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Summary 
The steel beam design requirements for limit state lateral torsion buckling are analyzed and criteria 
for two codes (AISC and EC-3) are compared. As the differences in the design requirements are 
substantial, the comparison of the achieved reliability indices is made in order to find out the model 
which is closer to the target reliability level. For this purpose the four example is done concerning 
with the various observation data of snow loads on four locations in Croatia. The statistical 
parameters of the experimental results are evaluated and FOSM method is used for the procedure of 
the calibration. As the results varies with the applied snow loads and the slenderness ratios, for two 
examined models of the designed  rolled beams, which are compared, it is necessary to achieve 
target values of reliability by correction of the model and resistance factors. 
Keywords: reliability, rolled beams, welded beams, specifications, FOSM theory, snow loads, 

distribution density functions. 
1. Introduction 
The laterally unsupported beams, which are examined in the examples of calibration, are subjected 
to the snow loads with secondary members dividing the main beams on the three equal not braced 
lengths and with the central critical segment under uniform moment. As the ultimate capacity for 
lateral torsion buckling varies with the theoretical models, used for design of these beams, the 
statistical parameters of the experimental results are the same for the certain groups of rolled beams 
in the same slenderness range, but the distances of the beams as well the sections are different in the 
conjunction with applied loads and the evaluation models. 
It is evident that the differences in the design requirements for various specification, gives the 
different reliability index for the same applied loads calculated by the same global factors, which 
provides the theoretical models to be compared. The results of calibrations are compared and shows 
which model are on the conservative side for the certain slenderness range. 
2.    Theoretical models for lateral torsion buckling 
The differences and similarities are compared for two code-rules which are based on the essentially 
the same theoretical background and the purpose of this section is to compare these methods and to 
draw the conclusions about the impact of the differences between them. These divergences are due 
to the different perceptions of the effects of initial imperfections. For specifications ECCS and AISC 
many variability arise especially in the inelastic range and for the beams under moment gradient. 
The following general treatments are used for beam design rules: 

Use of the columns formula with the “equivalent” slenderness parameter: 
E

pM
M M=λ , here 

Mp is the plastic moment of the cross section and ME is the elastic lateral torsion buckling moment 
of the beam with the coefficient ( )MM f λχ = , and the coefficients of initial imperfection “α” for 
rolled (0.21) and welled (0.49) beams, such as specified in EC3. 



 

 

Use of the analytically exact lateral-torsion buckling solutions for the cross section, loading and end 
condition, empirically modified to account for bucking in the inelastic range, such as in AISC 
Specification, with the linear interaction in the inelastic range, which can accommodate idealized 
conservative simplifications. The most general equation is the one adopted in Western Europe: 
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, with the exponent “n” which takes on values 2.5 for rolled and 2.0 for 

the welded beams. The variation of the buckling strength with λM for the various values of “n” is 
shown in Fig. 1.and “α“is the coefficient of imperfection in the similar model used in EC-3.  The 
advantage of this method is its simplicity and generality. Its disadvantage is that the implied 
reduction in flexural and torsion stiffness due to the partial plastification of the cross section is the 
same regardless of the magnitude of the compressive residual stress, and it does not differentiate 
between cases where all or most of the not braced segment is yielded and where only a small part of 
the length is plastificed. This equation is conservative for beams with low residual stress and steep 
moment gradient. 

 
Fig.1 Buckling curves by ECCS with imperfection coefficients“α”and system factor n=2.5 

2.1. Theoretical model for lateral-torsion buckling in use of EC-3 
 The selected model is based on the buckling curves of the compression members with five different 
parameters of the initial imperfections (concerning with values of “α”), which are now in the use of 
Eurocode-3 (Rondal&Maqui) as follows: 
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where is σcr/σy=χ for all five buckling curves. 
The test results of the ultimate strength under lateral-torsion buckling are selected for rolled and 
welded beams of symmetrical cross sections for the same boundary and loading conditions. The 

results are non-dimensional in the form of 
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 over interval of 0.1 for slenderness ratio λ . 

