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Modeling and simulation of biotransformation processes have a large potential in
searching for optimal process conditions, development and process design, control,
scale-up, identifying of the process cost structure, and comparing process alternatives.
Modeling and simulation leads to better understanding and quantification of the investi-
gated process and could lead to significant material and costs savings especially in the
early phases of the process development. In this review modeling and simulation tech-
niques are demonstrated on two basically different types of bioprocesses, enzymatic and
microbial biotransformations. Acetophenone reduction catalyzed by ADH from Thermo-
anaerobacter sp., amino acid oxidation catalyzed by D-amino acid oxidase from Arthro-
bacter protophormiae, and L-DOPA oxidation catalyzed by L-amino acid oxidases from
Crotalus adamanteus and Rhodococcus opacus are examples for modeling of enzymatic
biotransformation processes. On the other hand, microbial biotransformation processes
are shown for: production of alcohol dehydrogenase (ADH) in baker's yeast growing
cells, production of L-malic acid by permeabilized non-growing yeast cells, production of
2,5-diketo-D-gluconic acid using Pantoea citrea, and for Escherichia coli based pyruvate
production.
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Introduction

Biotransformations are chemically well defined
enzyme catalyzed reactions in which pure sub-
stances-reactants are being transformed in structural
more or less similar products. These reactions are
catalyzed by either pure enzymes (enzymatic bio-
transformations) or by enzymes in whole cells of
microorganisms (microbial biotransformations). The
essential difference between microbial biotransfor-
mation and enzymatic biotransformation is in the
number of reaction steps. There are several catalytic
steps between the substrate and the product in mi-
crobial biotransformation, while there are only one
or two steps in the enzymatic biotransformation, re-
spectively. The distinction is also in the fact that the
chemical structure of the substrate and the product
resemble one another in the enzymatic biotransfor-
mation, but not necessarily in the microbial bio-
transformation. Furthermore, microbial biotransfor-
mation should concern all specific properties and
demands of microbial biomass.1

In bio-industries, there is a strong demand for
systems which are optimized and automatically

controlled biological processes because of their
complexity resulting in labor-intensive operation.
Additionally, early phases of process development
are crucial for determining production costs in-
curred and environmental burdens caused when
production begins. Due to the competitive condi-
tions between companies, new processes have to be
optimized early during their development consider-
ing all relevant boundary conditions concerning
technical feasibility, economy, environment, safety,
and health. Modeling and simulation of the process
in these phases can provide a sound basis for an
economic and ecological evaluations that enables
an integrated optimization of the process. A first
ecological assessment can be based on the material
and energy balance of the process to identify the
most relevant materials and process steps. Addi-
tionally, process simulation results can also be used
for a more detailed environmental assessment.2

Information gathered from the model simula-
tions are intended for decision making, to draw
conclusions for automatic control actions of biolog-
ical states, or to initiate specific activities in experi-
mentation, production or regulatory work. Model
necessary for a given process is usually not directly
available, and its development is a laborious and
expensive stage in the whole process development
and optimization procedure. Reliable models
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should have good interpolation and extrapolation
properties in order to predict system behavior
within and outside the range of experimental data.3

It is highly desirable for models to be as simple as
possible, but not too simple. Still they have to de-
scribe the process faithfully, include a procedure
which accounts for external uncertainties or unfore-
seen changes in a process, and provide relatively
simple implementation aspects.

Modeling of biotransformation processes is
based on the knowledge of mass balances, transport
phenomena, and reaction kinetics obtained by pro-
found microbiological/biochemical studies. After
the selection of an appropriate model structure, one
encounters the issue of finding a unique set of cor-
responding model parameters (which have to be es-
timated from experimental data). If the theoretical
identifiability of the parameters can be proved, very
often the associated confidence space which is cal-
culated during the experimental data fitting is quite
large (problem of uniqueness). A unique identifica-
tion of the model parameters is only possible if the
available data are sufficiently rich.4

In mathematical modeling of biotransformation
processes, equations are formulated involving Mi-
chaelis-Menten’s or Monod’s kinetics, which are often
modified reflecting product and/or substrate inhibi-
tion. In addition, equations can also be written based
upon carbon and nitrogen balances and in some cases,
compounds containing high energy phosphate bonds.

Existing modeling strategies can be divided
into white box, black box, and gray box. In the
white box modeling strategy, the model develop-
ment is mainly driven by the knowledge of the rele-
vant biochemical and physical mechanisms. The re-
sulting models are intended to be generally applica-
ble, but at the same time they require an extensive
research program to reveal all relevant mechanisms
and to quantify these mechanisms correctly. In a
black box modeling strategy, the model develop-
ment is mainly driven by measured data from the
actual system that has to be modeled. The main ad-
vantage of the use of the black box modeling strate-
gies is the fact that, within reasonable amount of
time, one can obtain a highly accurate mathematical
model within experimental data without detailed
knowledge of a system. A gray box modeling strat-
egy can be defined as a suitable combination of a
black box and white box strategy, which leads to
models with a short development time, and good in-
terpolation and extrapolation properties.3

