
A hierarchical file system interface to database-based
content management application

Ivan Voras, Kristijan Zimmer, Mario Žagar
Faculty of Electrical Engineering & Computing, University of Zagreb,

Unska 3, 10000 Zagreb, Croatia
{ivan.voras, kristijan.zimmer, mario.zagar}@fer.hr

Abstract: When considering the usability of
computer applications one, of the most
important factors is the interface they provide
for data manipulation. Historically, though each
application has defined it's own user interface,
some types of interfaces have emerged as most
applicable for certain types of data. Over time,
some applications (or types of applications) have
gained enough popularity that they became
ubiquitous and well-known to most computer
users to the extent that users consider them the
norm, and as such, optimal for their daily tasks.
In this paper we present an idea and
implemented method of exposing data from a
web content management system in the form of
hierarchical file system, manageable and
editable by usual file management and office
application tools.

Keywords: user interface, web content
management system, web application, file
system, WebDAV

1. Introduction

This paper describes and discusses
implementation of a file system-like interface to
data in the FERweb content management system
(CMS). “FERweb” is a colloquial name for the
web content management system created and
maintained at the University of Zagreb, Faculty
of Electrical Engineering and Computing during
the period of years from 2001. to 2005. The
project was started as a research project done by
faculty staff and undergraduate students, but has
evolved in a self-supporting and viable project,
and has as such surpassed its original goals. The
project was continued in spirit by the new CMS
system named “Quilt.”

As the CMS system is used campus-wide, by
both the staff and the students, investigation into
better user interfaces is always ongoing, in the
hope to provide better end easier to use services
to all. Basic idea behind the work described in

this paper is that a system doesn't have to be
homogeneous in operation. With advances in
interoperability available in off-the-shelf
software products, a system can make use of
components that are best suited for its particular
purpose. A system like that can utilise a
successful and widely used third-party software
products and take advantage of the familiarity
users have with such software.

2. On applications and user interfaces

Most current graphical user interfaces (i.e.
interfaces between computer data and/or
programs and the users) are abstractions, and the
trend is to increase the level of abstraction with
each new generation of the system. In the last
decade or more, the prevailing abstraction for
common types of data used in common desktop
environments is to represent them as
“documents.” At the same time, the distinction
between what is application and what are data is
increasingly and intentionally being blurred. The
discussion about reasons and correctness of this
trend is beyond the scope of this document, but
rather we wish to concede that this state is
dominant and to make as much use of it as
possible.

One consequence of the described trend is
that casual users (especially ones not involved in
the technological aspects of computer operation)
do not perceive the existence of applications as
such, but are content to deal with their data on
the highest possible level, in the way they have
been used to or taught to. In addition, the visual
aspects of the methods used in presentation and
accessing the documents greatly influence the
users' perception of the documents themselves
[1][2].

As an example, users tend not to think of
their textual documents as “a stream of bytes
generated by the word processing application”
(which is the low-level technical interpretation),

or even not as “a file located in the file system
that is labeled as a textual file” (the “middle
level” of abstraction), but as “that graphical
widget which looks like a piece of paper with a
blue letter W written on it”. This also relates to
the gradual progress of using abstractions
through time and can be compared with
computer programming languages: early
computer users were regularly experts and as
such had no problems with low levels of
abstraction that exposes technical details.
Starting with around 1980-ies computers have
became more ubiquitous and more accessible to
wider range of users and the predominant level
of abstraction for documents and applications has
became “the file system”. Currently the level of
abstraction is being raised once more in a way
that users are not aware of how the underlying
system works or which application handles
which document.

Figure 1. Files represented as visual
objects in a graphical user interface

As the predominant office application suite
today is Microsoft Office™, it's interface is used
as a “golden standard” which other applications
tend to mimic. Since the global market share
saturation of Microsoft Word™ is up to 95
percent [3], most of current users are not even
aware of other solutions and expect the
Microsoft Office suite to be present on all their
workstations.

