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Abstract 

 This paper presents fault dictionary optimization 
technique which uses binary logical manipulation 
algorithm. It uses brute force to find optimal testing 
conditions. Since the optimisation technique handles only 
numbers, it can be applied in all fault dictionary based 
techniques. Optimization method applied on fault 
dictionary, results in reducing its dimensions and in 
isolating uniquely defined faults. Remaining ununiquely 
defined faults are grouped into ambiguity sets. The 
universality of the technique is approved by an application 
to two different approaches: the approach in the frequency 
and in theDC-domains. In this paper the emphasis is on the 
frequency domain. 

 The performances of the method and the main steps are 
illustrated on an analog active filter example.  

1. INTRODUCTION 
 If the component values in electrical circuits deviate 
from its nominal values and produce a circuit failure, the 
fault isolation procedure can be carried out to locate the 
faulty element. To test the circuit the isolation procedure 
uses the signatures previously defined for all possible faults 
cases and stored in the form of dictionary. 

 The method described in this paper is used to optimize 
the fault dictionary. It throws out redundant measurements, 
isolates unambiguously defined faults and ambiguous faults 
groups into ambiguity sets. If one of ambiguous faults 
occurs one should repair all faults in group. 

 The fault isolation procedure developed by Hochwald 
and Bastian performs the testing in the DC domain. They 
measured DC nodal voltages in video amplifier circuit 
realized with discrete semiconductor elements (transistors, 
diodes, etc.) [4, 5]. The method forms a fault dictionary 
with voltages in every considered node and for every fault 
case. The objective of optimization of the fault dictionary is 
to reduce number of nodes and still retain ability to identify 
faulty element. 

 Jurisic, Mijat and Cosic developed method in the 
frequency domain for testing analog active filters for single 
hard faults of passive elements (short or open circuits) [1]. 

The filter transfer function magnitudes correspondent to 
particular single faults are calculated at a previously 
determined set of discrete test frequencies, forming a fault 
dictionary. To determine the minimal number of test 
frequencies sufficient to isolate all uniquely identified 
faults, the optimization method is applied. 

 Both methods belong to simulation-before-test approach 
and construct fault dictionaries. The optimization procedure 
will be explained in details on the latter technique. 

2. FAULT DICTIONARY 
 The fault location method in the frequency domain [1] 
is illustrated by an example of 4th order Butterworth LP 
filter. The filter is realized by cascading two 2nd order 
sections (Fig. 1). 

 
(a) 

 
(b) 

Fig. 1. Active 4th order LP filter (a) cascaded sections, (b) biquadratic 
section. 

It is assumed that all passive elements (14 ones) can 
produce either open or short circuit (nfaul=28), for example 
R1A+ means R1 in block A is an open circuit, and R3B- 
means R3 in block B is a short circuit. The faults are 
numbered with 0 to 27. 

 In our example the magnitudes in 100 discrete 
logarithmically spaced frequencies ranging from 101rad/s to 
103rad/s, denoted by numbers 0,1,…,99 (nfreq=100), are 
calculated,. 
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 Choosing a smaller subset of nfreq=12 test frequencies 
one can form initial fault dictionary. The initial test 
frequency set is {47, 50, 52, 53, 54, 57, 58, 60, 62, 66, 67, 
71}. There are nfreq×nfaul records in the dictionary. The 
signatures in the fault dictionary are quantified error 
characteristic using scale of marks from 0 to 8 (nmark=9). 
Error characteristic is difference between nominal 
characteristic and faulty characteristic when element value 
changes ±50% from its nominals.  

 The initial fault dictionary is given in Table I. Columns 
correspond to test frequencies and rows correspond to 
faults. Note that some of the faults (R1B+, R3B+), (R1B-, R3B-
), (R4B+, R5B-) and (R4B-, R5B+) have the same signatures. 
Other faults have unique signatures. 

