
Overlay Method and Knowledge Evaluation Using
Fuzzy Logic

Branko Žitko

Faculty of Natural Sciences, Mathematics and Education
Nikole Tesle 12, 21000 Split, Croatia

branko.zitko@pmfst.hr

Abstract. E-learning took place between information and communication
technology on one side and education on the other. Authoring shells are kind of
e-learning systems capable for generating intelligent tutoring systems. These
systems usually models learner’s knowledge by using overlay method during
tests. In this paper is presented an advanced approach in refining and making
flexible mark of learner’s knowledge by applying fuzzy system in overlay
method.

Introduction

Information and communication technology (ICT) became inseparable part of
educational systems that helps teachers during class lectures or replace the same
combining numerous methods and way of realizing learning and teaching process.
Application of technology and development of educational systems are in support of
e-learning paradigm that today comprise not only intelligent e-learning systems, but
also other medias like CD-ROM, CAI, video conferencing, satellite distribution of
learning materials and virtual knowledge networks. Today, development on e-learning
field is aimed into designing Learning Management System (LMS) [1] and Intelligent
Tutoring System (ITS) [2]. In a difference of LMS that mainly distribute
electronically content on learner’s request, ITS implement intelligence in several
segments or learning and teaching process realization.

Generally, ITS is a system based on several knowledge representation
technologies. Knowledge representation in ITS not only incorporate student’s
knowledge, but also and domain knowledge that learner uses during knowledge
creation in purpose of teaching. Mentioned knowledge kinds and ITS designers
designated modular architecture [3] of the system containing:
• Expert module – for designing domain knowledge,
• Teacher module – for designing teaching content,
• Learner module – for storing information of users progress on a chosen domain

knowledge and
• Communication module – that interconnects all modules and system users.

Learner module provides main learning and teaching functions and comprises
testing of the learner’s knowledge following by generating mark and
recommendations for the further work. In this paper is described one of the methods
for testing and evaluating learner’s knowledge that is implemented in Tutor-Expert
system (TEx-Sys) [4]. TEx-Sys is defined as intelligent hypermedial authoring shell
that means it is an instance of intelligent authoring shells (IAS) and servers as ITS
generator. Domain knowledge representation in TEx-Sys system is based on semantic
network with frames technology [5].

TEx-Sys implements two methods of knowledge evaluation. Quiz method [6]
dynamically generates questions and answers over a set of nodes and links in
semantic network with frames laying as a base for domain knowledge. The other is
overlay method that uses domain knowledge as a source for generating problem
knowledge. Given knowledge in generated problem, learner tries to expand to the
original domain knowledge. Results of difference analysis between mentioned
knowledge provides input for calculating mark of the test. Knowledge overlay
technique looks at the differences between learner and teacher, enabling wrong
knowledge assumptions as well as misconceptions. In that purpose three knowledge
bases are compared:
• {Expert} knowledge base containing expert’s knowledge in chosen domain,
• {Problem} knowledge base having generated test set of nodes and links,
• {Solution} knowledge base containing solution to the problem.

These knowledge bases are realized using semantic network with framework

technique [7]. When learner runs testing module he is offered by three types of tests:
• Test 1: All links are removed from chosen domain knowledge. Learner has to input

missing links
• Test 2: Fragment of knowledge is generated with having not less than 30% and not

more than 70% of original nodes in chosen domain knowledge. Learner has to
fulfill missing nodes and their connections.

• Test 3: Fragment of knowledge is generated with having not less than 50% of the
nodes and some of nodes are wrongly connected. Learner has to find wrongly
connected nodes and fulfill missing nodes.

Choosing type of test takes {Expert} knowledge base and by removing nodes,

removing and/or wrongly connecting nodes generates {Problem} base. By solving
this base learner can remove nodes, add missing nodes and add new nodes that are not
in {Expert} knowledge base. With links are following treatments: adding new
connections, removing correct connection, removing wrong connection, adding
correct connection, adding wrong connection and adding missing connection. These
actions over nodes and connections define their status. Overlaying nodes and
connections in {Expert}, {Problem} and {Solution} knowledge bases completes
reconstruction of tracing learner’s way in creating solution.

System TEx-Sys has elaborated qualitative criterions of evaluation based on
numeric and descriptive qualifications and in connection with knowledge
representation technique and chosen elements of semantic network in formalism for
designing knowledge base. Separated quantification of nodes and links in semantic
network defines criterions for nodes and links scores. These criterions are very strict

and not flexible in generating students mark. By determining weighting factor for
elements of semantic network we try to make some elements more important than the
other. The other step in making flexible knowledge mark uses fuzzy system. In
following is described such a procedure.

