. From the equation (32) we can conclude that
the tracking error has zero harmonic content at the repetitive
frequency and its harmonics up toN (whereN is the number
of harmonic oscillators in the controller). Also, the bound on
the tracking error decreases withN . In the limitN →∞ the
above model of the repetitive controller works as well as the
ideal infinity dimensional model in achieving perfect tracking
of periodic reference signals [18]. Note that this conclusion
is valid only for twice continuously differentiable periodic
reference signals, and cannot be generalized for arbitrary
periodic reference signals, as shown in [2]. In that ideal case
the stationary state of the system (15), (11)-(13) isq = qd,
q̇ = q̇d, zk = z∗k, k = 0, 1, ..., N .

IV. STABILITY ANALYSIS

We consider stability of the unperturbed systems (28)-
(31), wherew(t;N + 1) = 0, by Lyapunov’s direct method.
First, we propose appropriate Lyapunov function candidate.
Then, global stability conditions on the controller gains are
established. Finally, LaSalle invariance principle is invoked
to guarantee the asymptotic stability.

A. Construction of Lyapunov Function

Multiplying equation (28) with output variabley1 = ( ˙̃q +
αq̃), equation (30) with output variabley2 = żk, equation
(31) with output variabley3 = KIz0 and summing all
together, we get the nonlinear differential form which can
be separated in the following way

d

dt
V (q̃, q̇, z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ) = −W (q̃, q̇), (33)



(for more details see e.g. [13]) whereV = V1 + V2 is the
Lyapunov function candidate

V1 =
1
2

˙̃qTM(q) ˙̃q + αq̃TM(q) ˙̃q +
1
2
q̃TKP q̃ +

+
1
2
αq̃TKD q̃ +

1
3
αk

(1)
D ‖q̃‖3, (34)

V2 =
1
2
z̃T
0 KI z̃0 +

1
2

N∑
k=1

˙̃zT
k

˙̃zk +
1
2
ω2

N∑
k=1

k2z̃T
k z̃k, (35)

and−W is its time derivative

W = ˙̃qTKD
˙̃q + k

(1)
D ‖q̃‖ ˙̃qT ˙̃q − α ˙̃qTM(q) ˙̃q − α ˙̃qTC(q, q̇)q̃

+ αq̃TKP q̃ + ( ˙̃q + αq̃)Th(q̃, ˙̃q). (36)

B. Stability Conditions

The following step is determination of conditions for
positive definiteness of the functionV and positive semi-
definiteness of the functionW .

1) Positive definiteness of Lyapunov function:The func-
tion V2 is positive definite for any positive definite matrix
KI , so that

V ≥ V1 =
1
2

( ˙̃q + αq̃
)T
M(q)

( ˙̃q + αq̃
)
− 1

2
α2q̃TM(q)q̃ +

+
1
2
q̃T (KP + αKD)q̃ +

1
3
αk

(1)
D ‖q̃‖3. (37)

Using property (5) we get

V ≥ 1
2
(λm{KP }+ αλm{KD} − α2λM{M})‖q̃‖2,(38)

that will be satisfied when

λm{KP }+ αλm{KD} > α2λM{M}. (39)

2) Negative semi-definiteness of time derivative of Lya-
punov function: The following step is derivation of the
condition which ensure that time derivative of Lyapunov
function is negative semi-definite function, i.e.,W ≥ 0.

First, notice that the upper bound on term̃̇qTC(q, q̇)q̃ in
(36) can be estimated by

˙̃qTC(q, q̇)q̃ ≤ αkC1‖q̃‖ ‖q̇‖
∥∥ ˙̃q

∥∥ ≤
≤ kC1‖q̇d‖M ‖q̃‖

∥∥ ˙̃q
∥∥ + kC1‖q̃‖

∥∥ ˙̃q
∥∥2
,(40)

where we used triangle inequality‖q̇‖ ≤
∥∥ ˙̃q

∥∥ + ‖q̇d‖.
Applying properties (5), (22) and (40) we get

W ≥ (λm{KD} − αλM{M} − c2)
∥∥ ˙̃q

∥∥2
+

+ α(λm{KP } − c1)‖q̃‖2 − (c1 + 2αc2)‖q̃‖
∥∥ ˙̃q

∥∥ +

+ (k(1)
D − αkC1)‖q̃‖

∥∥ ˙̃q
∥∥2 ≥ 0. (41)

Finally, W can be bounded by a quadratic plus a cubic
function

W ≥
[
‖q̃‖∥∥ ˙̃q

∥∥ ]T

R

[
‖q̃‖∥∥ ˙̃q

∥∥ ]
+ (k(1)

D − αkC1)‖q̃‖
∥∥ ˙̃q

∥∥2
, (42)

with the matrixR given by

R =
[
α(λm{KP } − c1) − 1

2 (c1 + 2αc2)
− 1

2 (c1 + 2αc2) (λm{KD} − αλM{M} − c2)

]
.

