ICTS 2005

9th INTERNATIONAL CONFERENCE ON TRAFFIC SCIENCE

CONFERENCE ABSTRACTS

14th - 15th NOVEMBER 2005
PORTOROŽ, SLOVENIA
REFERATI

PAPERS

po priimku prvega avtorja
by first author

Za kakovost prevoda referata v angleški jezik so odgovorni avtorji.
The quality of the English translation is a responsibility of authors.

P. Bajec

3PL SELECTION AND IMPLEMENTATION: KEY CONSIDERATIONS AND SUCCESS FACTORS

J. Benič

POSSIBILITY OF DEVELOPMENT EUROPEAN DISTRIBUTION CENTRES IN EUROPE AND IN SLOVENIA

T. Bielić, D. Glažar, D. Čišić

COMPLACENCY IN MARITIME INDUSTRY

B. Boc

ROLE OF DRIVING TEST IN DIFFERENT LICENSING SYSTEMS

L. Bogdanović, M. Batista, T. Magister

THE USE OF DEFORMATION BASED MODELS IN ACCIDENT RECONSTRUCTION

S. Božičnik

INTERDISCIPLINARY SOLUTIONS FOR THE NEW RAILWAY FREIGHT SYSTEM

A. Bukša, M. Tudor, D. Martinović

RESEARCH OF THE FAILURE INCIDENCES IN THE DIESEL-ENGINE PROPULSION SYSTEM

P. Capon, G. Longo, F. Santorini

A GENERAL FRAMEWORK FOR TRANSPORT CORRIDORS PLANNING AT EUROPEAN LEVEL

J. Cimanskis, A. Zągeris

OPTIMIZATION METHOD OF THERMODYNAMIC ANALYSIS OF WASTE GAS HEAT RECOVERY CIRCUIT AT FIXED DIMENSIONS (HEIGHT) OF EXHAUST BOILER

N. Cvitanović

TRANSPORT RISKS AND TRANSPORT/MARINE INSURANCE CARGO INSURANCE IN WORLD TRADE

M. Čičak, D. Barić, B. Abramović

file://E:\papers.html
PRELIMINARY DESIGN OF BUS STATION IN RIJEKA

A. Črnologar, D. Todorović
GALILEO AND ITS SECURITY IMPLICATIONS

I. Dimnik, S. Pavlin
AIRLINE ALLIANCES

B. Dragović, N. K. Park, R. Meštrović, Z. Radmilović
SIMULATION AND ANALYTICAL ESTIMATION OF PERFORMANCE MEASURES AT ASBL IN PORT

T. Gorenšek
OPTIMISATION OF LOGISTIC OPERATIONS WITH THE INTEGRATED NAVIGATION AND TRACKING SYSTEM IN VEHICLES (EXAMPLE OF THE VIA-VEK SYSTEM)

K. Havel, R. Bíro
PRINCIPLES OF ANSPS STRATEGY VIS-À-VIS CEATS AGREEMENT AND SES INITIATIVE

I. Jakomin, G. Veselko
DISTRIBUTION LOGISTICS AS THIRD PHASE IN MANAGING GLOBAL SUPPLY CHAINS

D. Janković, N. Zuber
APPLICATION OF MODEL FOR ESTABLISHMENT OF TRAFFIC ENFORCEMENT EFFECTIVENESS INDEX

M. Jelenc
LOGISTICAL POSITION OF SLOVENIA AND STRATEGIC DEVELOPMENT OF LOGISTICAL SERVICES

Z. Jurić, N. Račić, G. Radica
INTELLIGENT DIESEL ENGINE FUEL INJECTION EXPERT SYSTEM DEVELOPED FOR THE EDUCATION OF MARINE ENGINEERS

A. Juvanc, R. Rijavec
LACKING MOTORWAYS OF INTERREGIONAL INTEREST IN SLOVENIA

I. Karničnik, L. Jakomin
ELECTRONIC NAVIGATIONAL CHART AND SAFETY OF NAVIGATION AT SEA

A. Klančič
THE NEW APPROACH TO HYDRODYNAMIC PROPULSION

M. Klopott, R. Marek
THE ANALYSIS OF EXPOSURE TO RISKS IN THE TRANSPORT & LOGISTICS LINE OF BUSINESS IN
V. Koljatić, V. Tomas, R. Miculinić
SAFE AND RELIABLE OPERATION OF VESSELS BY MEANS OF ENHANCED MACHINERY REDUNDANCY

