
OBJECT-ORIENTED FRAMEWORK FOR DESIGN PROCESS MODELING AND PLANNING

Neven Pavkovic, Dorian Marjanovic

University of Zagreb, Faculty of Mechanical Engineering & Naval Architecture, Design Department, Ivana Lucica 5, 10000 Zagreb, CROATIA

E-mail: neven.pavkovic@fsb.hr
PHONE: + 385 1 6168 545

FAX: +385 1 6156 940

Keywords: computer-based design support, design process modeling, design information management, planning and workflow methodology, complexity management, object-oriented technology, UML, object databases

Abstract

This paper presents a framework of the object-oriented design process model. One of the research goals is to develop a framework independently of the design task phase and class. Definitions of all model classes and the framework structure are given. A complex network of relations between proposed model classes is analyzed as a central research issue. We propose the usage of matrix form for representing sets of relations between objects of similar classes, as well as between objects of different classes. In such an approach some relations are modeled as classes. A design process flow is modeled with the “design plan” represented by a directed graph. Graph nodes model the operators in the design information domain, while their connections represent the information flow and/or the pre-planned execution paths. The representation framework is built using a "bottom up" approach - the elementary classes are referenced from, or embedded, in complex classes that are at higher abstraction levels. Through several levels of referencing, the procedures for executing the plan may access attributes or operations of any object that constitute the proposed representation. The design plan role could be viewed as "design information manager and process organizer", as well as a tool for process capturing and managing the knowledge about the design process. The model is developed in UML and mapped to the object database dictionary.

1. Introduction
The existing CAD systems have no (or very little) support for managing and planning the design process, especially in conceptual design. Considering the existing software tools used in the design process, it is necessary to explore the principles and methods of their integration into a complete (and more efficient) system for the computer supported product development. Such systems are often called "design environments". The approach presented in this work aims to introduce the object-oriented design process model as the kernel of the "design environment" system. It is expected that the object-oriented approach to design process modeling could contribute to the flexibility of the system, making it possible to implement and to combine several design process models and methods within the same framework. Engineering data structures are much more complex than in common business database applications. Connections between structures are numerous, and the same data structure can have a number of different roles. Hence, the design process topology is here considered as two networks of relations:

· Complex multi-level relationships between engineering data structures

· A network of sequence relations between design process steps, including the models of iterative processes

The hypothesis of the presented research is that the design process topology (as defined above) could be efficiently modeled with the object-oriented methodology. This hypothesis is examined and validated on the example of a prototype model implementation, realized in the object database. The structure of the proposed object model is documented in the UML language.

1.1 An outline of the object-oriented design process model

The process of outlining an object-oriented design process model can thus be considered as the mapping of phenomenon from the domain of the real world to the entities of conceptual and logical domain (Figure 3). This mapping is done by means of theoretical generalization and extraction. Entities from conceptual and logical domains are then being mapped to classes of the object model. According to [6], the goal of object modeling is to have a "one-to-one" correspondence between entities and objects. Once outlined and established, the computer based design process model will be the subject of permanent improving and maintenance processes caused by new design science cognitions or changes in the environment where the design process is proceeding. In the process of modeling, the design process should no longer be viewed as a static institutionalized structure, but rather as a dynamic network that is being constructed in real-time as design goals, needs, priorities, and resources are evolving [26]. Therefore, it is proposed to outline the global design process model structure as an "open toolbox". Such an approach should enable the designer to create his own classes and partial models of the design process according to his current needs. The goal is to develop a framework that would enable us to model the design process (and to integrate the software tools used) independently of the design task phase and class.

It cannot be expected that it is possible to build a model general enough to enclose all variations of phenomena in different real environments. Keeping this in mind, we aim to develop a framework that could at least enable the use of different partial models (from the design process domain) in an integrated manner. A real system (the real world domain whose modeling is being considered here) is a teamwork, computer supported design process which uses a kind of computer network (intranet) for team member collaboration and data share. It is supposed that such an environment uses intensively CAD software, databases, PDM and other kinds of software tools.
In outlining the design process model, the focus will be on adopting the model as much as possible to the purposes of computer application. In doing so, the authors will not try to build either primarily prescriptive or descriptive model, but a kind of a hybrid. The design process will be treated as information generation and transformation, estimating that the majority of the information is computer stored. The main difficulty of this research, particularly in developing the entities of the proposed model, has been the lack of the general consensus in design terminology, taxonomy, and typology, as emphasized in [3] and [4]. The design science misses the “CAD theory” as pointed out by Akman, Hagen and Tomiyama in [1].

2. An outline of the proposed system architecture

Based on introductory considerations and research work, the fundamental structure of the object-oriented design process model is proposed as in Figure 1. According to [7], in a properly designed model, classes will by grouped neatly into sub-systems that are loosely coupled and the linkages between classes in different sub-systems will be minimized. The system structure should contain stable abstractions (as much as possible) which should be isolated from those abstractions which will be more likely the subject of change. On the basis of these principles, the fundamental structure is divided in four loosely coupled sets of classes, as shown in Figure 1:

· Elementary classes – they model basic entities from the design process domain – e.g. design parameters, designers, design tasks, design requirements, etc. These elements can be divided into "operators" and "subjects".
· Classes that model the network of relationships between objects or their attributes

· Classes that model the design process - will be the composite classes whose definitions will arise (be extracted) from viewing the design process as a sequence of actions in the process of information generation and transformation. These composite classes will include elementary classes and “relation” classes by referencing, embedding and by modeling the collaboration processes between objects.