2.1. Leveraging existing applications

Some of the ways existing applications can
be used from third party systems to provide a
well-known environment for creating and editing
content are:

• Manually, by which is meant that the user
is responsible for uploading content

created by a desktop application into some
other system

• Through an interface or plug-in
architecture for embedding software
components into client applications such
as the ActiveX and COM (Component
Object Model)

• Through redirecting file system operations
such as loading and saving user's data

In this work, a method and implementation is
presented that uses the method of redirecting file
system operations (of standard office application
suites) to store and retrieve user-created content
to and from a web content management system.
This is accomplished using the WebDAV
standard network protocol for authoring and
distribution of files.

3. About WebDAV

The name “WebDAV” stands for “Web
Distributed Authoring and Versioning.” It is a
standard governed by IETF working group and is
a network protocol for sharing and distribution of
files and file-like resources over computer
networks. The basic protocol was formalised in a
Request for comments (RFC) document
RFC2518[4], but the development of additional
features is ongoing.

The WebDAV is a textual network protocol
implemented as a set of additions to the HTTP
version 1.1[5]. In particular, any WebDAV-
compliant server is also HTTP/1.1-compliant.
This level of backwards compatibility allows
using ordinary HTTP/1.1 clients for simple
retrieving of resources. The protocol uses XML
to transfer additional information related to the
resources managed such as creation time,
resource type, author, etc. Information such as
that is commonly called metadata.

3.1. Overview of the WebDAV protocol

WebDAV protocol extends HTTP with
additional methods (commands):

• PROPFIND – used to fetch metadata
information about resources

• PROPPATCH – used to update resource
metadata

• COPY – used to copy resources between
collections remotely on the server

• MOVE – used to move resources between
collections remotely on the server

• DELETE – used to remove resources
• LOCK – used to acquire locks for

implementing contention control
• UNLOCK – used to release locks acquired

by the LOCK method

Standard HTTP methods OPTIONS, GET,
HEAD and PUT are extended to support
additional semantics. The POST method is left
undefined.

Several HTTP headers are defined to extend
functionality by providing announcements for
server capabilities, use and manage resource
locking and additional parameters to other
methods.

A typical example of a WebDAV request is
presented in Fig. 2.

PROPFIND /folder/ HTTP/1.1
Host: www.foo.bar
Depth: 1
Content-Type: text/xml; charset="utf-8"
Content-Length: 111

<?xml version="1.0" encoding="utf-8" ?>
 <D:propfind xmlns:D="DAV:">
 <D:allprop/>
 </D:propfind>

Figure 2. WebDAV protocol example

The relatively simple and straightforward
way in which the WebDAV protocol is
implemented has been beneficial for its
spreading and usage. As of time of writing of this
paper, all major web development and office
application suites natively support at least the
basic WebDAV features.

4. Data representation and storage in the
FERweb CMS system

As a direct consequence of its purpose as a
web content management system, all data in the
FERweb system are grouped into “pages.” Each
page is referenced by a unique name (URL part)
and can contain an arbitrary number of arbitrary
“modules.” Each module is responsible for a
certain type of functionality in the system – for
example: content articles, news articles, user
forums, file repository, etc. The system supports
an arbitrary number of users and allows for
creating a complex set of roles and privileges
that restrict users' abilities to manipulate data.

All CMS data are stored in relational SQL
database (PostgreSQL). In the database there is
an implicit distinction between tables belonging
to the system core (e.g. tables that record
information about pages, users and access rights)
and tables used by CMS modules to store their
data. Each piece of data generated and handled
by a module is ultimately linked to a single web
page (though some modules may have the ability
to duplicate and/or create cross-links to certain
data) but each module can hold an arbitrary
number of data pieces on a single page.

