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Abstract

Using the geometric definition of the topological charge we decom-
pose the path integral of 2-dimensional U(1) lattice gauge theory into
topological sectors. In a Monte Carlo simulation we compute the av-
erage value of the action as well as the distribution of its values for
each sector separately. These numbers are compared with analytic
lower bounds of the action which are relevant for classical configura-
tions carrying topological charge. We find that quantum fluctuations
entirely dominate the path integral. Our results for the probability
distribution of the Monte Carlo generated configurations among the
topological sectors can be understood by a semi-phenomenological ar-
gument.
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The last few years have seen an ever increasing interest in studying topo-
logical ideas in lattice gauge theories (see [1] for a recent review). Many of
these studies were motivated by computing statistical properties of instan-
tons such as their average size and density distribution which are of interest
for semiclassical models [2] (see [3] for an analysis of these ideas for the case
of gauge group U(1) and 2 dimensions). Rather than using the lattice to
extract information on some underlying classical configurations, in a series
of articles [4] we directly investigate possible implications of the existence of
a topological structure for the lattice path integral.

Here we study the characteristic values for the action of quantum fluc-
tuations and compare them to analytic lower bounds of the action in each
topological sector. Classical configurations carrying topological charge typi-
cally have action in the vicinity of these bounds. It is interesting to analyze
whether after adding quantum fluctuations the structure of the classical con-
figurations is still relevant for the physical picture.

The model under consideration is U(1) lattice gauge theory in 2 dimen-
sions. Due to the simplicity of this model good statistics is easy to obtain.
The model has the further advantage of possessing a simple form of the
topological charge; the geometric definition based on Lüscher’s work [5] can
be computed easily without making use of sophisticated techniques such as
cooling or analyzing the spectrum of the Dirac operator. These two facts
allow to explore the physical mechanisms governing the role of topology on
the lattice in a rather playful way.

Before we start developing our results we find it useful to comment on
the relevance of topological arguments in the continuum and on the lattice.
In the continuum it is possible to classify classical, i.e. differentiable config-
urations with respect to their topological charge. It is crucial to note that
these classical configurations are of measure zero in the continuum path in-
tegral [6]. Thus in the continuum topological arguments cannot go beyond a
semiclassical analysis. On the lattice the situation is different. In particular
for the case of U(1)2 lattice gauge theory one can assign a topological charge
to all configurations (except for so-called exceptional configurations which
are of measure zero). For SU(N)4 it is believed, that the path integral in the
continuum limit is dominated by smooth configurations which also can be
assigned a topological charge. Thus in a certain sense, the lattice formulation
is more powerful for studying topological ideas and the lattice path integral
can indeed be decomposed into topological sectors. In particular the outlined
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questions can be formulated in a meaningful way and a consistent physical
picture can be obtained.

We work on a 2-dimensional square lattice Λ with length L. Lattice sites
are denoted as x = (x1, x2) with xi = 1, 2, ..., L. The lattice spacing is set
equal to 1. The gauge fields are group elements Uµ(x) ∈ U(1) assigned to
the links between nearest neighbours x, x + µ̂ and their action is given by

S = β
∑

x∈Λ

[

1 − Re UP (x)
]

. (1)

The plaquette element is defined as UP (x) = U1(x)U2(x+ 1̂)U1(x + 2̂) U2(x).
The gauge fields obey periodic boundary conditions Uµ(L+1, x2) = Uµ(1, x2),
Uµ(x1, L + 1) = Uµ(x1, 1).

The model was simulated with the hybrid Monte Carlo algorithm[7] (this
calculation is part of a another project including also fermions [4]) with 10-
step trajectories adjusted such that the acceptance rate in the Monte Carlo
step was 0.8 in the mean. For all lattices sizes (up to 16 × 16) we averaged
105 measurements. The individual measurements have been separated by 10
updates (for small values of β) up to 500 updates (for β = 6) in order to
reduce correlations.

To check our algorithm we compare our results for simple observables
such as 〈S/L2〉 with the outcome of the analytic solution for the model with
open boundary conditions (see e.g. [8]). We find excellent agreement (within
the small statistical errors), and only for the L = 4 lattice we observed small
deviations due to the different boundary conditions.