Models that describe a process faithfully are of-
ten very complex, and, when used in conjunction
with the optimization procedure, computation prob-
lems may arise. If, alternatively, simple models with
time-varying parameters are used, it is possible that
suboptimal results will be obtained. As many bio-
chemical processes involve a large number of spe-

cies or unknown reaction mechanisms, construction
of reliable analytical model is time-consuming and
not cost effective.5 Almost all of the modeling stud-
ies, reported in the literature, are either theoretical or
based on the laboratory scale data, while those that
have an experimental comparison with industrial
data are very limited. Therefore, the available mod-
els have either a limited range of applicability or rep-
resent behavioral inconsistencies with industrial
data.6 However, such a model based approach has
rarely succeeded in the optimization and control of
the actual operations of microbial production plants
due to the difficulty in developing mathematical
model capable to describe the complex intracellular
reactions of the microorganisms involved. Therefore,
the operational conditions of industrial fermentation
processes are often optimized through knowl-
edge-based operations under the control of highly
skilled operators. While such empirical knowl-
edge-based operations can be considered as a useful
and practical, it is difficult to adapt them to computer
control by traditional methods. Namely, the involved
skills cannot often be quantified or incorporated into
a traditional control system. To overcome this short-
coming, a knowledge based approach including
fuzzy control, artificial neural network, expert sys-
tem, genetic algorithm etc. have been introduced in
the biotechnology field over the last two decades.7

Usually, mathematical models for the microbial
biotransformation processes are divided in two
mayor groups, unstructured and structured mathe-
matical models. Unstructured mathematical models
of the microbiological systems, which assume the
biomass population as a structureless, featureless
entity have been utilized for the representation of
the culture dynamics in the exponential and station-
ary phases of growth. In general, unstructured mod-
els are based on Monod’s rate equations, where
growth depends on biomass concentration as well
as on a sole limiting substrate. The unstructured
model allows determination of the respective pro-
portion of substrates used for biosynthesis and cell
maintenance, and also the respective proportion of
metabolite productions associated with biosynthesis
and cell maintenance.8 However, they are unable to
describe long lag phase in batch culture and tran-
sient responses during unsteady conditions. Struc-
tured model can describe transient growth and char-
acterize microbial population under a wide variety
of dynamic growth conditions. Ideally, an appropri-
ate mathematical model should consider concentra-
tions of all the chemical substances in the culture
environment, and inside the microorganism, for
proper elucidation of biochemical reaction mecha-
nisms involved in the culture metabolism.9

The modeling of the enzyme reaction kinetics
as a tool for enzyme reaction engineering plays an
important role in developing the enzyme-catalyzed
reaction for large-scale production. Modeling of the
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enzyme kinetics and the reactors can be used to find
optimal operation points and to increase our knowl-
edge about the process10 and facilitate identification
of the most effective reactor mode of operation.11

For design of an enzyme reactor a detailed knowl-
edge of the kinetic parameters of the catalyst under
operational conditions is essential.12

This paper is an attempt to describe the current
state in the modeling of the biotransformation pro-
cesses. The aim is not to present a review of the lit-
erature, but to briefly report about similarities and
differences between modeling and simulation of en-
zymatic and microbial biotransformation processes.
Therefore, a significant amount of the models, esti-
mated parameters and simulation results are in-
cluded and used to illustrate when and how model-
ing of the biotransformation processes can be used
and to demonstrate its limitations. For detailed in-
formation on the experimental data, experimental
and theoretical procedures, and theoretical analyses
and their application of the biotransformation pro-
cesses presented in this report, the reader is referred
to recent publications by our group.14,16,17,23,29,33–36

Mathematical models of enzymatic
biotransformation processes

Acetophenone reduction catalyzed by ADH
from Thermoanaerobacter sp.

Chiral alcohols are important building blocks
for the synthesis of pharmaceuticals, pesticides,
pheromones, flavours, fragrances and advanced ma-
terials such as liquid crystals.13 Stereoselective re-
duction of ketones is the basic way to produce them.
In this example (S)-1-phenylethanol is synthesized
from acetophenone by the action of alcohol de-
hydrogenase from Thermoanaerobacter sp. (ADH).
The enzyme is interesting because of its thermo-
philic origin which makes it active and stable at
higher temperatures than it is usual for enzymes.14

It is known that dehydrogenases require the pres-
ence of coenzyme for their activity (in the stoi-
chiometric amounts to the substrate). If the coenzyme
is regenerated by the known methods,15 it can be
added in lower concentration. In addition, the reaction
equilibrium is shifted to the side of alcohol production
by removing the oxidized form of coenzyme
(NADP+) from the reaction system. In the reaction of
acetophenone reduction two cases are considered:
acetophenone reduction without (Fig. 1A) and with
coenzyme regeneration (Fig. 1B). Substrate coupled
system is used for the coenzyme regeneration and
2-propanol as a regenerating substrate added in the
system. For both systems detailed enzyme kinetics
were determined by the initial reaction rate method. In
such complex system many interactions between reac-
tion components occur, which can be seen from the
number of estimated parameters (Table 1).
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F i g . 1 – Acetophenone reduction: a) without and b) with
NADPH regeneration

T a b l e 1 – Kinetic parameters for acetophenone reduction
catalyzed by alcohol dehydrogenase from Thermo-
anaerobacter sp.