Since for beams where plastic moments are assumed to develop, the distances between lateral 
support points will be relatively short (Lp), with extreme fiber strain approaching into the strain 
hardening range. Studies of inelastic lateral buckling have made by Galambos, Lay, Massey and 
Pittman, Bansal and Hartmann. The unbraced length corresponding to the elastic limit, Lr, can be 
obtained by setting ME=Mr, where corresponding buckling moment Mr, is determined including 
residual stresses. 
As ECCS curve for n=2.50 provides a reasonable mean strength over short and medium slenderness 
range for rolled beams, the curve for n=1.50 forms a lower bound for the test points with the (m-2s) 



 

 

strength curve. Same is valid for the welded beams with different system factors “n”, which are 2.0 
and 1.50 respectively. In order to determine the best fit of the assumed implicit function to the 
experimental data, such as selected 324 rolled beams and 132 welded beams, the mean values of no 
dimensional strength coefficients (δi), as well as 5% fractiles (m-1.64s) is evaluated by the method 
of least squares (Eq. 2) in the nonlinear regression analysis. In this problem, as no linearity is 
encountered, the higher-order equations with one independent variable should be tried to fit data 
with the correlation coefficient near 1. 
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The results for the rolled beams from the selected tests data are n=2.64, which is concerning mean 
values, and n=1.425 for 5% fractiles. For the welded beams, on which the same evaluation is done, 
the results for mean value is n=2.44 and 5% fractiles n=1.095 . 
In order to derive the probabilistic evaluation of lateral-torsion buckling strength of ECCS and AISC 
design formula comparing them with test results, the realized indices of reliability is performed on 
the following examples. 

 
Fig. 2 Experimental results and mean value of lateral-torsion buckling curves for rolled beams 



 

 

 
Fig. 3 Experimental results and the mean value of lateral-torsion buckling curves for welded beams 
3. The evaluation of the reliability indices for the rolled beams under snow 

loads 
In this example the calibrations of the main roof beams, which are laterally unsupported on the 
distances between secondary beams are performed on the four different locations for the snow loads 
in continental part of Croatia. The snow load is taken as dominant load during 30 years of 
measurements of meteorological data with the characteristic values as 95% fractile with the return 
period of 30 years. The experimental results are selected for the needed slenderness ratios of the 
rolled beams designed by the theoretical models of ECCS and AISC Specifications, and the 
proposed fractile curve with system factor n=1.425 . 
3.1 The statistical evaluation of the snow loads data 
The snow measurements, which are converted to the snow loads on the flat roofs, are analyzed and 
compared with extreme probability distribution function type I of Gumbel as it is shown on Fig. 4 
and with equation: 
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where mod is: a
cxx
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mean value of the distribution: x  

standard deviation of the distribution: 
6
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Function of the extreme probability distribution during the period of n years: 
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where the mean value for return period of n years nx  is: 
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The characteristic value for the load during the period of n years x k,n , with the probability p that it 
will not be exceeded is: 
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The general expression for the snow loads on the flat roofs with the reduction factor 0.8, concerning 
the thermal characteristics of the building and the exposure, and with probability density function of 
Gumbel, is defined as: 
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y andN Nσ  is mean value and standard deviation of the calculated snow loads. 
On Fig.5 the histograms and extreme type I distribution function is shown for the measure data of 
snow loads in continental parts of Croatia, which are compared with theoretical frequencies. 

 
Fig. 5 Histogram and distribution function for snow load 

3.2 The statistical parameters for the load and the resistance variable 
The  examples are derived for the ultimate lateral-torsion buckling resistances of the rolled beams 
with sections I 200x100x8x5.5, which are designed by the above stated models, under the 
characteristic values of snow loads with the different length of lateral supports and distances 
between the beams. 
The first example is on the location in Zagreb with the statistical parameter for the snow loads: 
q kN0 0 35= . /m2 ; σ 0=0.21 kN/m2 ; V0 =0.60 
q q V kN mp n, ( . ) . /= + =0 0

21 4 52 130  ............. characteristic values of the loads 
q q V kN mn = + =0 0

21 2 652 0 907( . ) . / ............. mean values for n years 
The evaluated girder is from the group of the tested beams with the variable strength shown on Fig. 
5, designed by the values of the loads qp,n , the distances between lateral supports ly , and with 
ultimate strength Mu .  
The second example is on the location in Varaždin with the statistical parameters for the snow 
loads: 
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The calculated values of the ultimate strength Mu and the distances between the girders are specified 
in the tables 1 to 4. 
The third example is for location in Ogulin with the parameters of the snow loads: 
q kN m kN m V

q kN m q kN m Vnp n n

0
2

0
2

0
2 2

0 929 051 055

320 2 26 0 225
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The fourth example is for location in Slavonski Brod with the characteristics of snow load: 
q kN m kN m V

q kN m q kN m Vnp n n

0
2

0
2

0
2 2

0 490 0 244 0 490

2 960 2120 0113
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3.3 The evaluation of the reliability indices for the calibration of the rolled beams 
The reliability index is derived from the equation of the ultimate limit state with two basic 
variables, which are statistically independent, g(x) =R-Q, with the probability of the failure is: 
 ∫=<= dx)x(f)x(F)QR(Pp QRf                                                                             (9) 

where is: 
FR - cumulative distribution function of resistance R 
fQ - probability density function of load Q 
The basic variable is not distributive by normal probability distribution function, so FOSM method 
is not applicable and Rackwitz & Fiessler-method is used with the transformation of the basic 
variable into the equivalent of normal distribution and the parameters N