5. Adapting CMS data into hierarchical file
system-like structure

As each page in the system is identified by a
unique URL-like resource name (e.g.
“/referada/obavijesti”), it is natural to make use
of this information to build a virtual hierarchical
directory structure. Additional issues needed to
be resolved were:

• Presentation of page-related metadata
such as page title, keywords, description,
layout of modules and access
permissions

• Presentation of modules and modules'
data

The first issue was resolved by presenting
such metadata as ordinary text files inside the
virtual directory structure. Such files are
generated on the fly when they are referenced.
When saved, their contents are parsed and
appropriate data in system tables are updated.
The contents of these files are virtual in the sense
that they are never stored; their syntax is
intentionally similar to well-known system
configuration files (one example of which are
“.INI” files).

Issue of presentation of modules and their
data inside the user interface could have been
handled in several ways, most notable of which
are:

• Presenting modules' contents directly as
files in the virtual directory structure,
with additional metadata configuration
files dispersed among them

• Presenting each module as a virtual
subdirectory containing files pertinent to
that module only, with metadata
configuration files placed in module-
specific locations

Considerable thought was given to both
methods, and the latter approach was considered
to be better because the former has the potential
to result in a crowded directory with lots of
unrelated files. In addition, the latter approach
has the benefit of integrating neatly with the
concept of modules on a web page and is
intuitive to existing users of the system. To
distinguish modules from pages that are deeper
in the file system hierarchy, virtual directories
that represent them have a “$” character
prepended to their names.

Each module takes on the responsibility of
generating its own file and subdirectory structure
in which records from database are represented
by files of appropriate types. For example,
module that handles and displays textual data can
expose the content as .html files, and module that
presents a web calendar functionality can expose
the data as virtual files containing data in
iCalendar format.

The end result is a hierarchical file system
where individual pages are presented in a tree of
directories, each of which contains metadata
configuration files and additional subdirectories
representing individual modules. An example of
such structure is given in Fig. 3.

/

/konferencija/

/referada/

obavijesti/

/Info.TXT
/$Text/

Uvodna rijec.html
Obavijest studentima.html

Info.TXT
$Text/

Radno vrijeme.html
$Files/

Upute za upis godine.pdf
Obrasci.zip

$Text/
Ispitni rokovi.html

Info.TXT

Info.TXT

Figure 3. Example of generated virtual
hierarchical file system structure

In Fig. 3 the exemplary structure was
generated for four web pages from the CMS: “/”
(the root page), “/referada”,
“/referada/obavijesti” and “/konferencija”. The
root page has two text elements handled by the
“Text” module, the “/referada” page has one text
element and two files handled by the “Files”
module, the “/referada/obavijesti” has one text
element, and “/konferencija” is empty of
modules. Names of files are generated from

records stored in the database, in particular, from
“title” or “description” fields of appropriate
tables.

5.1. Implementation details

The working implementation of concepts
described previously is made as a standalone
WebDAV server application written in Python
programming language. Basic architecture of the
application is comprised of three layers:

• CMS module interface
• CMS system services
• Protocol (network) interface

With possibilities offered by object-oriented
design, each layer was made to be separable and
replaceable.

CMS system services and module interface
are directly tied with data representation in the
database. Their purpose is to adapt data between
data records in the CMS database and a
hierarchical file system. CMS module interface
consists of a set of OOP classes, each of which
handles data for one particular CMS module.
These classes are also called “module adapter
classes.” The system services layer is responsible
for common operations such as authenticating
users, enforcing users' privileges and mapping
URL-identifying data from client requests into a
hierarchical directory tree. Finally, the protocol
interface is responsible for translation of internal
data structures into protocol-specified format and
exposing them in that form over the network
interface.

Each client request begins and ends in the
protocol interface layer. After receiving and
interpreting a request, this layer either responds
to it by itself (in case the requests is simple and
concerned with details of the protocol), or passes
it to the CMS system services layer. The next
layer again checks if it can satisfy the request by
itself (for example, if it's a request for a directory
listing or concerns security validation) and does
so if it can. If the request is determined to be
made to a module, an object of appropriate
module class is created and the request is passed
to it. Module and system interface layers respond
to requests by generating response objects which
are received by the protocol layer and converted
into specific protocol data. Each layer can make
a decision (based on additional information
available at each layer) that the request is invalid

or malformed, or that an error condition
occurred, and respond by returning appropriate
data to the calling layer.