S. Kos, D. Vranić, D. Zorović
A CONTRIBUTION TO THE UNIFICATION OF NAVIGATIONAL NOTIONS AND SYMBOLS

Z. Kozłowski, A. Wolski
A ROAD CONNECTION ACROSS THE RIVER O德拉 AS AN ELEMENT OF EUROPEAN TRANSPORT SYSTEM

B. Krajnc
ADR 2005 - STRICTER SECURITY CONTROL, AMENDMENTS AND ADDITIONS

A. Križaj
OPTIMISATION OF COSTS FOR JET FUEL EXPENSES BY A REGIONAL AIR CARRIER

J. Kupec, T. J. Mlinarić, M. Čičak
CALCULATING RAILWAY LINE CAPACITY USING THE QUEUING THEORY

G. Lahajnar
THE AFFECT OF RECEIVING INFORMATIONS ABOUT TRAFFIC ACCIDENT'S ON THE RESULTS OF THE ACCIDENT AND GENERAL TRAFFIC SECURITY

Z. Lanović
SELECTION OF TRAFFIC FLOW OPTIMIZATION MODEL

A. Lisec, A. Rihter, B. Radinja
LOGISTICAL CHARACTERISTICS OF POSTAL OPERATIONS

M. Lukežić
TEST METHOD FOR FLAMMABLE SOLIDS OF DIVISION 4.1

A. Luttenberger
COVERING THE RISK OF PIRACY AND ARMED ROBBERY AT SEA

T. Magister, M. Batista, L. Bogdanović
PROPOSAL FOR CONTROL OF THE SCHENGEN PART OF SLOVENIAN BORDER WITH UNMANNED AERIAL VEHICLES

A. Malić, D. Badanjak, M. Rajsman
EMPLOYMENT DYNAMICS IN THE CROATIAN TRAFFIC SYSTEM
D. Marić
RFID TECHNOLOGY IN PRACTICE AND ITS FUTURE IN THE SUPPLY CHAIN

I. Martinić, I. Dadić, J. Jurum-Kipke
PROSPECTS OF IMPLEMENTING INTELLIGENT TRANSPORT SYSTEMS IN CROATIAN CITIES

B. Marzi, K. Logožar
ENVIRONMENTAL MANAGEMENT SYSTEM OF THE PORT OF KOPER REGARDING »BEST PRACTICES«
IN EU PORTS

S. Matoš, M. Rajsman
TRANSPORTATION OF DANGEROUS GOODS IN THE CROATIAN TRAFFIC SYSTEM

T. J. Mlinarić, M. Čičak, B. Abramović
PRELIMINARY RECONSTRUCTION DESIGN OF THE PASSENGER RAILWAY STATION RIJEKA

R. Muha
HOW WILL THE NEW WAY OF ACQUIRING THE DRIVER’S QUALIFICATION CONTRIBUTE TO THE
RAISE OF PROFESSIONAL LEVEL IN SLOVENIAN ROAD TRANSPORT

A. Ogorelc
THE THIRD-PARTY LOGISTICS - THE EMERGING EUROPEAN LOGISTICS INDUSTRY

R. R. A. Owolabi
THE DISTINGUISHING TEACHING SKILLS REQUIRED FOR EFFECTIVE SIMULATOR-BASED EDUCATION
AND TRAINING

S. Pavlin, M. Rapan, I. Mehmedi
COMPLIANCE OF CROATIAN, MACEDONIAN AND SLOVENIAN AIRPORT MANOEUVERING AREAS WITH
INTERNATIONAL RECOMMENDED PRACTICES

C. Perc, D. Sever
THE MODEL OF MILITARY LOGISTICS TRANSFORMATION INTO A DYNAMIC LOGISTICS SYSTEM

A. Perić, A. Jugović, R. Zelenika
FACILITY LOCATION ANALYSIS IN SUPPLY CHAIN MANAGEMENT: IMPORTANCE, POSSIBILITIES AND
APPLICATION

S. Petelin, P. Vidmar, M. Perković, A. Stijepić, F. Al-Mansour, M. Tomšič
PIPELINE GAS TRANSPORT COMPARISON TO ELECTRICITY TRANSMISSION

D. Peterernelj, T. Košmrlj, M. Bajt, M. I. Vatič

file://E:papers.html

16.11.2005
TRAFFIC CHARACTERISTICS ON SPECIFIC LOCATIONS OF TWO-LANE, TWO-WAY HIGHWAYS

L. Pevec
EFFICIENCY OF ADDITIVES TO MOTOR OIL

B. Potokar
AIS BASE STATION IN THE REPUBLIC OF SLOVENIA

D. Pupavac, B. Rudić, S. Hirnig
FEEDER SERVICE AND CONTAINER TRAIN - LOGISTIC SUPPORT TO THE PORT OF RIJEKA

N. Radionov Radenković
ROAD FREIGHT TRANSPORT SERVICES IN CROATIA ACCORDING TO THE 2004 ROAD TRANSPORT ACT - Wise harmonization with the acquis or sand in the eyes?