For the computation of the topological charge we use the geometric def-
inition which is based on Lüscher’s idea of associating a principal bundle
to each lattice configuration and defining its topological charge through the
topological charge of the bundle [5]. The case of QED2 was worked out in
[9]. One obtains

ν[U ] =
1

2π

∑

x∈Λ

θP (x) , (2)

where the plaquette angle θP (x) is given by θP (x) = −i ln UP (x) and re-
stricted to the principal branch θP (x) ∈ (−π, π). Note that configurations
where UP (x) = −1 for some x are so-called exceptional configurations and
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Lüscher’s definition does not assign a value ν[U ] to them. Those configura-
tions are of measure zero in the path integral.

An interesting observable [10, 11] is the probability distribution1 of the
Monte Carlo generated configurations among the topological sectors. In
Fig. 1 we show our results for a 16 × 16 lattice and β = 4 and 6. For
both values of β we observe a symmetric, Gaussian-like distribution centered
at ν = 0. It becomes more peaked with increasing β.
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Figure 1: Probability distribution p(ν) of Monte Carlo generated configu-
rations among the topological sectors. The symbols give our results from a
16 × 16 lattice for β = 4 and 6 (105 configurations each), the curve is the
semi-phenomenological distribution function (6).

Naturally the following question arises: What is the mechanism behind

this distribution of Monte Carlo configurations among the topological sec-

tors? A first guess is, that there is a lower bound for the gauge field action in
each topological sector. Such a bound would force the action to higher values
when increasing |ν| and through the Boltzmann factor lead to a suppression
of configurations in higher sectors.

1 A physically more relevant observable is the topological susceptibility which is essen-
tially the inverse of the width of the distribution in Fig. 1. For our purposes however,
the whole distribution is more convenient since it contains more information than the
susceptibility.
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Here we use two different lower bounds, a strict bound and a bound which
holds only for sufficiently large β but is more interesting from a physical
point of view. The first one resembles the famous result [12] for classical
Yang-Mills configurations in 4 dimensions. It also can be derived using the
Schwartz inequality [13]. Essentially the same arguments can be repeated
on the lattice. We assume that the lattice gauge configuration U is non-
exceptional such that a topological charge (2) can be assigned. We use the
Schwartz inequality to obtain
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θP (y)2

1−cos θP (y)
.

Using (1) and (2) one ends up with

S[U ] ≥
2π2

L2
β
∣

∣

∣ν[A]
∣

∣

∣

2
D[U ] ≥

2π2

L2
β
∣

∣

∣ν[A]
∣

∣

∣

2 4

π2
, (3)

where
4

π2
≤ D[U ] = 2

[

1

L2

∑

x∈Λ

θP (x)2

1 − cos θP (x)

]

−1

≤ 1 . (4)

D[U ] is a measure for how much the average plaquette angle differs from 0.
This functional takes values between 4/π2 and 1. In the latter case which
corresponds to β → ∞, (3) equals the bound valid for classical configurations
on a continuous 2-dimensional compact manifold (replace L2 by the volume
of the manifold).

Another formula also serves as a lower bound for sufficiently smooth con-
figurations and is more stringent. Using the fact that the function (1−cos θ)
(the contribution of one plaquette to the gauge field action) is convex for
|θ| ≤ π/2 one finds

1

L2

∑

x∈Λ

[ 1 − cos θP (x) ] ≥ 1 − cos

(

1

L2

∑

x∈Λ

θP (x)

)

,

which implies

S[U ] ≥ βL2
[

1 − cos
(2π

L2
ν[U ]

)]

. (5)

It has to be stressed, that this bound holds only if for all x ∈ Λ the condition
|θP (x)| ≤ π/2 is fulfilled. However for large enough β this is the case and (5)
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parameters ν S(ν)/L2 Sph(ν)/L2 bound (3) bound (5)
L = 8 0 0.536(5) 0.536 0 0
β = 4 1 0.556(8) 0.553 0.0078 0.0193

2 0.62(4) 0.603 0.0312 0.0768
L = 16 0 0.543(3) 0.543 0 0
β = 4 1 0.545(3) 0.544 0.0004 0.0012

2 0.549(4) 0.547 0.0019 0.0048
3 0.555(9) 0.552 0.0044 0.0108

L = 16 0 0.523(3) 0.523 0 0
β = 6 1 0.525(3) 0.525 0.0007 0.0018

2 0.530(6) 0.530 0.0029 0.0072
3 0.540(16) 0.538 0.0066 0.0163

Table 1: Data for the action in various topological sectors. For several values
of L, β and ν we give the average value of the action per plaquette S(ν)/L2

the phenomenological value Sph(ν)/L2 from (7) and the values for the lower
bounds (3) and (5) (also normalized with L−2).

holds. For small |ν| it is more stringent than the exact bound (3) (compare
Table 1).