TABLE I Fault Dictionary (Shaded columns are the result of the 
optimization) 

Test Frequency 47 50 52 53 54 57 58 60 62 66 67 71
Nr. Fault Signature 
0 R1A+ 1 1 1 1 1 1 1 2 2 2 2 2
1 R1A- 5 5 5 5 5 5 5 6 6 7 7 7
2 R2A+ 6 6 6 6 6 6 5 5 5 0 0 0
3 R2A- 3 3 3 3 3 3 3 3 2 2 1 1
4 R3A+ 1 1 2 2 2 3 3 3 3 3 3 3
5 R3A- 1 0 0 0 0 5 6 7 8 8 8 8
6 R4A+ 2 3 3 3 3 3 3 3 3 3 2 2
7 R4A- 7 7 7 7 7 8 8 8 7 7 7 7
8 R5A+ 6 7 7 8 8 8 8 8 8 7 7 6
9 R5A- 3 3 3 4 4 4 4 4 4 3 3 3
10 R1B+ 1 1 1 1 1 2 2 2 2 2 2 2
11 R1B- 5 5 5 5 5 6 6 6 6 6 6 7
12 R2B+ 0 0 0 0 0 0 0 0 0 0 0 0
13 R2B- 1 1 1 1 1 1 1 1 1 0 0 0
14 R3B+ 1 1 1 1 1 2 2 2 2 2 2 2
15 R3B- 5 5 5 5 5 6 6 6 6 6 6 7
16 R4B+ 1 1 1 1 1 1 1 1 1 1 1 1
17 R4B- 5 5 5 5 5 5 5 5 5 5 5 5
18 R5B+ 5 5 5 5 5 5 5 5 5 5 5 5
19 R5B- 1 1 1 1 1 1 1 1 1 1 1 1
20 C1A+ 7 8 8 8 8 7 6 0 1 2 2 2
21 C1A- 2 3 3 3 3 3 3 3 3 2 1 0
22 C2A+ 2 3 3 3 3 4 4 4 4 3 3 3
23 C2A- 0 0 0 0 0 5 6 7 8 8 8 8
24 C1B+ 5 5 5 5 5 0 0 0 1 1 1 1
25 C1B- 1 1 1 1 1 1 1 0 0 0 0 5
26 C2B+ 2 2 2 2 2 2 2 2 3 3 3 3
27 C2B- 6 6 6 6 7 7 7 7 7 8 8 8

3. FAULT DICTIONARY OPTIMISATION 
 As can be seen, it is possible to throw out some columns 
from Table I (i.e. to eliminate some test frequencies), 
keeping the signatures different from each other. The 
problem is to find minimal number of test frequencies 
sufficient to isolate all uniquely identified faults. Uniquely 
identified fault has code which is different from any other 
code in the dictionary. When minimal number of test 
frequencies is established second problem is to find which 
faults do not have unique codes and group them into pairs, 
sets of three, four, etc. faults. 

 The optimization method described in this paper is 
based on the binary logical manipulation algorithm. 
Although it is the brute force algorithm, it has substantial 

improvements saving more time in comparison with the 
real brute force algorithm. 

3.1 Ambiguity sets 
 In the first step for each test frequency the faults are 
grouped concerning to the marks into ambiguity sets shown 
in the Table II. 

 Ambiguity set contains faults which produce amplitude 
deviation at the frequency inside interval for that set and 
thus have the same mark. 

 Each row corresponds to one test frequency, and 
columns correspond to marks. Every test frequency has as 
many ambiguity sets as the number of marks. In every set 
there can be any number of faults, just one fault or the set 
can be empty. In one row particular fault can exist in only 
one ambiguity set. In all ambiguity sets in one row all nfaul 
faults are enumerated. 