Parameter Unit Value

Km
acetophenone mmol dm–3 0.034

Km
S( ) -1-phenylethanol mmol dm–3 0.112

Km
acetone mmol dm–3 1.091

Km
2-propanol mmol dm–3 0.408

Km
NADPH mmol dm–3 0.004

Km
NADP+

mmol dm–3 0.007

Ki
S
1
( ) -1-phenylethanol mmol dm–3 0.070

Ki1
acetone mmol dm–3 0.899

Ki1
2-propanol mmol dm–3 10.973

Ki1
NADP+

mmol dm–3 0.017

Ki1
acetophenone mmol dm–3 6.077

Ki2
acetophenone mmol dm–3 0.010

Ki2
acetone mmol dm–3 7.576

Ki2
2-propanol mmol dm–3 0.079

Ki2
NADPH mmol dm–3 0.006

Ki3
2-propanol mmol dm–3 20.303

Ki
S
3
( ) -1-phenylethanol mmol dm–3 0.535

Ki3
acetophenone mmol dm–3 1.886

Ki3
NADP+

mmol dm–3 0.005

Ki4
acetone mmol dm–3 2.242

Ki4
acetophenone mmol dm–3 0.348

Ki
S
4
( ) -1-phenylethanol mmol dm–3 29.551

Ki4
NADPH mmol dm–3 0.007

Ki4
2-propanol mmol dm–3 288.016



Based on the estimated parameters, mathemati-
cal model was developed for a batch and a continu-
ous stirred tank reactor (Fig. 2). It was demon-
strated by the batch reactor experiments that the re-
action equilibrium of acetophenone reduction with-
out coenzyme regeneration is shifted to the side of
the acetophenone (Fig. 3A). The developed model
for acetophenone reduction without coenzyme re-
generation was experimentally validated. Reaction
kinetics has been described as a double-substrate
Michaelis-Menten equation taking into consider-
ation presence of substrate (acetophenone) inhibi-
tion, and competitive inhibition of both reaction
products – (S)-1-phenylethanol and NADP+. These
inhibitions were quantified by the corresponding in-
hibition constants (Table 1).

Acetophenone reduction with coenzyme regen-
eration was carried out in the batch, repetitive batch

and continuous stirred tank reactor. Batch experi-
ment (Fig. 3A) validated the developed mathemati-
cal model, and proved that coenzyme regeneration
shifts the reaction equilibrium to the side of
(S)-1-phenylethanol. Repetitive batch experiment
(Fig. 3B) showed that enzyme loses its activity in
the second batch, which is supported by the esti-
mated Vm parameters (Table 2). Mathematical model
made it possible to find the optimal initial concen-
tration of NADP+ and 2-propanol for repetitive
batch experiment as well as for the CSTR experi-
ment. CSTR experiment (Fig. 3C) carried out in the
enzyme membrane reactor revealed significant en-
zyme deactivation which was described by the first
order deactivation kinetics. Besides for determina-
tion of the optimal initial conditions, in the reactor
experiments by mathematical modeling made it pos-
sible to find the best reactor mode for the synthesis
of (S)-1-phenylethanol at the lowest coenzyme cost.
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Mass balance equations in the batch reactor
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F i g . 2 – Mathematical models for the acetophenone reduction in various types of reactors



Amino acid oxidation catalyzed by D-amino
acid oxidase from Arthrobacter protophormiae

One of the ways to prepare optically pure amino
acid from their racemate is by action of stereo-
specific amino acid oxidases. If L-amino acid is to be
prepared, than the activity of D-amino acid oxidase
is required. In this example of enzyme kinetic mod-
eling D-amino acid is being oxidized by D-amino
acid from Arthrobacter protophormiae.16 The reac-
tion scheme is presented in Fig. 4. D-methionine is
oxidized to 2-oxo-4-methylthiobutyric acid. Hydro-
gen peroxide that originates in this reaction is being
removed from the system by adding the excess
catalase. If catalase is not added, hydrogen peroxide
reacts with �-keto acid in the reaction of oxidative
decarboxylation forming the corresponding carbo-
xylic acid (3-methylthiopropanoic acid).
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F i g . 3 – a) Acetophenone reduction in the batch experiment.
Without (� acetophenone and � (S)-1-phenylethanol concen-
tration, –– model) and with NADPH regeneration (� aceto-
phenone and � (S)-1-phenylethanol concentration, –– model).
b) Acetophenone reduction with NADPH regeneration in the re-
petitive batch experiment (� acetophenone and � (S)-1-phenyl-
ethanol concentration). c) Acetophenone reduction with coen-
zyme regeneration in the continuous stirred tank reactor (enzyme
membrane reactor) (� acetophenone and � (S)-1-phenylethanol
concentration).