It is interesting to note, that the right hand side of (5) is the value of the
lattice action (1) for configurations which correspond to continuum fields with
constant electric field 2πν/V , where V is the volume of the base manifold.
In [14] the path integral for the Schwinger model an a continuous torus was
constructed essentially using those constant field configurations and adding
quantum fluctuations. The lower bound (5) is thus of particular interest for
analyzing the emergence of the physical picture in the continuum [3, 14] from
a lattice formulation.

In order to study the outlined idea that lower bounds of the action in
each sector are responsible for the distribution in Fig. 1, we compute the
average value S(ν)/L2 of the action for each topological sector separately
and compare this average with the values of the lower bounds (3) and (5).
Fig. 2 and Table 1 give our results.

In the figure the symbols show the average value of the action per pla-
quette and the horizontal lines give the value of the analytic result for open
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Figure 2: Average value S(ν)/L2 of the action per plaquette in various
topological sectors. The symbols are the results of our Monte-Carlo simula-
tion, the horizontal lines are the values from the analytic solution for open
boundary conditions [7]. The curves connecting the symbols come from the
semi-phenomenological formula (7) to be discussed below. We show our re-
sults for L = 8, 16 and β = 2 (circles), β = 4 (squares) and β = 6 (diamonds).

boundary conditions [8] which is a sum over all sectors. The curve connect-
ing the symbols comes from the phenomenological formula (6) below. The
average value of the action increases with increasing values of |ν| and thus
the distribution of Fig. 1 can be understood through the suppression by the
Boltzmann factor.

What is indeed surprising is the fact, that the values of the analytic lower
bounds (3) and (5) are far below the actual average values of the action in
the path integral (see Table 1). For all sectors the action stays close to the
analytic value [8] which is a sum over all sectors (horizontal lines). Only the
center of the distribution slightly dips below this value. The range of values
for the analytic lower bounds (and thus the action for the constant field con-
figurations [14]) is typically one order of magnitude smaller (see Table 1).

To study the quantum fluctuations further we analyze the distribution of
the values of the action in a fixed sector. It can be computed by binning the
range of values of the action and counting the number of configurations in
each bin. In Fig. 3 we show histograms for the probability distribution of the
action per plaquette in the sectors with ν = 0, 1 and 2. The vertical lines
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show the average value S(ν) of the action in each sector as well as the lower
bound (5).
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Figure 3: Probability distribution p(S) of the action per plaquette in the
sectors ν = 0, 1, 2. The data was taken on a 8 × 8 lattice at β = 2. The
dotted vertical lines indicate the value of the lower bound (5) and the average
S(ν)/L2 for each sector.

It is obvious, that quantum fluctuations keep a large portion of the con-
figurations high above the lower bounds (3) and (5). For all sectors the
configurations have action close to the value given by the analytic solution
[8] for open boundary conditions. Comparison with the lower bound (5)
which gives the characteristic action for classical, topologically non-trivial
configurations shows the importance of quantum fluctuations. This domi-
nance of the quantum fluctuations was already conjectured in a study of the
model on the continuous torus [3]. We remark that we obtain similar distri-
butions for other values of L and β. For increasing L the total action of the
configurations tends to be more concentrated around the peak, and the whole
distribution is narrower, as expected. The lower bounds become even less
important. Increasing β makes the distribution less symmetric by increasing
the weight of smaller values of the action, essentially without altering the
support of the distribution.

Although the analytic lower bounds do not seem to govern the distribution
of the values of the action in the fully quantized theory, it is still possible
to use topological arguments in a phenomenological way to understand the
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distributions in Fig. 2. From the definition of the topological charge (2) it
follows that the average increase of the plaquette angle when increasing |ν|
by 1 is given by 2π/L2. Assuming that the effect of going from the trivial
sector to a nontrivial sector can be taken into account by adding this average
value to all plaquette angles one finds (θ0

P (x) are the plaquette angles of a
configuration in the trivial sector)

Sph(ν) = β
∑

x∈Λ

[

1 − cos
(

θ0
P (x) + ν

2π

L2

)]

=

S(0) +
2 π β ν

L2

∑

x∈Λ

sin θ0
P (x) +

2 π2 ν2

L4

[

−S(0) + βL2
]

+ O(ν4/L6) .