The three sets of classes discussed above are focused on static structures, mainly data, of the proposed model. To ease and improve their usage and manipulation we propose to store their instances (objects) in the object database.

· "Service classes" model the issues of the proposed system exploitation. This group of classes includes sets of operations that realize the functionality of the software system, e.g. interfaces and procedures for generation, manipulation and maintenance of model (system) elements. Service classes should have no instances, therefore they are not stored in the object database.
[image: image1.wmf]OBJECT DATABASE

USER

SERVICE

CLASSES

ELEMENTARY

CLASSES

RELATIONS

CLASSES THAT

MODEL THE

DESIGN

PROCESS

referencing,

embedding

referencing, embedding,

collaboration of objects

referencing

THE SOFTWARE

COMPONENTS FOR

SYSTEM REALIZATION

Figure 1: Fundamental structure of the proposed object-oriented design process model

Such a structure promotes a bottom-up approach – the elementary classes and their relationships are combined and used in building more complex classes to describe the design process. The following chapters contain definitions and descriptions of the proposed groups of elementary classes.

3. Elementary classes

3.1 Design parameter

Considering the design process as a process of information generation and transformation, we assume that the basic (simplest) entity of the design process model is a variable, often named a design parameter or design attribute. Considering the features of design process, especially in collaborative teamwork, one could notice the need for additional elements (besides the value) that the design parameter class should encapsulate – e.g. "value status", references (pointers) to relevant knowledge, physical unit, etc.

The notion of “value status” can be particularly useful in iterative processes, where it enables the development of improved algorithms for solving such problems [8]. The "value status" should also be one of the crucial elements in the development of software tools for teamwork support, to improve communication on shared parameters. Each member of the design team (in the framework of his design task) has his own requirements and propositions for the values of shared design parameters. Such propositions are supported with arguments. All propositions and arguments, together with decisions and the decision process flow should be recorded in the database that represents the design history. A proposal of such a system is given in [14].
Design parameter, modeled as an object, should encapsulate:

· value and SI unit;
· value status; (determined, but could be changed; determined and fixed; assumed)
· value proposals and relevant arguments;
· references to relevant knowledge;
· procedures for capturing and recording proposals and arguments in collaborative processes (similar as in [14]).
3.2 Design parameter container

Design parameter container (DPC) is an organized warehouse (repository) for the design parameters. When modeling the design process with objects, we assume that there will be many situations in which the same parameter will be the attribute of objects that belong to several different (independent or loosely dependent) classes. Even if these attributes could be set as “public” for the whole model, they still can have different values in particular objects. The value of every “shared” parameter must be unique in time and design space, so it must be written outside the scope of the objects that must share its value. Following this requirement, the DPC can be seen as a pool of data shared among several objects that do not belong to the same class hierarchy. In this approach, objects of different classes that share the same parameter should have the reference (pointer) to the appropriate parameter modeled as object in DPC (Figure 2).
[image: image2.wmf]parameter 1

parameter 2

parameter n

parameter n-1

parameter 3

DESIGN PARAMETER

CONTAINER

Ref. to parameter 2

OBJECT 1

Ref. to parameter 3

Ref. to parameter ...

Ref. to parameter 1

OBJECT 2

Ref. to parameter 2

Ref. to parameter 1

OBJECT k - 1

Ref. to parameter ...

Ref. to parameter 3

OBJECT k

Ref. to parameter ...

Ref. to parameter n-1

Figure 2: DPC as repository for parameters “shared” among objects of different classes

In the process of the new product development, the DPC can be filled with parameters as the design is evolving. For variant and adaptive design tasks, the DPC of previous designs can be used as a template, which can be modified and upgraded. The proposed data structure is not intended to be a replacement for a complete product data model. The authors only emphasize the necessity of managing the values of parameters shared among distinct classes and objects at one common place (in one pool) in a universal manner. When the design is completed, the DPC contains only the subset of the information set about the product that has been designed.

3.3 Product documentation class

This class models the "existence" of document, i.e. encapsulates all notions and events from the life cycle of a particular document that contains a set of information about the product:
· document identification and classification
· a set of operations for the transfer and generation of the particular document data set
· a set of references to design parameters which are elements of the document data set

· events (states) from the documents life cycle
Let us consider a simple example of modeling real world things and notions by mapping to logical and object domains. Figure 3 emphasizes the semantic difference between the product physical components and their design documentation. “CAD model of shaft assembly” is modeled as one product documentation object. This object contains interface operations for transferring the values from CAD model to parameters modeled as objects and stored in the design parameter container (DPC). The product documentation object contains references (pointers) to all relevant parameters in the DPC. Other objects of the design process model could access these parameters and share their current values. Each component of the “shaft assembly” is modeled as a separate “product physical component object”. Product documentation objects and product physical objects contains a set of references to each other. One product documentation object can contain information about several physical components and one physical component can be described within several documents.
[image: image3.wmf]OBJECT MODEL