This software architecture is designed to be
extensible. New CMS modules can be supported
by writing an appropriate adapter class. Since all
network protocol handling is also isolated, it can
be extended to support other protocol such as the
File transfer protocol (FTP) and network file
sharing protocols.

6. Usage and usability

Support for the WebDAV protocol is present
in file management shells of all major operating
systems, including Microsoft Windows 2000 and
up, MacOS X, GNOME and KDE environments
for Unix-like operating systems (including
Linux). In those systems WebDAV resources are
for the most part indistinguishable from local
files and directories.

Mimicking a standard hierarchical file
system opens new grounds for data manipulation
that were difficult or impossible to implement
before, such as changing the structure of a web
site by visual drag-and-drop method and editing
large and complex documents. Figures 4 and 5
show a document being edited in Microsoft
Word using its HTML-editing capabilities and
then “published” to the server by using the
standard Save File operation. The WebDAV
server is responsible for loading data from the
database when the “document” is accessed, and
saving it to the database when the document is
written.

Figure 4. A HTML resource being edited
in Microsoft Word

Figure 5. HTML resource from Fig. 4
accessed through the web CMS system

In an internal study conducted with existing
users of the CMS system it has been found that
almost all users find this method of creating and
editing content attractive and, in case of large
documents, easier because of familiar tools (such
as Microsoft Word) and advanced capabilities
those tools offer as compared to those available
through a web-only interface.

7. Conclusion

Training users to use new tools can be long
and expensive, and thus it's important to leverage
users' familiarity with their usual tools to
maximum extent. This paper has presented a
method and an implementation of representing
data from a web content management system
(the FERweb system) as a consistent hierarchical
file system usable on remote network clients via
the Web Distributed Authoring and Versioning
(WebDAV) protocol. In such environment,
various database records are presented as
separate entities (nodes) in a virtual file system.

A standalone application was created to act
as a WebDAV server. In the application there is
a clear distinction between network protocol
layer, the CMS services layer and the CMS
module interface layer. Each CMS module,
responsible for one type of data and functionality
in the CMS, can have corresponding “adapter”
code inside the CMS module interface layer
(implemented as an application object) that
transforms CMS data from the database into
arbitrary file system-like data. The issue of

metadata was solved by creating virtual text
configuration files editable by text processing
applications, the contents of which is parsed
when the files are written to the file system. Such
file system can be accessed and manipulated by
most current operating systems and content-
creating applications.

Responses from our end users have shown
that ideas and concepts presented here are
received warmly and appreciated.

8. References

[1] Apple Computers: Apple Human Interface
Guidelines, online publication,
http://developer.apple.com/documentation/U
serExperience/Conceptual/OSXHIGuideline
s/

[2] Microsoft: Official Guidelines for User
Interface Developers and Designers, online
publication,
http://msdn.microsoft.com/library/en-
us/dnwue/html/welcome.asp

[3] Michael J. Martinez: Innovation needed
before techs can grow, USA Today 2004-
10-10

[4] Y. Goland et al, HTTP Extensions for
Distributed Authoring – WEBDAV. IETF
RFC Document #2518, 1999.

[5] R. Fielding et al, Hypertext Transfer Protocol
– HTTP/1.1, IETF RFC Document #2616,
1999.

[6] F. Dawson and D. Stenerson: Internet
Calendaring and Scheduling Core Object
Specification (iCalendar), IETF RFC
Document #2445, 1998.

	1.	Introduction
	2.	On applications and user interfaces
	2.1.	Leveraging existing applications

	3.	About WebDAV
	3.1.	Overview of the WebDAV protocol

	4. 	Data representation and storage in the FERweb CMS system
	5.	Adapting CMS data into hierarchical file system-like structure
	5.1.	Implementation details

	6.	Usage and usability
	7.	Conclusion
	8.	References