F i g . 4 – D-methionine oxidation to 2-oxo-4-methylthiobutyric acid catalyzed by D-amino acid oxidase

T a b l e 2 – Estimated maximal reaction rates for acetophe-
none reduction in different reactor experiments

Parameter Value

Batch reactor without coenzyme regeneration

Vm1, U cm–3 1.47

Vm2, U cm–3 42.96

Batch reactor with coenzyme regeneration

Vm1, U cm–3 5.85

Vm2, U cm–3 201.77

Vm3, U cm–3 4.41

Vm4, U cm–3 5.88

Continuous stirred tank reactor with cofactor regeneration

Vm1, U cm–3 10.23

Vm2, U cm–3 205.69

Vm3, U cm–3 5.31

Vm4, U cm–3 8.25

kd , min–1 0.014

Repetitive batch with cofactor regeneration

1st cycle 2nd cycle

Vm1, U cm–3 40.78 9.16

Vm2, U cm–3 704.32 175.01

Vm3, U cm–3 14.71 3.26

Vm4, U cm–3 38.75 0.97



Enzyme kinetics of this reaction was described
by Michaelis-Menten equation with competitive
product inhibition. Kinetic parameters (Table 3)
were estimated by non-linear regression from the
independent experiments. Mathematical model
(Fig. 5) was validated in the batch reactor experi-
ments carried out with (Fig. 6a) and without (Fig.
6b) the presence of catalase.

Since the proposed mathematical model could
simulate the data well it was possible to conclude
that secondary products that include hydrogen per-
oxide and 3-methylthiopropanoic acid do not in-
hibit the enzyme. In the repetitive batch experiment
enzyme deactivation occurs. It increases by each
carried out batch experiment. These facts are sub-
stantiated by the corresponding deactivation con-
stants of the first order presented in Table 3.

L-DOPA oxidation catalyzed by L-amino acid
oxidases from Crotalus adamanteus and
Rhodococcus opacus

L-amino acid oxidases (L-AAO) from Crotalus
adamanteus and Rhodococcus opacus were applied
for biotransformation of 3,4-dihydroxyphenyl-L-ala-
nine (L-DOPA) to 3,4-dihydroxyphenylpyruvic acid
(Fig. 7). Kinetic parameters of both enzymes were es-
timated from the independent experiments by non-lin-
ear regression method (Table 4). On the basis of pa-
rameter values, these two enzymes were compared17

in their activity and specificity. The mathematical
model was developed (Fig. 8) and validated by the
batch reactor experiments (Fig. 9). Additionally, cata-
lytic constant of the enzyme was estimated from the
batch reactor experiments using Levenspiel method.

L-amino acid oxidase from Rhodococcus opacus
was found to have much lower Michaelis-Menten
constant, which means that it is more specific to the
substrate. It is also substrate inhibited, which is not
the case for L-AAO from Crotalus adamanteus. By
comparing the catalytic constants of these two en-
zymes it was obvious that the bacterial enzyme is
10-fold more active than the enzyme from Crotalus
adamanteus. Kinetic parameters also revealed that
the bacterial enzyme is far more hydrogen peroxide
inhibited in the reactor experiments (experiments
without catalase), than the enzyme from the snake
venom (Fig. 9A and Table 4). Catalase was neces-
sary in this system to obtain a long-term activity, and
to prevent �-keto acid decarboxylation.

Enzyme kinetic modeling was used not only
for process prediction but also for comparison of
the two investigated enzymes which makes it possi-
ble to quantify their differences.
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F i g . 5 – Mathematical model of D-methionine oxidation by
D-amino acid oxidase from Arthrobacter proto-
phormiae in the batch reactor

F i g . 6 – D-methionine oxidation catalyzed by D-AAO from
Arthrobacter protophormiae in the batch reactor A) without
addition of catalase and B) with addition of catalase. �
D-methionine and � 2-oxo-4-methylthiobutyric acid, line –
model simulation)

T a b l e 3 – Kinetic parameters for D-methionine oxidation
catalyzed by D-amino acid oxidase from Arthro-
bacter protophormiae

Parameter Unit Value

Vm
D-Met U cm–3 20.01

Vm
D-met mmol dm–3 0.24

Vm
2-oxo-4-methylthiobutyric acid mmol dm–3 0.22

kd (2nd batch) min–1 0.0007

kd (3rd batch) min–1 0.0033



Mathematical models of microbial
biotransformation processes

Production of alcohol dehydrogenase (ADH) in
baker's yeast growing cells

In the yeast cell, enzyme alcohol dehydro-
genase (ADH) is responsible for the synthesis and
the oxidation of the ethanol. Ethanol production in
yeast occurs when the pyruvate oxidation through
the Krebs cycle is stopped due to oxygen insuffi-
ciency which is the main driving force for the reac-
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F i g . 7 – Biotransformation of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) to 3,4-dihydroxyphenylpyruvic acid by
L-amino acid oxidases from Crotalus adamanteus and Rhodococcus opacus
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F i g . 8 – Mathematical model for 3,4-dihydroxyphenyl-L-alanine oxidation catalyzed by
L-amino acid oxidases from Crotalus adamanteus and Rhodococcus opacus