Table II Ambiguity sets generated from fault dictionary on Table I 

FREQ. SET 0 SET 1 SET 2 SET 3  SET 8
47 12,23 0,4,5,10,13,

14,16,19,25
6,21,22,

26 
3,9  EMPTY

50 5,12,2
3 

0,4,10,13,14
,16, 19,25 

26 3,6,9,21
, 22 

 20 

52 5,12,2
3 

0,10,13,14,1
6,19, 25 

4,26 3,6,9,21
, 22 

 20 

53 5,12,2
3 

0,10,13,14,1
6,19, 25 

4,26 3,6,21,2
2 

 8,20 

54 5,12,2
3 

0,10,13,14,1
6,19, 25 

4,26 3,6,21,2
2 

 8,20 

57 12,24 0,13,16,19, 
25 

10,14,2
6 

3,4,6,21  7,8 

58 12,24 0,13,16,19, 
25 

10,14,2
6 

3,4,6,21  7,8 

60 12,20,
24, 25

13,16,19 0,10,14,
26 

3,4,6,21  7,8 

62 12,25 13,16,19,20,
24 

0,3,10, 
14 

4,6,21,2
6 

 5,8,23

66 2,12,1
3,25 

16,19,24 0,3,10,1
4, 20,21 

4,6,9,22
, 26 

 5,23,27

67 2,12, 
13,25

3,16,19,21,2
4 

0,6,10,1
4,20 

4,9,22,2
6 

 5,23,27

71 2,12, 
13,21

3,16,19,24 0,6,10,1
4,20 

4,9,22,2
6 

 5,23,27

 The ambiguity sets uniquely identify the faults applying 
the following rules: 
RULE-1 Any ambiguity set consisting of a single fault 
uniquely identifies that fault (Fig. 2). 

9
t.f. 53
set 4

 
Fig. 2. Single fault in ambiguity set 

RULE-2A Two ambiguity sets associated to two different 
test frequencies, whose intersection results in a single fault, 
uniquely identify that fault (Fig. 3). 

3
6

21 22 9t.f. 53
set 3

t.f. 60
set 4

 
Fig. 3. Single fault in intersection of two ambiguity sets 
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RULE-2B Two ambiguity sets whose symmetric difference 
(the fault is the only different element and is contained in 
only one set) results in a single fault, also uniquely define 
that fault (Fig. 4(a)). The RULE-2B can be extended on 
combinations of unions of ambiguity sets (Fig. 4(b)). 

11
1

15 7t.f. 62
set 6

t.f. 71
set 7       

4

t.f. 60
set 3∪4

63

22

26t.f. 53
set 2∪3∪4

9

21

 
(a)                                                   (b) 

Fig. 4. Single fault in symmetrical difference of two ambiguity sets (a) 
two sets, (b) two unions of sets. 

 If an ambiguity set isolates a single fault one concludes 
that test frequency correspondent to the set isolates the 
fault. 

3.2 Searching for uniquely identified faults 
 Optimization procedure handles ambiguity sets in the 
Table II applying rules in the following way: first RULE-1 
is applied on rows relevant to single test frequency. 
Algorithm writes down single faults in all ambiguity sets. 

 Furthermore, the RULE-2A and RULE-2B are applied 
to each combination of test frequency pairs in Table II. 
There are 
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such combinations. Algorithm writes down single faults in 
intersections of all ambiguity sets. For particular pair of test 
frequencies intersections are constructed between 
ambiguity sets from one test frequency to every ambiguity 
set on another frequency. 

 The algorithm has to apply RULE-2B on symmetrical 
difference of all ambiguity set unions. If there is nmark 
ambiguity sets in one row, algorithm produces 
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combinations of unions for m=1,…,nmark-1. Since m=0 and 
m=nmark are excluded total number of unions is 

 nunions
nmark= −2 2 . (3) 

In type of ambiguity sets as in Table II where all possible 
faults are enumerated in each row one does not need to 
apply RULE 2-B. In example given by Hochwald and 
Bastian table of ambiguity sets does not contain all faults in 
each row. In that case RULE 2-B has to be applied. 

 The procedure produces table with all uniquely defined 
faults. The table is triangular. The diagonal contains faults 
isolated at the test frequency by itself, while the other cells 
contain faults isolated by test frequency pairs 
correspondent to the cell.  

 Table III shows nfaul=20 uniquely defined faults forming 
a set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 20, 21, 22, 23, 24, 
25, 26, 27}. It is desirable that all existing faults are 
enumerated in this table. This is an optimal case and would 
mean that all faults in the dictionary have unique code. 

3.3 Searching for minimal number of test frequencies 
 The procedure searches throughout the Table III to find 
minimal number of test frequencies which still isolate all 
unique faults. 

 Search algorithm forms permutations of nfreq test 
frequencies. There are nfreq! such permutations and they can 
be presented by tree. Nodes are sorted in n=nfreq columns 
and every node is correspondent to one test frequency. 
From every node in first column there is a path from the 
first to the nth column correspondent to one permutation. 
There are n! such paths. 