The functionW is positive definite if the following condi-
tions are satisfied

k
(1)
D > αkC1, (43)

λm{KP } > c1, (44)

λm{KD} >
(c1 + 2αc2)2

4α(λm{KP } − c1)
+ αλM{M}+ c2.(45)

We can see that condition (39) is trivially implied by con-
ditions (44)-(45). So, the conditions (43)-(45) are the final
stability criterions which guaranty global stability. Finally,
by invoking the LaSalle invariance principle, we conclude
asymptotic stability.

Note that stability conditions (44)-(45), forα = 1, are ex-
actly the same as local stability conditions in [8]. The global
stability of repetitive controller (11)-(13) is achieved by the
nonlinear derivative term whose gaink(1)

D satisfies condition
(43). So, the proposed repetitive controller practically has no
any influence on stability margin of the closed-loop system
what is obvious from stability conditions which does not
contain interaction gainsQk. This fact is a consequence of
passive interconnection of robot dynamics (1) with repetitive
controller (11)-(13).

V. PASSIVITY PROPERTIES OFREPETITIVE CONTROLLER

Consider dynamical systems represented by

ẋ = f(x, u), (46)

y = h(x, u), (47)

where x ∈ Rn, y, u ∈ Rm, f(0, 0) = 0 and h(0, 0) =
0. Moreoverf(x, u) and h(x, u) are supposed sufficiently
smooth such that the system is well-defined.

Definition 1.(see [19]) The system (46)-(47) is said to be
passive if there exists a continuously differentiable positive
semidefinite functionV (x) (called the storage function) such
that

uT y ≥ V̇ (x) + ε‖u‖2 + δ‖y‖2 + ρψ(x), (48)

where ε, δ, and ρ are nonnegative constants, andψ(x) :
Rn → R is a positive definite function ofx. The termρψ(x)
is called the state dissipation rate. Furthermore, the system
is said to be: passive ifε = δ = ρ = 0; input strictly passive
if δ = ρ = 0 and ε > 0; output strictly passive ifε = ρ = 0
andδ > 0; state strictly passive ifε = δ = 0 andρ > 0.

Proposition 1.The robot dynamics

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = u1 + w1, (49)

in closed-loop with nonlinear PD regulator

u1 = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q, (50)

is state strictly passive from the input torquew1 to the output
y1 = ˙̃q + αq̃, with a radially unbounded positive definite
storage functionV1 defined by (34) and the state dissipation
rate is given byW ,

wT
1 y1 ≥ V̇1(q̃, ˙̃q) +W (q̃, ˙̃q). (51)

Note thatV1 is positive definite andW is positive semidef-
inite function if conditions (44)-(45) are satisfied.



Proposition 2.The system

¨̃zk + k2ω2z̃k = Qkw2, k = 1, ..., N, (52)
˙̃z0 = w2, (53)

is passive from the inputw2 to the outputy2 = KIz0 +∑N
k=1Qk

˙̃zk with a radially unbounded positive definite
storage functionV2 defined by (35),

wT
2 y2 ≥ V̇2(z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ). (54)

Note thatV2 is positive definite for any positive definite
matrix KI .

Proposition 3.The feedback interconnection of the system
(49)-(50) with the system (52)-(53),

w1 = −y2 + w, w2 = y1, (55)

is output strictly passive from the input torquew to the output
y1 = ˙̃q + αq̃, with a radially unbounded positive definite
storage functionV = V1 + V2,

wT y1 ≥ V̇ + δ‖y1‖2, (56)

where

δ ≤
a1a2 − 1

4a
2
3

a2 + α2a1 + αa3
, (57)

and

a1 = λm{KD} − αλM{M} − c2, (58)

a2 = α(λm{KP } − c1), (59)

a3 = c1 + 2αc2. (60)

Proof. Insertingw1 = −y2 +w, w2 = y1 in (51) and (54)
we get

wT y1 ≥ V̇ (q̃, ˙̃q, z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ) +W (q̃, ˙̃q). (61)