F i g . 9 – 3,4-dihydroxyphenyl-L-alanine oxidation in the batch
experiment a) without catalase and b) with catalase. � L-DOPA
concentration in the experiment catalyzed by L-AAO from
C.adamanteus,� L-DOPA concentration in the experiment cat-
alyzed by L-AAO from R. opacus, line –– model simulations

T a b l e 4 – Kinetic parameters for L-DOPA oxidation cata-
lyzed by L-amino acid oxidase from Crotalus
adamanteus and Rhodococcus opacus

Parameter C. adamanteus R. opacus

Vm , U mg–1 0.12 0.38

Km
L-DOPA , mmol dm–3 0.53 0.02

Ki
L-DOPA , mmol dm–3 – 6.69

With
catalase

Without
catalase

With
catalase

Without
catalase

Vm , U mg –1 0.17 0.12 0.41 0.28

Km
L-DOPA , mmol dm–3 0.60 0.60 0.02 0.01

Ki
H O2 2 , mmol dm–3 – 2.69 0.11 0.01

Ki
L-DOPA , mmol dm–3 – – 22.06 6.94

k, min–1 0.164 0.114 1.534 1.585



tions of this cycle, or if too much pyruvate is being
produced from glucose to be oxidised in the mito-
chondrion18 (Fig. 10). Regarding the previous fact,
the assumption was that the highest ADH produc-
tion would be achieved during the oxidative-reduc-
tive baker’s yeast growth. The oxidative growth is
necessary for the biomass production because the
ADH is intracellular product and the reductive for
the ethanol synthesis.19

A mathematical model was formulated to simu-
late cell growth and enzyme production during the
aerobic and micro-aerobic growth of the yeast S.
cerevisiae. Model was based on three metabolic
events in the yeast: glucose fermentation, glucose

oxidation and ethanol oxidation.20 Cell growth was
expressed as a sum of particular growth rate in dif-
ferent metabolisms (Fig. 11). Their participation to
the total specific growth rate depended on the avail-
ability of the dissolved oxygen. Michaelis-Menten
kinetics was used to describe substrate uptake rate.
Enzyme production was assumed as a cell growth
associated21 and enzyme deactivation was described
by the first order kinetics.22

Parameters were estimated by using the least
square method to minimize difference between ex-
perimental and calculated values of state variables
(confidence was set at 95 %). For this purpose the
results of the baker's yeast cultivations at initial glu-
cose mass concentration of 30 g dm–3 and at mi-
cro-aerobic conditions were used (DO = 10 %). The
list of evaluated parameters is given in the Table 5.
The results of comparison model and experiment
are presented in Fig. 12.23

As the enzyme production was shown to be
growth associated; with higher biomass concentra-
tion higher enzyme activity was expected. Consid-
ering, that a higher final biomass concentration
could be expected at higher initial glucose concen-
tration or by increasing oxygen supply, model has
been validated using higher initial glucose concen-
tration and at aerobic conditions. A good agreement
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F i g . 1 0 – Glucose metabolism at anaerobic conditions
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F i g . 1 1 – Kinetic and mass balance equations for the baker's yeast growth and ADH production in the batch reactor



of the result of the experiment and simulation was
achieved at micro-aerobic conditions (DO = 10 %)
with higher initial glucose mass concentration (G0
� 50 g dm–3, Fig. 13). At aerobic conditions (G0 �
50 g dm–3, DO = 40 %), a lower ethanol mass con-
centration, but a higher biomass concentration was
obtained in comparison to the same initial glucose
concentration using lower oxygen supply rate (Fig.
13). The parameters a that describes the enzyme
activity was not valid for the cultivations under aer-
obic conditions. Although in both cases the oxida-
tive-reductive metabolism was accomplished, a
lower level of ethanol productivity under aerobic
conditions caused a lower enzyme production (Fig.
13). For this reason the value of parameter a for the

aerobic baker's yeast cultivations is about four fold
lower (a = 0.099 � 0.0121 U g–1) than the one un-
der micro-aerobic conditions (Table 5).

Production o L-malic acid by permeabilized
non-growing yeast cells

L-malic acid is produced by the action of en-
zyme fumarase from fumaric acid.24 Enzyme fuma-
rase as a biocatalyst can be used in a whole cell25 or
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F i g . 1 2 – Baker's yeast growth experiment used for the para-
meter estimation (�G0 � 30 g dm–3, micro-aerobic conditions –DO
= 10 %). �, biomass; �, glucose; �, ethanol; �, volume ADH
activity; �, dissolved oxygen; –– model.