T. Ramšak, D. Lenart, S. Kolar
INTEROPERABILITY OF RAILWAY TRANSPORT ENTERPRISES

A. Rihter, A. Lisec, B. Radinja
INTERMODAL AND MULTIMODAL TRANSPORT IN POSTAL OPERATIONS

B. Skrbinek, M. Trapečar, M. I. Valič
INSTRUMENTS FORbreath ALCOHOL ANALYSIS

J. Sušanj, A. Kraš, B. Milotić
ON NON-IONISING RADIATION IN PORTS AND HUMAN HEALTH

L. Šešerko
SUSTAINABLE TRANSPORT STRATEGY FOR SLOVENIA

D. Šimulčik, Z. Kavran, N. Đaković
REAL TRAFFIC POLICY - AN EVALUATION FACTOR OF THE CROATIAN ECONOMIC POTENTIAL

K. Šotek, A. Chlaň
THEORY OF TRANSPORT SYSTEMS

M. Šraml, T. Lerher, J. Kramberger, I. Potrč
OPTIMISATION PROCESS OF DESIGNING AUTOMATED WAREHOUSES AND INTERNAL TRANSPORT

E. Tireli, A. Bukša, R. Miculinić
METHOD FOR ADJUSTMENT AND DESIGN OF THE SHIP´S PROPULSION MAINTENANCE CONCEPT

L. Tomczak

file://E:\papers.html 16.11.2005
APPLICATION OF 3D VISUALIZATION IN MARINE ENGINE ROOM SIMULATORS
B. Tomšič

THE ELECTRONIC TOLL SYSTEM IN EUROPEAN STATES
E. Twrdý, P. Jenček, M. Pavliha

DEVELOPMENT OF REGIONAL INTERMODAL TERMINALS
T. Vidic

LIABILITY OF THE RAILWAY CARRIER: NEW PROPOSALS
P. Vidmar, S. Petelin

DETERMINISTIC APPROACH IN TUNNEL SAFETY ASSESSMENT

R. Vilimanović

THE IMPACT OF THE CRIMINAL PROCEEDINGS OF TRAFFIC TRANSgressORS ON THE ROAD TRAFFIC SAFETY
G. P. Vlachos, E. Nikolaidis, G. Konomos, M. Maniati

DECOMPOSITION OF THE MOVEMENT MECHANISM OF THE CONTAINER SHIPS' FREIGHTS AND RESEARCH ON THE SEASONAL HYPOTHESIS
G. P. Vlachos, E. Nikolaidis, G. Konomos, M. Maniati

MULTI-CRITERIA METHOD APPLICATION ON THE MAIN TANKER SHIP OWNER POLICY PRACTICES
J. Zavada, J. Blašković Zavada, N. Štrumberger

REALIZATION OF FUTURE LIMITS OF PERMITTED HARMFUL EMISSIONS OF RAILWAY VEHICLE DIESEL ENGINES
S. Brnadić Zoranić, N. Zuber, S. Alispahić

ROAD TRAFFIC SAFETY IN NIGHT-TIME CONDITIONS AS SEEN FROM THE ASPECT OF THE PROBLEM OF GLARE
R. Žnidarič

MEASURING AND DETERMINING THE CONCENTRATION OF ALCOHOL IN THE BREATH

BACK
EMPLOYMENT DYNAMICS IN THE CROATIAN TRAFFIC SYSTEM

Prof. Adolf Malić, Dd.Sc., Prof. Dragan Badanjak, D.Sc.
Faculty of Traffic and Transport Sciences, University of Zagreb
Vukeličeva 4, HR-10000 Zagreb, Croatia

Marijan Rajsman, B.Eng. of Traffic
Town Office for Urban Planning, Environmental Protection, Building, Construction, Municipal Services and Transportation
Trg Stjepana Radića 1, HR-10000 Zagreb, Croatia

ABSTRACT

The personnel potential employed in the traffic system is of extreme importance, especially regarding its role in the technological, organizational, and economic development. The state and level of employment in the subsystems of the traffic system influence directly also the productivity of work in them.