REAL WORLD

LOGICAL & CONCEPTUAL

DOMAIN (METAMODEL)

Product documentation object

"

CAD model of shaft assembly"

DESIGN

PARAMETER

CONTAINER

Parameters modelled

as indivdual objects

49.28

68.84

74.89

60

Set of pointers

to parameters

stored in object

database of

parameters

local attributes

and operations

OBJECT DATABASE

WITH DATA ABOUT "PHYSICAL

OBJECTS"

CAD model

parameters

CAD drawing

CAD model

Other objects in the

design process

model

"phyisical" product

components

information sets on

product components

(design documentation)

Interface

operations to

modelled

data sets

Enitity "product documentation"

Enitity "product physical component"

theoretical generalization

modelling & mapping

transfer of values

transfer of values

REFERENCES

Figure 3: The difference between modeling “physical product components” and their documentation
3.4 Product physical component class
Product physical component class models the existence of product components. This class covers all the aspects and data connected to the physical domain. Some object-oriented approaches to design modeling make difference between "physical" and "non-physical" entities, but treat them equally [9], [12]. There are also approaches oriented (focused) only to the modeling of "physical" entities (product components) and their interdependencies [29], [11]. The authors' opinion is that it is necessary to cover both aspects, and to provide the simple mechanisms of mapping from physical to information domain and vice versa.

Most PDM systems cover the data about physical components of the product as hierarchical structures - the structures of assemblies, subassemblies and parts. This is only one aspect (maybe the simplest one) of modeling interdependencies in the physical components domain. From the design process point of view, functional relations between components are more interesting. They deal with which physical components constitute the organs (functional components) and how the relations between these components fulfill the partial functions and the complete product function. To be able to model these relations, it is necessary to have each physical component of the product modeled as object, or at least those components that are most relevant for its partial functions.
3.5 Product functional component class
Product functional component class should encapsulate all the data relevant for building a functional structure of the product being designed. Pulm and Lindemann in [20] point out that functions are often understood as the solution-neutral abstraction of a component part or assembly. They report on computer-based tools which allow modeling the abstract product in semantic networks, giving a standard in representing functions [2], [23]. But a method to build up the functional structure is still missing. According to [10] (cited in [20]) it has been shown that no genuine, abstract function structure exists. As discussed in the previous chapter, physical components and functions (functional components) are related, but this is many-to-many relationship, because a function may comprehend more components, and a component may fulfil several functions. In the conceptual design phase, these relationships, as well as objects that participate in them, are mostly unknown for new designs and relatively well known only in variant and adaptive design tasks.
All the facts mentioned above make defining and modeling of the “functional component” class very difficult (and still “abstract”). There is no doubt that such a class should exist in the design process representation. A more detailed proposal for the definition of this class is for now left for the future research efforts.
3.6 Class "action"
The entities considered so far form the base of the "static" structure of the proposed design process model. A class "action" is defined as the basic (simplest) element for the representation of the design process flow dynamics. This class models the calls of operations of the design process object model. An "action" is here considered and defined in the context of generating, transforming and representing information (only in the context of informatics), but not in the context of design methodology and design procedures. Therefore, the primary criterion for the proposed action classification is the type of "affecting" the design process model objects, such as:

· changing of attribute values in one or more objects

· searching and retrieving objects from the object database

· call of particular object operation (method)

· call of "external" software tools (e.g. CAD modeler)

· creating new instances of classes, or erasing the unnecessary instances

· viewing the state of one or more objects
3.7 Software tool interface class

This class encapsulates a set of operations for data transfer between objects (classes) of the design process model and the software tools that are not the part of the proposed object model - various numerical calculations written in procedural languages or in spreadsheets, expert systems, databases, etc. For a particular design environment such tools are very valuable and contain the knowledge collected through many years of constant development. The authors' opinion is that in most cases it will be cheaper and easier to develop an interface than to rewrite the tool as a part of the object model. The main task of such an interface should be to ensure the value transfer between design parameters from the object model to the appropriate variables of the software tool and vice versa.

3.8 Design task class and "designer" class
Research efforts in improving the organization of the collaborative design process are focused on modeling and managing the information flow, resources, responsibilities and timetables. “Design task" class should model and encapsulate the information management and the organizational aspects of a particular design task in the collaborative (team) environment.

The design task can be considered as the element of the design process decomposition in the teamwork environment. The need to define the design task as an object will most likely appear in complex design processes which are divided and distributed among subteams.
A set of instances of "designer" class models events and notions from the domain of interactions between persons in the context of the design process execution. Objects of "designer" class should contain references to:

· assigned design tasks

· product documentation objects and product physical and functional objects that are under the responsibility of a particular designer

The existing PDM systems cover some of the mentioned aspects, but they do not support or model the communication and the decision process in the collaborative design. This is the area on which further research efforts regarding this entity should be focused, and this should be the primary role of "designer" class.

4. Relations in the object oriented design process model

According to literature, the most interesting part in the design of object-oriented systems are not the objects themselves, but the relationships among objects, because these relationships constitute a large proportion of the semantics of most systems [5], [7]. Therefore in the first phase of the presented research, the emphasis has been put on modeling relations.
When analyzing different information models one could find some variations in the classification of relations. In the proposed model we shall rely on the classification according to the authors of Unified Modeling Language: dependency, generalization, association and realization, [5].