T a b l e 5 – Values of parameters for the baker's yeast
growth and ADH production

Parameter Values

rG,max, h
–1 0.212

rO,max, h
–1 0.038

rEt,max, h
–1 0.072

KG, g dm–3 0.612

KO, g dm–3 9.6·10–5

KEt, g dm–3 0.101

YX/Et, gWW g–1 0.293

YO/Et, g g–1 2.838

YEt/G, g g–1 0.049

YO/G, g g–1 0.515

YX G
OX
/ , gWW g–1 1.521

YX G
RED
/ , gWW g–1 1.051

a, U gWW
–1 0.400

b, h–1 0.015

F i g . 1 3 – Model validation: biomass wet mass (a), ethanol
(b), volume activity changes (c) with time, �G0 � 50 g dm–3. �,
micro-aerobic conditions (�DO = 10 %); �, aerobic conditions
(DO = 40 %); – model



as a purified enzyme.26 In the yeast enzyme fuma-
rase is a part of citrate cycle responsible for the
biotransformation of fumaric to L-malic acid (Fig.
14). Using the whole cells, the time consuming and
expensive operations of enzyme purification are
avoided. It preserves the enzyme in its natural envi-
ronment thus protecting it from inactivation during
subsequent use in continuous system.27 The major
limitations which need to be addressed while using
such cells are the diffusion of substrate and prod-
ucts through the cell wall, and unwanted side reac-
tions due to the presence of other enzymes. These
problems could be obviated by the use of permea-
bilized cells as a source of enzyme. Permeabiliza-
tion of the cells removes the barrier for the free dif-
fusion of the substrate/product across the cell mem-
brane, and also empties the cell of most of the small
molar mass cofactors, etc., thus minimizing the un-
wanted side reactions.28 This fact is very important
for the L-malic production by whole cells, because
both side reactions in which malic and fumaric acid
are involved in the Krebs cycle producing oxalic ei-
ther succinic acid, require the coenzymes (Fig. 14).

The yeast Saccharomyces bayanus (UVAFERM
BC), permeabilized for 5 min with w = 0.2 % CTAB
(Cetyl Trimethyl Ammonium Bromide) as a sur-
factant (based on the optimization results for the
permeabilization procedure6) was used as a bio-
catalyst for the L-malic production. The kinetic ac-
tivity of fumarase in permeabilized yeast cells was
measured by the initial reaction rate method with
different concentration of fumaric and malic acid as
a substrate. It was found that malic acid inhibits a
hydrolysis of fumaric acid. The fumarase kinetics
was described using a Michaelis-Menten kinetics
with competitive product inhibition. Parameters
were estimated by non-linear regression analysis
using simplex and least squares method imple-
mented in SCIENTIST software (Table 6).29

The enzyme in permeabilized yeast cells shows
about three times higher maximal activity to fumaric
acid as a substrate compared to L-malic acid. A rela-
tively high inhibition constant indicates that the en-
zyme is not strongly inhibited by L-malic acid. The
mathematical model for the batch system including
the estimated parameters is shown in Fig. 15.29

To validate the proposed model L-malic acid
production in the batch mode was carried out (Fig.
16). For that purpose several experiments were car-
ried out with permeabilized cells at 3.5 g dm–3 and
different initial fumarate mass concentration. In all
experiments the conversion of cca 80 % was
achieved, no side product was detected and C-bal-
ance was 100 %. The same conversion can be ac-
complished using the isolated and purified enzyme
fumarase from porcine heart.26

Production of 2,5-diketo-D-gluconic acid using
Pantoea citrea

In recent years a certain amount of attention
has been focused on the biosynthesis of the vitamin
C precursors. The interest in the diketo-acid fer-
mentation was renewed after the possibility of pro-
duction of 2-keto-L-gulonic acid (2-KLG), the in-
termediate in the vitamin C biosynthesis, by a tan-
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F i g . 1 4 – Biotransformation of fumaric to L-malic acid in
yeast

T a b l e 6 – Kinetic parameters of fumarase in permeabilized
Saccharomyces bayanus cells

Parameter Values

Vm1, U gww
–1 264.995

Km1, mmol dm–3 18.812

Vm2, U gww
–1 84.075

Km2, mmol dm–3 19.360

Ki, mmol dm–3 33.078
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F i g . 1 5 – Kinetic and mass balance equations for the
L-malic production in the batch reactor by permeabilized
Saccharomyces bayanus cells



dem or a co-fermentation.30 In such a fermenta-
tion process glucose is proposed to be oxidized to
2,5-diketo-D-gluconic acid (2,5-DKG) as the first
step followed by its stereospecific reduction to
2-KLG. The mixed fermentation with two steps in-
cluding the application of genetic engineering sug-
gests that the development of promising new pro-
cesses is able to compete with the classical Reich-
stein production process.31

Bioconversion of glucose to 2,5-diketo-D-glu-
conic acid was performed in the continuous culture
of Pantoea citrea. Pantoea citrea is a ketogenic or-
ganism known to accumulate 2,5-DKG. The de-
hydrogenation reactions are catalyzed by so called
direct membrane-bound NAD(P) independent de-
hydrogenases i.e. the glucose dehydrogenase (GDH),
the gluconic acid dehydrogenase (GADH) and the
2-ketogluconic acid dehydrogenase (2-KGADH) as
shown on the Fig. 17.32 This reaction scheme is
based on a common knowledge of the potential me-
tabolic pathways combined with a careful examina-
tion of the experimental data.