Regarding the significance of the employment in the traffic system the paper studies:

- the employment status in the Croatian traffic system (absolute and relative share of subsystems in the structure),
- the employment dynamics of the traffic systems and their subsystems, regarding the status in 1992 and 2002,
- the change in the employment structure in the traffic system regarding their subsystems and the status in 1992 and 2002,
- formation of the mathematical prognostic trend models (statistically significant with p<0.05) of the employment development of single traffic subsystems and traffic system in general, as a scientifically founded basis for forecasting of this traffic value in the future.

1 INTRODUCTION

Modelling of the traffic system development is extremely significant and depends directly both on general and special objectives of the economic and overall social development.

The employment status in the traffic system is an essential element of its organizational stratum. The personnel potential certainly represents a crucial resource of any country, and thus also in the traffic and transport sector it represents the key factor of development, especially of its technological and economic stratum. Similarly, the status and level of employment in the traffic system affect the productivity of work in the subsystems, as well as in the overall system.

2 EMPLOYMENT STATUS IN THE CROATIAN TRAFFIC SYSTEM

The employment status per traffic subsystems (absolute and relative) is presented in Table 1, and the data are presented also in a graphical form further in the text.
Table 1: Employment status in the traffic system of the Republic of Croatia

<table>
<thead>
<tr>
<th>Number of employees in the traffic subsystem</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railway traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>20688</td>
<td>19468</td>
<td>18535</td>
<td>18170</td>
<td>16077</td>
</tr>
<tr>
<td>REL.</td>
<td>26.4%</td>
<td>24.9%</td>
<td>23.7%</td>
<td>23.2%</td>
<td>20.6%</td>
</tr>
<tr>
<td>Road traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>12703</td>
<td>12028</td>
<td>10624</td>
<td>9712</td>
<td>6710</td>
</tr>
<tr>
<td>REL.</td>
<td>16.2%</td>
<td>15.4%</td>
<td>13.6%</td>
<td>12.4%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Urban - suburban traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>7865</td>
<td>7863</td>
<td>7807</td>
<td>7686</td>
<td>7520</td>
</tr>
<tr>
<td>REL.</td>
<td>10.1%</td>
<td>10.1%</td>
<td>10.0%</td>
<td>9.8%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Maritime traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>5913</td>
<td>4794</td>
<td>4578</td>
<td>4556</td>
<td>4533</td>
</tr>
<tr>
<td>REL.</td>
<td>7.6%</td>
<td>6.1%</td>
<td>5.9%</td>
<td>5.8%</td>
<td>5.8%</td>
</tr>
<tr>
<td>River traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>527</td>
<td>459</td>
<td>490</td>
<td>442</td>
<td>345</td>
</tr>
<tr>
<td>REL.</td>
<td>0.7%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Air traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>2559</td>
<td>2582</td>
<td>2623</td>
<td>2812</td>
<td>2911</td>
</tr>
<tr>
<td>REL.</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.4%</td>
<td>3.6%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Transshipment and storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>3804</td>
<td>5074</td>
<td>5012</td>
<td>4913</td>
<td>4549</td>
</tr>
<tr>
<td>REL.</td>
<td>4.9%</td>
<td>6.5%</td>
<td>6.4%</td>
<td>6.3%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Pipelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>542</td>
<td>630</td>
<td>474</td>
<td>481</td>
<td>527</td>
</tr>
<tr>
<td>REL.</td>
<td>0.7%</td>
<td>0.8%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Postal traffic and telecommunications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>23617</td>
<td>24020</td>
<td>24544</td>
<td>24246</td>
<td>23602</td>
</tr>
<tr>
<td>REL.</td>
<td>30.2%</td>
<td>30.7%</td>
<td>31.4%</td>
<td>31.0%</td>
<td>30.2%</td>
</tr>
<tr>
<td>Traffic system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS.</td>
<td>78218</td>
<td>76918</td>
<td>74687</td>
<td>73018</td>
<td>66774</td>
</tr>
<tr>
<td>REL.</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

The analysis of the data presented in Table 1 shows that there is a decline in the employment rate in the traffic system of the Republic of Croatia with an average negative annual rate of change of 3.8 percent, and the following may be stated for the traffic subsystems:

- road traffic subsystem marks an employment decline at an average rate of change of -14.7%,
- railway traffic subsystem marks an employment decline at an average rate of change of -6.1%,
- river traffic subsystem marks an employment decline at an average rate of change of -10.0%,
• urban and suburban traffic subsystem marks an employment decline at an average rate of change of -1.1 %,
• and only air traffic subsystem marks an increase in employment at an average rate of change of +3.3 %.