4.1 Relation semantics in the context of the product and design process model

The presented research has been up to now focused on generalization and association relations. A prototype of class hierarchy is established, but a lot of work has to be done to refine it, and to develop each subclass. More attention has been paid to modeling associations. So far, in the context of design process model, the following semantics of associations have been explored:

· Dependence (algebraic - between design parameters or information - between design tasks)

· Appurtenance to (belonging to) - (product documentation - product components, design parameters - design tasks, etc.)

· Sequence (precedence) of execution (between design tasks or design process steps)

· Responsibility (designers, design tasks, design documentation)

· Hierarchy (components - subassemblies - assemblies)

· Constraints (parameters - requirements)

4.2 Modeling of the network of relations between sets of elementary classes instances

In the presented approach, relations between objects of elementary classes are also viewed as objects. An instance of such a “relation” class represents a binary or n-ary relation between sets of instances of elementary classes. The relations modeled as classes in the proposed model are:

· dependency relations between parameters, and between design tasks;
· binary association relations between sets of objects of different classes, with various semantics;
· expressions – relations between object attributes;
· design constraints – relations between design parameters and requirements;
· design decision rules – relations between conditions and design process actions.
The idea (developed in the proposed model) is to use the matrix form for representing sets of relations between objects of same classes, as well as between objects of different classes.

In general, a relation can be established between every ordered pair of sets of instances of elementary classes. Upper table in Figure 4 shows such set of binary relations.
The main question here is which of all possible relations could be useful to be modeled and manipulated in the proposed system. Some of these combinations have already been dealt with in thorough research efforts, such as "Design structure matrix" - a relation of information dependency between design tasks [22], [8]. Marks have been put in the cells of the table in Figure 4 for relations whose exploration and modeling could be useful in authors' opinion. The table in Figure 4 should be considered as a starting point for further discussions.

The semantics of "Design parameter matrix" can be twofold - algebraic dependencies between design parameters, and similarly as in Design structure matrix - information dependencies.

[image: image4.wmf]SETS OF

ELEMENTARY

CLASSES:

DP

DT

PD

D

PPC

PFC

A

design parameter

s

DP

x

design task

s

DT

x

x

product documentation

PD

x

x

x

designers

D

x

x

x

x

Product

physical

components

PPC

x

x

x

x

product functional

components

PFC

x

x

x

actions in design process

A

x

x

x

x

x

p1

p2

p3

p4

….

pn

parameter 1

p1

x

x

parameter 2

p2

x

para

meter 3

p3

parameter 4

p4

x

. . .

.

parameter n

pn

x

Design structure

matrix

Product hierarchical

structure

Design parameter matrix:

Figure 4: A survey of relations between elementary classes

4.3 Classes that model relations
Binary relations can be represented with connection matrices:

Let R be a relation from A = {a1, a2, … am} to B = {b1, b2, … bn} .

An m x n connection matrix M for R is defined by Mij = 1 if < ai, bj > (R

= 0 otherwise

In the current phase of research, some of the relations shown in Figure 4 are modeled in the environment of object database. They are implemented as classes whose instances represent the rows of the "relation connection matrix". Let us consider a connection matrix for relation from set A to set B. Both sets are considered as instances of classes in the proposed model. Such a matrix can be reduced to three columns (Table 1). The second column in such a view contains a subset of elements of set B that are related to a particular element of set A. The third column records the relation semantics, if there is a common one for that particular matrix row. Now we can model the matrix as a class (set of instances) in which every instance represents one particular row. Every instance of matrix class has one pointer to the instance of class "A", and a set of pointers to related instances of class "B". The proposed model gives a more compact representation of a relation, than an approach where each instance of class "A" would have a set of pointers to related instances of class "B". In the latter approach, every class should have several sets of pointers (one for each relation in which that class participates). Moreover, having a class that represents the relation, the procedures of searching, retrieving and updating are easier to implement and maintain.

	
	b1
	b2
	b3
	b4
	b5
	b6
	….
	bn
	
	
	Pointers to related instances of class B
	Relation semantics

	a1
	
	
	
	x
	
	
	
	
	
	a1
	b4
	a1= (b4)2

	a2
	
	
	x
	
	
	x
	
	
	
	a2
	b3 b6
	a2=b3+b6

	a3
	
	x
	
	
	x
	
	
	x
	(
	a3
	b2 b5 bn
	…..

	….
	
	
	
	
	
	
	
	
	
	….
	
	

	an
	
	
	
	
	x
	x
	
	
	
	an
	b5 b6
	

Table 1: Reducing a connection matrix to three columns

In the prototype system, the proposed model is applied to relations between instances of same elementary class (relation from set A to set A). The left part of Figure 5 is an UML notation for the example of the class that models a set of algebraic dependencies between design parameters. The "parameter dependency matrix" class has two associations with the "design parameter" class. The "left" line is "one-to-one" association modeled with one pointer, while the "right" line is "one-to-many" association modeled with a set of pointers.