The mathematical model of glucose to 2,5-DKG
bioconversion process concerns the change of bio-
mass, substrate and product concentration. It is de-
termined that the biomass grows as well on glucose,
gluconic acid, 2-KDG and 2,5-DKG. The rG, rGA
and r2-KDG express the rates of the reactions cata-
lyzed by GDH, GADH and 2-KGADH. It is as-
sumed that the oxidation kinetics for these reactions
can be described by the Michaelis-Menten rate ex-
pression referring to each substrate, where the spe-
cific rate of consumption is limited by the concen-
tration. The specific growth rate of the biomass was
assumed to be the sum of specific growth rate on
each substrate. The mathematical model is propo-
sed in accordance with these hypotheses (Fig. 18).

The model parameters were estimated earlier
by experiments with the oxygen partial pressure
method33 and on the basis of dynamic responses
method.34 The developed model is compared with
experimental data from batch and continuous cul-
ture experiment with Pantoea citrea for the series
of initial glucose concentrations in the medium. A
reasonable agreement was observed between the
model simulations and the experimental data for the
both, batch and continuous culture growth on glu-
cose (Fig. 19A) as well as for the bioprocess prod-
ucts (gluconic acid, 2-keto-D-gluconic acid and
2,5-diketo-D-gluconic acid) (Fig. 19B).

Escherichia coli based pyruvate production

Pyruvic acid and its salts are important chemi-
cals used in the pharmaceutical, food, agrochemical
and cosmetic industry. Pyruvate represents one of
the most important metabolites in central metabo-
lism of living cells because of its role in the glu-
cose uptake (via carbohydrate phosphoenolpyruva-
te:phosphotransferase system (pts)), its impact as a
precursor for amino acid synthesis, its relevance as
an intermediate of glycolysis etc., thus making the
metabolite to one of the mostly used reactant in the
Escherichia coli metabolic network.35

Unstructured mathematical model of the
pyruvate production process considering the acetate
auxotrophic strain E. coli YYC202 ldhA::Kan was
developed. The strain is completely blocked in its
ability to convert pyruvate into acetyl-CoA or ace-
tate (using glucose as the carbon source) resulting
in an acetate auxotrophy during growth in glucose
minimal medium. Because of primary uncertainties
regarding the microbial kinetics (and the underlying
mechanism) several models for microbial growth
and product formation were formulated as a “com-
peting” set of model candidates. For simplification
of the model the bioconversion of glucose to pyru-
vate is regarded as a one-step-enzymatic reaction:

C H O C H O
O

6 12 6 3 4
2 2

Escherichia coli, ,acetate
� ���������� 3 22� H O
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F i g . 1 6 – L-malic acid production in the batch reactor by
permeabilized Saccharomyces bayanus cells (cfumaric acid 0 =
�� 50 mmol dm–3, �� 100 mmol dm–3, �� 210 mmol dm–3;
white symbols – fumaric acid, black symbols – L-malic acid,
–– model)

F i g . 1 7 – Bioconversion of glucose to 2,5-DKG by Pantoea
citrea



Following constrains were used to define all of
the models: glucose and acetate are only limiting
substrates; cell growth occurs only in the presence
of both substrates; there was no oxygen effect on

biomass growth and pyruvate production; product
formation kinetics should combine growth associ-
ated and non-growth associated characteristics;
bioconversion of glucose to pyruvate was assumed
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F i g . 1 8 – Kinetics and mass balance equations for 2,5-diketo-D-gluconic acid production by Pantoea citrea
in the continuous culture

F i g . 1 9 – Experimental data and model simulation results of the batch and continuous culture experiments for a) biomass growth,
and b) biotransformation of glucose to 2,5-DKG



to be a one step enzymatic reaction; both biomass
growth and pyruvate production were inhibited by
high pyruvate concentrations; the viscosity of the
reaction mixture remains constant during experi-
ments and potential mixing effects of the highly
concentrated feed with the cultivation medium are
neglected in order to protect model simplicity. To
model the microbial specific growth rate various,
well-known approaches were tested e.g. multiple
substrates Monod kinetics, Levenspiel model, the
model of Jerusalimsky, Monod kinetics with sub-
strate inhibition, and Andrews kinetics. Addition-
ally, different kinds of product formation kinetics
were evaluated for example modified Michaelis-
-Menten equation for non-competitive product inhi-
bition, Luedeking-Piret equation, and modified Lue-
deking-Piret equation with the Levenspiel term.36

Parameter estimation was carried out using
data from fed-batch fermentation performed at con-
stant glucose feed rates. While the model identifica-
tion was realized by least-square method, the model
discrimination was based on the Model Selection
Criterion (MSC).39 The validation of model param-
eters was performed applying data from two differ-
ent fed-batch experiments. Consequently, the most
suitable model was identified that reflected the
pyruvate and biomass curves adequately by consid-
ering a pyruvate inhibited growth (Jerusalimsky ap-
proach) and pyruvate inhibited product formation
(described by modified Luedeking-Piret/Levenspiel
term) (Fig. 20).