3 EMPLOYMENT DYNAMICS OF THE TRAFFIC SYSTEM

When one analyzes a longer period of time, e.g. from 1992 to 2002, one can obtain information about a longer trend in the employment dynamics in the Croatian traffic system and its subsystems. Further in the paper the dynamics of employment is presented starting from 1992 until 2002, with cross-sections for 1995 and 1998.

![Graph showing employment trends from 1992 to 2002](image)

Figure 1: Employment status dynamics of the Croatian railway traffic system for the period 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)
Figure 2: Employment status dynamics of the Croatian road traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)

Figure 3: Employment status dynamics of the Croatian urban-suburban traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)
Figure 4 - Employment status dynamics of the Croatian maritime traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)

Figure 5 - Employment status dynamics of the Croatian river traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)
Figure 6: Employment status dynamics of the Croatian air traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)

Figure 7: Employment status dynamics of the Croatian transhipment and storage system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)
Figure 8: Employment status dynamics of the Croatian pipeline traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)

Figure 9: Employment status dynamics of the Croatian postal and telecommunications traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)
Figure 10: Employment status dynamics of the Croatian traffic system in the period from 1992-2002 (Source: State Office for Statistics of the Republic of Croatia, Statistical reports 1197, Zagreb, 2003)

Mathematical processing of data on the employment status dynamics in the Croatian traffic system and its subsystems in the period from 1992-2002 shows the following:

a) decrease in employment with an average annual negative rate of change in the employment status of –
- 5.9% in railway system (decrease in the number of employees in 2002 compared to 1992 by 43.6%),
- 6.7% in road system (decrease in the number of employees in 2002 compared to 1992 by 47.7%),
- 0.7% in the urban-suburban traffic system (decrease in the number of employees in 2002 compared to 1992 by 6.5%),
- 4.9% in the maritime system (decrease in the number of employees in 2002 compared to 1992 by 37.8%),
- 9.0% in the river system (decrease in the number of employees in 2002 compared to 1992 by 57.9%),
- 4.7% in the transhipment and storage system (decrease in the number of employees in 2002 compared to 1992 by 38.3%),
- 0.5% in the pipeline traffic system (decrease in the number of employees in 2002 compared to 1992 by 5.2%), and
- 2.5% in the Croatian traffic system (decrease in the number of employees in 2002 compared to 1992 by 22.7%);

b) increase in the employment level –
+ 6.3% in air traffic system (increase of the number of employees in 2002 compared to 1992 by 84.7%), as well as
+ 2.0% in the postal and telecommunication traffic system (increase in the number of employees in 2002 compared to 1992 by 21.5%).
4 CHANGE IN THE EMPLOYMENT STRUCTURE IN THE TRAFFIC SYSTEM

Changes in the employment structure in the subsystems of the Croatian traffic system are presented in Table 2, as well as the respective Figures.

Table 2: Dynamics of changes of the internal employment structure of the Croatian traffic system compared to the status in 1992 and 2002.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>1992</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIL</td>
<td>28494</td>
<td>16077</td>
</tr>
<tr>
<td>ROAD</td>
<td>12820</td>
<td>6710</td>
</tr>
<tr>
<td>URB./SUBURB.</td>
<td>8041</td>
<td>7520</td>
</tr>
<tr>
<td>MARITIME</td>
<td>7291</td>
<td>4533</td>
</tr>
<tr>
<td>RIVER</td>
<td>820</td>
<td>345</td>
</tr>
<tr>
<td>AIR</td>
<td>1576</td>
<td>2911</td>
</tr>
<tr>
<td>TRANSPL., STORAGE</td>
<td>7376</td>
<td>4549</td>
</tr>
<tr>
<td>PIPELINES</td>
<td>556</td>
<td>527</td>
</tr>
<tr>
<td>POST./TELECOM</td>
<td>19417</td>
<td>23602</td>
</tr>
<tr>
<td>TRAFFIC SYSTEM</td>
<td>86391</td>
<td>66774</td>
</tr>
</tbody>
</table>

Source: Statistical reports 1029/1996 and 1197/2003, Croatian State Office for Statistics

Figure 11: Structure of the number of employees in the Croatian traffic system regarding their absolute share per traffic subsystems (Source: Table 2)
Figure 12: Structure of the number of employees in the Croatian traffic system regarding their relative share per traffic subsystems (Source: Table 2)

5 PROGNOSTIC TRENDS MODELS OF EMPLOYMENT DEVELOPMENT IN THE TRAFFIC SYSTEM

The paper presents further the Figures and detailed mathematical and statistical analyses of the traffic values in Table 1.