In the second step we assumed that |ν| is small compared to L2, and expanded
the cosine in ν/L2. The second order term has been re-expressed in terms of
the total action.

The sum over sin θ0
P (x) may be neglected for two reasons. On one hand

in the sum over all configurations it vanishes due to the symmetry of the
Wilson action in the plaquette angle. Furthermore (at least in order θ0

P (x))
it is proportional to the topological charge which is zero per ansatz. We end
up with the following formula for the average value of the action

Sph(ν) = S(0) + ν2 2π2

L4

[

− S(0) + βL2
]

+ O(ν4/L6) . (6)

In Table 1 we give the values of (6) for the corresponding β, L and ν. The
curves in Fig. 2 were drawn using (6). The formula gives reasonable values
for the average action over a wide range of β, L and ν with a slight tendency
to underestimate the Monte Carlo results for smaller β. This tendency can
be understood by the fact that 2π/L2 only gives the minimal increase of the
average plaquette angle compatible with an increase of |ν| by 1. Quantum
fluctuations seem to lead to slightly higher values of the average plaquette
angle and thus of the action. When increasing β the fluctuations are more
suppressed and the quality of (6) increases.

We finally remark, that (6) can be used to understand the shape of the
distribution in Fig. 1 and to test the ergodicity of the updating algorithm.
Raising (6) to the exponent and normalizing the result gives the Gaussian
distribution

p(ν) = N exp
(

−
1

2
C ν2

)

, C =
4 π2

L4

[

−S(0) + β L2
]

, (7)
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with normalization (note that ν is an integer) N−1 =
∑

ν exp(−ν2 C/2). It
should reproduce the probability distribution of the configurations among the
topological sectors. The dotted lines in Fig. 1 show the Gaussian (8), and we
find good agreement with the Monte Carlo data. The quality increases with
β and L where formulas (6) and (7) are more reliable. Thus the probability
distribution of Fig. 1 can indeed be understood using topological arguments.
We conclude that our updating algorithm is ergodic.

Using a different definition of the topological charge, Bardeen et al. [11]
derive a similar formula for p(ν) from the analytic solution [8]. In the limit
β → ∞, where the two definitions of the topological charge are expected to
coincide, their result approaches our formula (7). In fact, replacing S(0) in
(6) by the analytic result for infinite lattices, proportional to [1−I1(β)/I0(β)]
(which, however, sums all topological sectors) one recovers the distribution
given in [11].

The most remarkable outcome of this study is the fact, that quantum
fluctuations entirely dominate the path integral. At the values of L and β
where our simulations were performed, the configurations which essentially
contribute to the path integral have values of the action which are typically
one order of magnitude larger than the analytic lower bounds. This domi-
nance of quantum fluctuations was already conjectured for the model on the
continuous torus in [3]. In the underlying construction [14] the path inte-
gral is essentially decomposed into constant field configurations that carry
topological charge and saturate the lower bound of the action, plus a field de-
scribing the quantum fluctuations. The observed importance of the quantum
fluctuations shows that trying to establish a physical picture where dominant
classical configurations are used to understand the interplay of topological
charge and vacuum expectation values is questionable.

Using a semi-phenomenological ansatz we were able to obtain a qualita-
tive, and in the β → ∞ limit even quantitative understanding of the average
behaviour of the action. This formula explains the probability distribution
of Fig. 1 in terms of a topological argument and can be used to check the
ergodicity of the updating algorithm.

We believe, that although the technical problems are much more severe, a
similar study can – in principle – also be accomplished for lattice Yang Mills
theory in 4 dimensions. The possible outcome would be a better understand-
ing of the relation between quantum fluctuations and classical configurations
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carrying topological information.

We thank Philippe de Forcrand and Helmut Gausterer for interesting
discussions. C.R. G. has also profited from remarks by Erhard Seiler and
Gordon Semenoff.
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preprint hep-lat/9701012; R. Narayanan and P. Vranas, preprint
hep-lat/9702005; B. Berg and M. Lüscher, Nucl. Phys. B190
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