Using this modeling approach, an acceptable
model prediction for cell growth and pyruvate for-
mation was achieved (Fig. 21), which are both es-
sential variables to model process alternatives and
scale-ups. The predicted biomass and pyruvate con-
centrations of developed model are in a good agree-
ment with the experimental data. On the basis of a
single criterion, the residual sum of squares, devel-
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Growth kinetics:
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F i g . 2 0 – Kinetics and mass balance equations for the
fed-batch pyruvate production process using
Escherichia coli

F i g . 2 1 – Data obtained by models simulation and experimental data for a) biomass (�) and b) pyruvate (�) concentration in
fed-batch process



oped model was favored because it achieved the
lowest residual sum of squares. Additionally, the
estimated parameters in this model have acceptable
confidence interval and the model is mechanisti-
cally correct. Furthermore, selected model is mech-
anistically the most accurate one because it contains
all experimentally observed effects: growth inhi-
bition by pyruvate and pyruvate inhibited product
(pyruvate) formation.

Numerical methods

The parameters of all described models are es-
timated by non-linear least squares regression and
are optimized using the Nelder-Mead algorithm.37

The numerical values of the parameters were evalu-
ated by fitting the model to the experimental data
with the “Scientist” software.38 The model differen-
tial equations were solved numerically by the fourth
order Runge-Kutta algorithm, which is also offered
in the same software.

The calculated data are compared with the ex-
perimental data, recalculated in the optimization
routine and fed again to the integration step until
minimal error between experimental and integrated
values was achieved (built-in Scientist). The resid-
ual sum of squares is defined as the sum of the
squares of the differences between experimental
and calculated data. For discrimination of various
models, the minimal value of the residual sum of
squares and the MSC criterion39 have been used as
trial functions. The MSC attempts to represent the
“information content” of a given set of parameter
estimates by relating the coefficient of determina-
tion to the number of parameters (or equivalently,
the number of degrees of freedom) that were re-
quired to obtain the fit. When comparing two mod-
els with different numbers of parameters, this crite-
rion imposes a burden on the model with more pa-
rameters. The most appropriate model will be the
one with the largest MSC.

The “Episode” algorithm for stiff system of
differential equations, implemented in the “Scien-
tist” software package, was used for the simula-
tions. It uses variable coefficient Adams-Moulton
and Backward Differentiation Formula methods in
the Nordsieck form, treating the Jacobian matrix as
full or banded.

Conclusion

Modeling and simulation have a large potential
in searching for optimal process conditions, devel-
opment and process design, control, and scale-up of
the biotransformation processes. In combination

with modern computer techniques modeling and
evaluation of the results can be used to identify the
cost structure of the process, to document and quan-
tify process improvements, and to compare process
alternatives. Additionally, modeling and simulation
leads to better understanding and quantification of
the investigated process and could lead to signifi-
cant material and costs savings especially in the
early phases of the process development. Modeling
and simulation enable maximal advantage in use of
available process data. In this work it was shown
that simple, easy to use, and robust models are suit-
able to describe both, enzymatic and microbial bio-
transformation processes, and to support different
engineering tasks.

A b b r e v i a t i o n s

2-KDG – 2-keto-D-gluconic acid
2-KGADH – 2-ketogluconic acid dehydrogenase
2-KLG – 2-keto-L-gulonic acid
2,5-DKG – 2,5-diketo-D-gluconic acid
A – acetate
ADH– alcohol dehydrogenase
CSTR – continuous stirred tank reactor
D-AAO – D-amino acid oxidase
D-met– D-methionine
DO – dissolved oxygen
Et – ethanol
EMR– enzyme membrane reactor
G – glucose
GA – gluconic acid
GADH – gluconic acid dehydrogenase
GDH– glucose dehydrogenase
L-AAO – L-amino acid oxidase
L-DOPA– 3,4-dihydroxyphenyl-L-alanine
MSC– Model Selection Criterion
O – oxygen
OX – oxidative growth mechanism
P – pyruvate
RED – reductive growth mechanism
X – biomass

L i s t o f s y m b o l s

A – activity, U cm–3

a – activity of enzyme, U g–1

b – deactivation coefficient, h–1

c – concentration, mmol dm–3

D – dilution rate, min–1

Km – Michaelis-Menten constant, mmol dm–3

k – catalytic constant of the enzyme, min–1

kd – enzyme deactivation constant, min–1

kLa – transfer coefficient, min–1
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m – coefficient, min–1

qV – volume flow rate, dm3 min–1

r – reaction rate, U cm–3

T – temperature, �C
t – time, min, h

V – volume, dm3

Vm – maximal reaction rate, U cm–3, U mg–1, U g–1

Y – yield

� – specific growth rate, min–1

� – residence time, min–1

 – mass concentration, g dm–3
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