Further, inserting inequality (41) with notation (58)-(60) in
(61), and comparing with (56) we get

wT y1 ≥ V̇ + a1

∥∥ ˙̃q
∥∥2

+ a2‖q̃‖2 − a3‖q̃‖
∥∥ ˙̃q

∥∥ ≥
≥ V̇ + δ‖ ˙̃q + αq̃‖2, (62)

The final step is determination of the parameterδ which sat-
isfies the above mentioned inequality. Rearranging inequality
(62) and using property of scalar productq̃T ˙̃q ≤ ‖q̃‖

∥∥ ˙̃q
∥∥,

we get the following inequality

(a1 − δ)
∥∥ ˙̃q

∥∥2
+ (a2 − α2δ)‖q̃‖2 − (a3 + 2αδ)‖q̃‖

∥∥ ˙̃q
∥∥ =

=
[
‖q̃‖∥∥ ˙̃q

∥∥ ]T [
(a2 − α2δ) − 1

2 (a3 + 2αδ)
− 1

2 (a3 + 2αδ) (a1 − δ)

] [
‖q̃‖∥∥ ˙̃q

∥∥ ]
≥ 0

which is satisfied for

(a1 − δ)(a2 − α2δ) ≥ 1
4
(a3 + 2αδ)2. (63)

Solving the inequality (63) with respect to parameterδ we get
(57). Note that, from the conditions of positive definiteness
of the matrixR in (42), the nominator on the right side of
inequality (57) is always positive.

Proposition 4.The feedback interconnection of the system
(49)-(50) with the system (52)-(53) has finiteL2 gainγ ≤ 1

δ
whereδ is defined by (57). For proof see e.g. [19].

From above mentioned propositions follows two important
properties of the proposed repetitive controller. First, compar-
ing expression (61) with (51) and (54) we can conclude that
robot manipulator in closed loop with repetitive controller
has the same stability margin as both subsystems separately.
In other words, passive feedback interconnection of the
proposed repetitive controller with robot dynamics doesn’t
decrease stability margin what is characteristics for classical
internal model based repetitive controllers [2] and their finite
dimensional representations [6]. Second, the map between
the inverse dynamics estimation errorw and output error
˙̃q+αq̃ is strictly passive what means that the control system
is robust to the imprecise estimation of the robot inverse
dynamics.

VI. SIMULATION EXAMPLE

The manipulator used for simulation is a two revolute
jointed robot (planar elbow manipulator) with numerical
values of robot parameters which have been taken from [20].

The desired periodic reference trajectories are

qd1 =
1
2

+
3∑

k=1

sin(kωt)
k + 1

, qd2 = 1− 2
3∑

k=1

cos(kωt)
k2 + 1

, (64)

where ω = 2 rad/s and the number of oscillators is
N = 12. The controller gains are chosen in accordance
with stability conditions (43)-(45) asKP = diag{50, 50},
KD = diag{50, 50}, k(1)

D = 20 and α = 0.5. The matrix
of integral gains and interconnection matrices are arbitrary
chosen asKI = diag{50, 50} andQk = diag{20, 20} for
k = 1, ..., N .

In Fig. 1. is shown the comparison of positions of robot
manipulators and the reference signals. In Fig. 2. we can
see positions errors of the repetitive controllers (RC) with
Qk = 0 for k = 1, ..., 12 (which is actually a nonlinear
PID controller) and positions errors of repetitive controllers
with Qk = diag{20, 20}. From the figure we can conclude
that the PID controller can not asymptotically tracking the
periodic reference signal. In contrast with PID controller, the
repetitive controller shows exponential convergence toward
an arbitrary small tracking error which depends on the
number of oscillatorsN .

The dependence of tracking error and convergence rate on
the number of oscillatorsN is illustrated in Fig. 3. From the
figure we can see that the convergence rate is independent
on the number of oscillators. It is expected because the time
derivative of the Lyapunov function doesn’t depend on the
number of oscillatorsN . In other side, increasing in the
number of oscillators decrease the tracking error. So, there
are no trade-off between convergence and accuracy, which is
characteristics for most of the internal model based repetitive
controllers.
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Fig. 1. The periodic reference signals and positions of robot manipulators.
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Fig. 2. The comparison of tracking errors for PID controller and repetitive
controller (RC).

VII. C ONCLUSIONS

In this paper a new class of finite dimensional repetitive
controllers for robot manipulators is proposed. The pro-
posed repetitive controller connects the main advantage of
internal model controllers - implementation simplicity, with
robustness based on passivity of external model controllers.
Further research will be concentrated on the stability analysis
of proposed repetitive controller in combination with the
frequency estimators.
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