TABLE III Uniquely identified faults vs. test frequencies (shaded cells 
represent path 47-50-52-71-57) 

FREQ. 47 50 52 53  67 71 

47 EMPT
Y 

5,7,8, 
20,26

4,5,7,
8,20, 
26 

3,4,5,7, 
8,9,20, 

26 

 1,2,3,4,5,6, 
7,8,9,12,20, 
21,23,24,27

2,3,4,5,6,7,8,9 
12,13,20,21, 
23,24,25,27 

50 
 20,26 4,20, 

26 
4,7,8,9, 
20,26 

 1,2,4,6,12, 
20,24,26,27

2,3,4,6,7,8,12 
13,20,21,24, 

25,26,27 

52 
  20 7,8,9, 

20 
 1,2,6,12,20, 

24,27 
2,3,6,7,8,12, 
13,20,21,24, 

25,27 

53 
   7,9  1,2,6,7,8,9 

12,20,22,24 
27 

2,3,6,7,8,9,12 
13,20,21,22, 

24,25,27 

54 
     1,2,6,7,8,9, 

12,20,22,24 
27 

2,3,6,7,8,9,12 
13,20,21,22, 

24,25,27 

57 
     0,1,2,4,6,12 

20,24,26,27
0,1,2,3,4,6,7,8 
12,13,20,21, 
24,25,26,27 

        

67      EMPTY 8,21,25 

71       8 

 The problem is to find a path (permutation) with 
minimal number k leading nodes which still isolate all 
uniquely defined faults. The path is getting shorter, while 
other n-k trailing nodes are redundant and are thrown off. 
In general, there exist one or more permutations with 
minimal k. 

 The test frequency set is Ω={47, 50, 52, 53, 54, 58, 60, 
62, 66, 67}. The number of permutations nfreq= 12 is 12!, 
but the algorithm does not take all of them into 
consideration. In the example in the Fig. 5 it searches the 
minimal sufficient set of test frequencies in Table III. The 
number of steps needed to construct the tree of 
permutations, is equal to the number of test frequencies.  
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For every new step algorithm chooses next test frequency 
from Ω as the first node. Let us describe one step on the 
Fig. 5. 

 The first node is a test frequency from Ω in the first 
column (LEVEL 0). Algorithm chooses the next node in 
next column correspondent to test frequency different from 
the one before. It branches to the new node forming a path 
of permutation. Each time it branches to new level the 
union of faults, isolated by using all nodes in the path, is 
formed. Algorithm checks if new faults are added to union. 

 
Fig. 5. Searching algorithm for minimal test frequency number 

applied on the Table III 

 If new faults had been isolated but still not all faults in 
Table II, algorithm branches to new level (CASE A). If no 
new faults had been isolated the algorithm should go one 
level back (CASE D). If algorithm isolated new faults and 
those are all unique faults it will write down the path 47-
50-52-71-57 (CASE B) and will go two levels back 
jumping over remaining nodes from Ω (CASE C). The path 
47-50-52-71-57 is marked in the Table III with gray cells. 
One has to notice that all faults existing in that table are 
contained in those cells. 

 Efficient algorithm for searching minimal test 
frequencies number is defined and it does not need to 
handle the majority of permutations what saves time. It is 

convenient to be programmed by computer languages using 
nested functions. 

 The minimal permutations are of interest. In our 
example there are two such a minimal paths: 47-57-71 and 
47-58-71. The former will be chosen to construct optimized 
fault dictionary which is presented by shaded columns in 
the Table I. 

3.4 Grouping ununiquely defined faults 
 Finally, the optimization procedure applies the same 
rules on the ununiquely defined faults. The step for finding 
minimal number of test frequencies is not needed any more. 
The procedure groups the remaining ununiquely defined 
faults together. If the number of ambiguously defined faults 
is m the procedure forms groups of n faults where n=2,…, 
m. If all m faults have the same signature there exists only 
one group of m ambiguous faults. These are the faults 
which have the identical codes. 

4. CONCLUSION 
 This paper presents very efficient fault dictionary 
optimization technique using binary logical manipulation 
algorithm. Since it handles only numbers, can be applied in 
all fault dictionary based techniques. This technique is 
using brute force and is more likely to find optimal solution 
than similar techniques. The algorithm saves time 
expectualy in the minimal test frequencies exploring stage. 

 It has been applied on ambiguity sets formed by the 
method in the frequency domain and the results has been 
presented. The universality of the technique has been 
illustrated by an application on two different approaches. 
Applying this technique on ambiguity sets formed by 
Hochwald and Bastian resulted in the same minimal 
number of test nodes [5]. 
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