,x
N ,x σ  under the 

circumstances, that the cumulative distribution and probability density functions are the same, as for 
basic and approximated variables, in the reper points on the ultimate limit state plane: 
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The equivalent mean value and standard deviation of basic variable is: 
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F,f - distribution and density function of basic variable xi 

Φ, φ  - cumulative distribution and density function of standard normal variable 
The iterative procedure for approaching to minimum value of β, is obtained by the equation system:   
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The partial derivations ∂ ∂
g

xi
are evaluated for *

ix , and αi of the basic variables xi . After the 

convergation of this algorithm, reliability index β* is evaluated, and approximate value of the 

probability of failure ⎟
⎠
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⎛−≅ *βΦ1fp . 

3.4 The results of the calibration for the rolled beams 
From the statistical parameters of the buckling test results for rolled beams and the predicted model 
values, the evaluation of the reliability indices is performed and tabulated (Table 1 to 4) for stated 
slenderness ratios and snow loads on four locations. 
 

Table 1 Ultimate strength and calibration for the snow load data in Zagreb 

 Theoretical results Mteo  [kNm] for models:  

605.0=λ  ECCS AISC Curve 
(α=0.247) Mexp  [kNm] 

Mmax 
σMmax 
β 

21.63 
5.01 
3.8 

21.22 
4.91 
3.9 

19.22 
4.45 
4.20 

57.45 
1.58 

 

Table 2 Ultimate strength and calibration for the snow load data in Varaždin 
 Theoretical results Mteo  [kNm] for models:  

77.0=λ  ECCS AISC Curve 
(α=0.247) 

Mexp  [kNm] 

Mmax 20.51 19.75 17.17 46.30 
σMmax 4.51 4.40 3.83 2.77 
β 3.20 3.50 4.20  

 

Table 3 Ultimate strength and calibration for the snow load data in Ogulin 
 Theoretical results Mteo  [kNm] for models:  

918.0=λ  ECCS AISC Curve 
(α=0.247) 

Mexp  [kNm] 

Mmax 18.40 18.10 15.07 47.27 
σMmax 4.14 4.07 3.40 5.69 
β 3.21 3.10 3.81  

 

Table 4 Ultimate strength and calibration for the snow load data in Slavonski Brod 
 Theoretical results Mteo  [kNm] for models:  

17.1=λ  ECCS AISC Curve 
(α=0.247) 

Mexp  [kNm] 

Mmax 14.51 14.88 11.93 40.53 
σMmax 1.64 1.69 1.35 3.40 
β 5.18 4.80 6.20  

 
The results of the calibration vary for the design models, which are examined and from criteria of 
European Committee for Safety of Structures, when full-safety is ensure by reliability index β=3.80, 
only the proposed buckling curve with new imperfection parameter α=0.247 satisfies this aim (Fig. 
6).In order to ensure uniform reliability, it is necessary to use new model factor with the target 
reliability level near to βT =3.80. 



 

 

 
Fig. 6 Proposed buckling curve for rolled steel beams with new parameter α=0.247 

4. Conclusion 
The analysis of laterally unsupported steel beams for various design models is obtained, by which 
the ultimate limit state of the lateral torsion buckling strength is evaluated for the purpose of the 
calibration of the rolled beams under the snow loads from the measured data in Croatia. The results 
of the calibration varies with applied snow loads and slenderness ratio for three examined designed 
models, and for ECCS criteria they are in the range from realized reliability indices β= 3.20 to 5.19, 
for AISC Specifications indices are lower, such as β=3.10 to 4.80, and for the model of proposed 
system factor “n” is quite on the target safety side with β=4.20 and 6.20 . As the calibration is 
performed with the designed model by global and constant safety factor, the differences are the 
result of the basic formulations of the buckling curves. It is evident that there is no necessity to 
change the system factor “n” of buckling curves, or factor of imperfection “α”, but to correct the 
evaluation model by model and resistance factors with the target reliability level in order to achieve 
uniform reliability with the proposed loads factors, concerning the applied loads in certain cases. 
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