[image: image5.wmf]design parameter

Design parameter matrix

1

set of pointers to the

dependent design

parameters

0..*

1

1

the pointer to the

particular parameter -

a matrix row

Class

"Design parameter matrix"

Instance - particular matrix row

pointer to particular parameter

("one-to-one association")

parameter "P 1"

set of pointers to dependent

parameters ("one-to-many associaton")

parameter "P 6"

parameter "P 8"

parameter "P 3"

dependency relation:

P1 = P6 + P8/2 - P3

Figure 5: "Design parameter matrix" class

The right part of Figure 5 is the example of an instance of the "design parameter matrix" class. The scheme shows pointers to parameter objects that are related. A similar model is developed for "Design structure matrix" class in which every instance has a pointer to one particular design task and a set of pointers to other design tasks that must contribute information to that design task for proper completion of the design. In some simpler cases, for modeling one-to-many relation (association) between objects of different classes, it is sufficient that every object of one class has a set of references (pointers) to associated objects of the other class.
4.4 Expressions as the elements of constraints and decision rules

The design process progresses through constraint checking and decision making [24]. Classes which model the design process stage(s) should include and be able to control the processes of adding or checking the constraints as well as making decisions based on sets of rules. The proposed model introduces the "expression" as the basic element of formal notation for design constraints and decision rules. The notion of "expression" is in the considered context analogous to expressions in most programming languages – a lexical element made up of tokens and operators. If an expression is being interpreted as a constraint or rule, then its value can be either true or false. Expression contains tokens and operators, where tokens are:

· attributes of design process model objects

· numeric or character constants
4.5 Design constraint class

The product being designed must satisfy a set of functional requirements. Functional requirements are satisfied indirectly by changing one or more design parameters, the physical form and operating conditions [28]. Functional requirements can be expressed as functions of the design parameters, other functional requirements and various intermediate parameters [28]. Intermediate parameters and design parameters make up the vector of unknown parameters of design P = [p1, p2, p3, …, pn]. Functional requirements make up the vector F = [F1, F2, F3, …, Fn]. According to [28], relationships between functional requirements and the unknowns can be expressed as:

fi (F, P) = 0 i = 1, k

gj (F, P) (Gj j = 1, s
In the design science, these equations are usually named "design constraints". It must be emphasized here that the instances of constraint class differ from the instances of "design parameter dependency" class, although in some cases they may be similar or may be expressed with the same formal equation. Each constraint modeled as object should have a pointer to "expression object" which contains the notation of constraint equation.
4.6 "Design decision rule" class
Instances of "design decision rule" class are here proposed as basic elements for directing the flow of design process execution. Decision rules are considered as relations between the design process actions and the values or states of attributes and objects relevant for making a decision. The design decision rule is conceived as “IF condition THEN sequence of actions”. Conditions are formulated with expressions. Actions modeled as objects are considered in chapter 3.6. The decision rule is being evaluated, and the value of expression is determined as “true” or “false”. According to the expression value, the appropriate sequence of actions will be executed. These actions may be any of subclasses of actions discussed in chapter 3.6. This concept makes it possible to call any operation (method) of any object that is a part of the system. Instead of operation call, the action may also change the particular attributes of the object. The decision rule is a complex object that references parameters or attributes of any other object through expressions. Such an approach enables modeling of very complex rules as rich semantics is at disposal. Decision rule class may therefore be treated as a kind of framework for the design process knowledge representation.
5. Classes modeling the design process
In previous discussions we have proposed elementary classes (basic structural entities) which model engineering data structures and we have proposed the classes for modeling a complex network of relations. These classes model mainly the static aspects of design process. Modeling the dynamic aspects of design process is a much more demanding task. As we have previously emphasized, neither one of the general process representation methods could satisfy all the necessary requirements for the design process modeling. Short surveys of several design process representation methods may be found in [15] and [21].

The issues of design process flow representation have been the subject of our research interest for several years [13], [16], [18]. These papers introduce "the design plan" as the set of data structures and operations that constitute the model of design process progression in the real time. The design plan is represented by a directed graph. The design process is treated here as a sequence of transitions from initial requirements to the final design state. These transitions are observed as operators in the overall collection of information about the product being designed. Each set of operators is represented as a node in the design plan. In the proposed approach, the progression of design process from the initial requirements to the final design state is controlled by design decisions and by applying the design constraints. We must ask us to what extent a design process could be planned. Real design process environments generate dynamic situations - they can change while the plan is being executed in a way that makes the plan invalid [19]. To make the problem more complex, real environments may also change in a way that does not invalidate the current plan, but instead, offers new possibilities for action [19].

5.1 Design plan class

The design plan class contains references to collection of nodes (modeled as objects) and their connections in a directed graph. The connections between nodes represent the information flow and/or the sequences of node execution. To “execute” a node means to perform the associated operations, realized with referenced "action" objects. To summarize the above discussion we may say that the design plan structure should fulfill two main requirements:

· to determine (or predict) the execution sequence of operators in the design process domain, or in other words, to model the progression in the process;
· to provide the mechanisms for organizing and controlling the data transfer between various kinds of software tools and various sets of design process model objects
[image: image6.wmf]recurrent execution

sequence

normal execution

sequence

information

dependency

Figure 6: An example of design plan representation by a directed graph

Figure 6 shows an example of graphical design plan representation. The connections in directed graph are classified as:

· "normal" execution sequence (points from the "current" node to the "next" node)
· "recurrent" (repeated) execution sequence (points from the current node to the one of previously executed nodes) – this is a kind of prototype model of iteration in design process

· "information dependency" connection – indicates that data sets (of objects that are referenced from connected nodes) are directly or indirectly dependent
The structure of the design plan directed graph is recorded in the adjacency matrix and in incidence matrix. These matrices are modeled as classes, by analogy with other relations between sets of objects of the same class – according to scheme in Table 1. Adjacency and incidence matrix are the basic data structures for managing the design plan execution process. Issues of the design plan execution process are in more detail discussed in [16], [18] and particularly in [13] and [17].
5.2 Class “design plan node”
In the proposed model, the design plan node is defined as a combination of set of actions Aj which transforms an object O, being in a state SOi , in the next (new) state SOi+1 :

E ={ An : Sj (Aj (SOi) = SOi+1 }
This definition can be extended to a set of objects, i.e. a set of actions transforms a state of each particular object into a new state. In such a process actions may generate new objects in the domain of the design process model, and furthermore, actions may change the state of newly generated objects. The design plan node models one step of the design process, including: checking of preconditions, list of actions, checking of "postconditions" and deciding about the next step (Figure 7). Preconditions and "postconditions" include sets of constraints and rules, also modeled as objects. Constraints and rules include references to design parameters and attributes of all classes of objects that constitute the design process model. The execution process of the design plan node is presented in Figure 7. This block diagram also includes the schema of references from the design plan node to other objects of the proposed system. These references make the design plan node the most complex class in the proposed system. Through several levels of referencing, the procedures for managing the node execution process may access any particular object in the system. In such an approach the attributes of any object can be changed, and any object operation can be called (executed). Furthermore, by executing (calling) the "constructor" action subclass, new objects can be generated.
[image: image7.wmf]PROCESS

EXECUTION

CAPTURING

DESIGN PLAN NODE

DESIGNER

"EXTERNAL"

SOFTWARE TOOLS

processing,

creating, viewing

CHECKING OF

"POSTCONDITIONS"

constraints

and rules

ACTIONS

CONSTRAINTS

DESIGN

DECISION

RULES

EXPRESSIONS

CHECKING OF

PRECONDITIONS

constraints

and rules

LIST OF NODE

ACTIONS

DECIDING ABOUT NEXT

STEP (NODE)

rules

 CONNECTIONS

BETWEEN PLAN

NODES IN MATRIX

FORM

SOFTWARE

TOOL

INTERFACES

PRODUCT

DOCUMENTATION

OBJECTS

references

to instances

NODE EXECUTION

PROCESS

software tool

call

Figure 7: Design plan node references and execution process

According to the definition, actions in the design process stage change the state of one or more objects. The necessary condition for the action execution is, consequently, the existence and the required state of a particular object. Therefore, the design plan node should include the operations for checking the preconditions necessary for the execution of action. To plan the process means to determine the target state of each particular stage. These goals could be considered as a set of "postconditions" that must be satisfied. In the proposed system, preconditions and targets are modeled as the required initial and required final state of objects being processed (transformed) in the particular design plan node. A set of actions perform the transformations which could be one of the following:

· changing of object attribute values

· establishing or changing the relationships between objects

· calling the "external software tool"

· generating of new objects, including the determination of their initial state

· querying: views and analyses of sets of attributes and objects

The design plan node contains sets of references (pointers) to objects that should be processed. The sequence of processing could be recorded in a form of a table where each reference has its ordinal number. Let us name this table "The node execution agenda". Such a structure makes it possible to develop the procedures for dynamic modifications of the design plan during execution. For example, an action (procedure) from one node could change the "execution agenda" in the other node, or it can even change its own agenda. A kind of dynamic planning can be implemented, but it is constrained to the internal process in particular nodes, without impact on choosing the next node (which is more complex issue). Such possibilities could bring the proposed model much closer to the reality, i.e. the human abilities of planning and adapting a finished plan to new (unplanned) situations that can occur during execution.
6. Implementation and exploitation of the proposed design process model
The Unified Modeling Language is chosen to be an implementation environment for the proposed design process model. UML model of the proposed system is mapped to the object database dictionary which contains definitions of all design process model classes except "service classes". In such approach the object database dictionary constitutes a framework of the proposed design process model. The database dictionary can serve as an open toolbox – the designer can easily create new instances of existing classes. Furthermore, “templates” of design methods and procedures can be modeled as composite classes and integrated in the design process model framework.
[image: image8.wmf]OBJECT DATABASE

DICTIONARY

"EMPTY" PLAN

FRAMEWORK

KNOWLEDGE

ABOUT SOFTWARE

TOOLS IN USE

DESIGN PROCESS

AND PRODUCT

KNOWLEDGE BASE

ENGINEERING

DATABASES

THE PROCESS OF DESIGN

PLAN EXECUTION

EXECUTED

DESIGN PLAN

THE PROCESS OF

DESIGN PLAN CREATION

CREATED

DESIGN PLAN

ARCHIVE OF

EXECUTED

PLANS

"SERVICE" CLASSES

LIST OF

CREATED

PLANS AND

TEMPLATES

PROCESS

"TEMPLATES"