The prognostic trend model of development dynamics of single traffic values obtained by means of the computer program “Microsoft Excel” has been defined by the equation and determination coefficient (R²), and it is presented in a Figure. The determination coefficient (R²) measures the intensity of the relation of the observed variable in the mathematical model and the time. If the relation is functional, then the value of the determination coefficient is R² = 1, and the closer R² to this value, the stronger the relation.¹ When the determination coefficient value R² is greater than 0.77 there follows the conclusion that the determined mathematical model of the prognostic trend of the studied variable is statistically significant.²

² Ibidem, pp. 406-407
\[y = 22000e^{-0.0573x} \]
\[R^2 = 0.9359 \]

Figure 13: Dynamics of the number of employees in the Croatian railway traffic system \(^3\)
(Source: Table 1)

\[y = 15815e^{-0.149x} \]
\[R^2 = 0.873 \]

Figure 14: Dynamics of the number of employees in the Croatian road traffic system
(Source: Table 1)

\(^3\) In all the prognostic trend models in this paper the convention is used that \(x\) represents the time value, so that e.g. \(x = 1\) for the initial year of the observed time period.
Figure 15: Dynamics of the number of employees in the Croatian public urban-suburban traffic system (Source: Table 1)

Figure 16: Dynamics of the number of employees in the Croatian maritime traffic system (Source: Table 1)
Figure 17: Dynamics of the number of employees in the Croatian river traffic system (Source: Table 1)

\[y = -38.1x + 566.9 \]
\[R^2 = 0.7777 \]

Figure 18: Dynamics of the number of employees in the Croatian air traffic system (Source: Table 1)

\[y = 2430.4e^{0.0343x} \]
\[R^2 = 0.9056 \]
Figure 19 - Dynamics of the total number of employees in the Croatian traffic system (Source: Table 1)

According to the performed mathematical statistical analyses of the observed values from Table 1 in the time period between 1998-2002 the statistically significant ($p < 0.05$) trend model was determined as follows for:

- railway, road, urban-suburban, maritime, river and air subsystem of the Croatian traffic system, as well as for the entire Croatian traffic system.

For the transhipment and storage systems ($R^2 = 0.35$), pipeline ($R^2 = 0.19$) and postal telecommunication traffic ($R^2 = 0.08$) the statistically significant mathematical prognostic trend model has not been determined and therefore these have not been presented graphically in the previous Figures, nor is the respective function of probability provided.

6 CONCLUSION

The established mathematical prognostic trend models that are statistically significant represent the scientifically founded basis for forecasting the number of employees in the traffic system of the Republic of Croatia in the future.

The employment status in the Croatian traffic system in the observed time period is characterized by the following:

a) decrease in the total number of employees in the national traffic system by 22.7%, at an average negative annual rate of change of -2.5%,

b) decrease in the number of employees in subsystems of

- railway traffic by 43.6%, at an average annual negative rate of change of 5.9%,
- road traffic by 47.7%, at an average annual negative rate of change of 6.7%,

urban suburban traffic by 6.5%, at an average annual negative rate of change of 0.7%,
maritime traffic by 37.8%, at an average annual negative rate of change of 4.9%,
river traffic by 57.9%, at an average annual negative rate of change of 9%,
transhipment and storage by 38.3%, at an average annual negative rate of change of 4.7%,
c) increase in the number of employees in subsystems
air traffic by 84.7%, at an average annual positive rate of change of 6.3%, and
postal and telecommunication traffic by 21.5%, at an average annual positive rate of change of 2%.

Mathematical statistical analysis of the number of employees in the period from 1998 to 2002 was used to determine the statistically significant (p< 0.05) trend model for:
- railway, road, urban-suburban, maritime, river and air subsystem of the traffic system of the Republic of Croatia, as well as for the entire Croatian traffic system.

REFERENCES