ELEMENTARY CLASSES,

"RELATION" CLASSES,

DESIGN PROCESS MODEL

CLASSES

ARCHIVE OF

CREATED PLANS

LIST OF

EXECUTED

PLANS

INTERFACES TO

DATABASES AND

KNOWLEDGE BASES

SOFTWARE COMPONENTS OF THE PROPOSED MODEL

TOOLS FOR DESIGN

PLAN CREATION AND

EXECUTION

Figure 8: The “software components” and the application process of the proposed system

Even in the case of highly complex object models, there is no difficulty in writing them to the database. The relationships between objects are simply stored together with the objects themselves, and are therefore reproduced easily at any time the data is required. For instance, if one object is retrieved from the database, all referenced objects (from that object) can be automatically retrieved, if required. The schema of using a proposed system in modeling the computer-based support for a particular design process is shown in Figure 8. This block diagram also proposes a scheme for the integration of various types of software tools used for design process support. Operations of creating and executing the design plan should be realized as "service" classes (chapter 2). These are very complex procedures as they must ensure the highest possible level of accuracy of the created plans. The design plan node execution process uses and calls the "external software tools". In the process of creating and executing the design plan, the designer must have all the available knowledge about "external tools" and “action” classes at his disposal. this knowledge could be stored in a separate database. Similarly, while planning or executing the design process, the designer should have interfaces to engineering databases (with product data), as well as to knowledge bases about particular design processes and products being designed.
The design process structure can be decomposed to a hierarchy of design tasks and subtasks. Therefore, it is not necessary to define a design plan at the highest (most complex) level of design task abstraction. Computer based support for complex design tasks can be modeled as a hierarchy of plans and subplans. The design process control at higher abstraction levels can then be left to the designer. Previously completed and tested plans should be stored in a separate database (archive) to be available for reuse or to be used as the subplans in a more complex plan being created.

7. Conclusions
One can ask a question whether it is possible to develop a general (widely accepted) computer based design process and information management model. Obviously, it is a very difficult and complex task.
The presented research attempts to develop a kernel of object-oriented design process model. In the first phase of the research, the emphasis has been put on modeling the relations between objects, as they constitute a large proportion of the system semantics. The results are promising, there are many advantages in comparison to traditional relational database technologies. Some of the proposed ideas offer more flexible data structures that are easier to create, update and maintain. Also, the object model is closer to the reality, therefore it should be easier for users to understand it and to learn it. A very important fact is that the object database recognizes and easily reproduces at any time the relationships (references, pointers) between stored objects. This fact enables the management of very complex and huge relation networks. Efficient modeling of the design process relation network topology was one of primary goals of the presented research.
The main role of the proposed "design plan" is to integrate computer supported activities from lower complexity levels, thus forming the blocks for building a support for activities of higher complexity level, which dominate in conceptual design. In other words, the proposed model may be viewed as "design information manager and process organizer".

The authors' opinion is that the applicability of the proposed model will strongly be influenced by a class of design task. The design process is sometimes far too complex to be easily planned. The research started from the assumption that the proposed model could be efficiently used to support variant and adaptive classes of design tasks. This has to be proven in the future research.

The research projects in the area of computer-based modeling of product development process were mainly focused on the issues that are islands in the area (sometimes isolated). The attempts of developing general integrated frameworks were numerous, but it seems that there are still no good results, i.e. widely acceptable and usable systems. It is obvious that such a task is very huge and complex. It is difficult to believe that isolated research teams could come up with a widely acceptable solution. The presented work is also only a small portion of the job that has to be done – just "the top of the iceberg".

One of the basic conditions for the success of such projects is the development (and the existence) of widely accepted product development process ontology.
The presented research proposes a basic framework which could serve as an open toolbox. The concept of loosely coupled groups of classes should provide a certain degree of flexibility. By using, combining and upgrading the proposed elements (classes), the designer should be able to create and build his own partial models of design process, according to his current needs. To reach such a complex functionality of the system, the following steps are required:

· Broad discussions and widely accepted definitions of basic classes – the definitions and the realization of the basic classes should be independent of the implemented design process model and design information management model.
· Developing and inclusion of other design process models beside the currently implemented "state-action" model.

· Further research in modeling and generalizing the algorithms of "service classes" – the quality of which may have the key role in the usability of the system.
· UML language could become (or should become?) a common communication platform for a distributed design community in such collaborative processes.
8. References

[1] Akman V., ten Hagen P.J.W., Tomiyama T., A fundamental and theoretical framework for an intelligent CAD system, CAD, Vol. 22, No. 6, pp. 352-367., 1990.

[2] Ambrosy, S.: Methoden und Werkzeuge für die integrierte Produktentwicklung. Aachen: Shaker 1997. Zugl. Muenchen: TU, PhD Thesis. 1996.

[3] Andreasen M. M., Wognum N., Considerations on a Design Typology, Proceedings of 3rd International Workshop IPD 2000, Otto-von-Guericke University Magdeburg, 2000.
[4] Andreasen M. M., Wognum N., McAloone T., Design Typology and Design Organisation, Proceedings of 7th International design conference – Design 2002, Design Society, FMENA, Dubrovnik, 2002, Vol. 1, pp. 1-7

[5] Booch G., Rumbaugh J., Jacobson I., "Unified Modeling Language User Guide", Reading, Addison Wesley, 1999.

[6] Eckel B., C++ Inside & Out, Berkeley, Osborne McGraw-Hill, 1993.

[7] Eliëns A., Principles of Object-Oriented Software Development, Reading, Addison -Wesley, 1995.

[8] Eppinger S. D., Whitney D. E., Smith R. P., Gebala D. A., A Model-Based Method for Organizing Tasks in Product Development, Research in Engineering Design, Vol. 6, No. 1, pp. 1-13, 1994.

[9] Gorti S. R., Gupta A., Kim G. J., Sriram R. D., Wong A., An object-oriented representation for product and design processes, CAD, Vol. 30, No. 7, pp. 489-501., 1988.

[10] Hubka V., Theorie technischer Systeme, Berlin, Springer, 1984.

[11] Korpela T., The Role of Object-Oriented Analysis in Modeling of Technical Processes, Proceedings of the 12th International Conference on Engineering Design ICED 99, Vol. 2, pp. 853-856, WDK, 1999.

[12] Liang W.Y., O'Grady P., Design With Objects: an Approach to Object-Oriented Design, CAD, Vol. 30, No. 12, pp. 943-956, 1998

[13] Marjanović D., Implementacija ekspertnih alata u procesu konstruiranja, (Implementation of Expert Tools in the Design Process), Ph.D. thesis, University of Zagreb, Faculty of mech. engineering & naval arch., 1995. (written in Croatian language)

[14] Nagy R. L., Ullman D. G., Dietterich T. G., A Data Representation for Collaborative Mechanical Design, Research in Engineering Design, Vol. 3, No. 4, pp. 233-242, 1992.

[15] Park H., Cutkosky M. R., Framework for Modeling Dependencies in Collaborative Engineering Processes, Research in Engineering Design, Vol. 11, No. 2, pp. 84-102, 1999.

[16] Pavković N., Marjanović D., "Structuring a Designers Workbench with Object-Oriented Design Plans", Proceedings of ICED 99, Vol. 3, pp. 1401-1406, WDK, 1999.

[17] Pavković N., Objektno orijentirani model procesa konstruiranja, (Object-oriented approach to design process modeling), Ph.D. thesis, University of Zagreb, Faculty of mech. engineering & naval arch., 2000. (written in Croatian language)

[18] Pavković N., Marjanović D., "Considering an object-oriented approach to the design process planning", International Journal of Technology Management, Vol. 21, No. 3/4, 2001.

[19] Pollack, M.E, "The uses of plans", Artificial Intelligence, Vol 57, No1, 1992, pp. 43-68.

[20] Pulm U., Lindemann U., Enhanced Systematics for Functional Product Structuring, Proceedings of ICED 01, Vol. "Design research – theories, methodologies and product modeling", pp. 477-484, WDK, 2001.

[21] Smith R. P., Morrow J. A., Product development process modeling, Design Studies, Vol. 20, No. 3, pp. 237-261, 1999.

[22] Steward D. V., The Design Structure System: A Method for Managing the Design of Complex Systems, IEEE Tansactions on Engineering Management, Vol. EM-28, No. 3, pp. 71-74, 1981.

[23] Szykman, S., Racz, J. W., Sriram, R. D., The representation of function in computer-based design, Proceedings of the 1999 ASME Design Engineering Technical Conferences, Las Vegas, ASME 1999, CD-ROM

[24] Ullman D. G., The Mechanical Design Process, McGraw - Hill, 1992.

[25] Vajna S., Wegner B., Optimization of the Product Development Process with Evolution Algorithms and Simultaneous Engineering, Proceedings of International Conference on Engineering Design ICED 97, Vol. 3, pp. 3/67-3/70, WDK, Heurista, 1997.

[26] Wallace D. R., Abrahamson S. M., Borland N. P., Design Process Elicitation Through the Evaluation of Integrated Model Structures, Proceedings of ASME Design Engineering Technical Conference, DETC 99, Las Vegas, 1999.

[27] Van der Aalst W.M.P., Kumar A., A reference model for team-enabled workflow management systems, Data & Knowledge Engineering, Vol. 38, Issue 3, pp. 335-363, 2001.
[28] Watton J. D., Rinderle J. R., Improving Mechanical Design Decisions with Alternative Formulations of Constraints, Journal of Engineering Design, Vol. 2, No. 1, pp. 55-68, 1991.

[29] Werner H., Muth M., Weber C., Functional Modeling Using an Object-Oriented Design System, Proceedings of International Conference on Engineering Design ICED 97, Vol. 3, pp. 3/234-3/238, WDK, Heurista, 1997.
[30] Kowalski J., Methods of Structure Selection for the Object in Mechanical System Optimum Design, Strojarstvo Vol. 32, No. 3, pp. 185-193, 1990.

[31] Kowalski J., Application of Modeling Knowledge-Based System to Optimum Design of a Tractor Diesel Engine, Strojarstvo Vol. 32, No. 6, pp. 409-416, 1990.
[32] Kostelić A., Teorija proizvoda-znanstvena osnova razvoja proizvoda (Product Theory – the Scientific Basis for Product Development), Strojarstvo Vol. 31, No. 2/3, pp 105-111, 1989.

29