Weighting Factor in Semantic Network with Frames

Elements of semantic network with frames are nodes, links, properties and property
values in frames. Actions of adding, updating or deleting some element of semantic
network with frames will imply on overall count of points for that element. For
example, if correct node is added into semantic network with frames, then overall
count of points for nodes is increased by weight factor of that node. Then score for
nodes will be the scale between sum-total score for nodes and sum-total maximal
score for nodes which is equal to sum of all nodes’ weight factor in domain
knowledge.

Weight Factor for Nodes

Problem of defining weight factor for elements of semantic network with frames will
be explained on nodes example. Semantic network is abstracted by directional graphs
where the node is vertex and the link between two nodes is arc. Directional graph G is
ordered triplet (V, E, I) where V is set of vertices, E set of edges, and I set incidences
containing triplets (vi, e, vj) where vj is tail of edge e and vi is its head. Vertex vj is a
child in relation to vi, i.e. vertex vi is a parent to vj via edge e. Weight factor of
vertices are determined by their position in directed graph. Generally looking, parent
vertices have larger weight factor then their child vertices. On figure 1 vertices v1 and
v2 have larger weight factor then v5 and v6 because they do not have parents, relative
to v5 and v6 having no child. Vertices v3 and v4 have children and parents, thus having
larger weight factor then v5 and v6 and smaller weight factor then v1 and v2. Though,
vertex v3 is "weightier" then v4 because he is parent of v4.

Fig. 1. Subgraphs of directed graph

Directed graph on figure 1 contains two sub-graphs G1=(V1, E, I1) and G2=(V2, E,
I2) containing disjunctive sets I1 and I2 whose union is incidence set of graph G. Same

assumption goes to the sets V ∅=∩ 21 VV VVV =∪ 211 and V2, relatively and .
Weight factor of directed graphs vertex is determined by overall count of parents in

mediated and intermediated relation to all other vertices in directed graph. In case of
two vertices having equal count of parents in relation to all other vertices, than the
one with more mediated or intermediated children is having larger weight factor.

Determination of weight factor for graph G vertices starts with implementation of
incidence matrix. (i, j) element of the incidence matrix M(G) for directed graph G is
determined by counting number of connections between vertexes vj and vi. For each
incidence matrix M(G) is defined matrix M’(G) whose elements are equal to elements
of M(G) except diagonal elements which are set to zero.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000
010000
101100
000100
000100

)(GM

Fig. 2. Example of incidence matrix

For vertex vi in directed graph G on base of M’(G) matrix can be attached pair (pi,
ci) where pi is number of parents, and ci number of children for vertex vi. Now it is
natural to define function fm which will calculate number of children for vertex vi by
summating elements in i row of matrix M’(G)m, and summating elements of i-th
column of matrix M’(G)m.

(1)

()
0 0

, ,
1 1

,

:

(,)

,

'()

m

m m m
i i i

n n
m m

i k i i
k k

m
i j

f V N N

f v p c

i kp a c a

M G a

n V

= =

→ ×

=

= =

⎡ ⎤= ⎣ ⎦
=

∑ ∑

By the function (1) diagonal elements of M(G) matrix are not summated because
these elements tells that vertex is simultaneously parent and child of itself. This

function gives us for each vertex overall number of parents and children in immediate
connection with other elements of directed graph G.

By appliance of function (1) we have following results in (2):

(2)

)0,1()(

)0,1()(

)1,1()(

)2,2()(

)1,0()(

)1,0()(

6
1

5
1

4
1

3
1

2
1

1
1

=

=

=

=

=

=

vf

vf

vf

vf

vf

vf

If M’(G)2 is calculated, then each vertex of directed graph will have number of
parents and children in intermediate connection looked by second level of incidence.
For example, vertexes v1 and v2 have children v4 and v6, while v3 has v5 as
intermediate child. Other vertexes do not have intermediate children. Function f2 will
for each vertex attach ordered pair by matrix M’(G)2.

)0,2()(

)0,1()(

)0,2()(

)1,0()(

)2,0()(

)2,0()(

6
2

5
2

4
2

3
2

2
2

1
2

=

=

=

=

=

=

vf

vf

vf

vf

vf

vf

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000
000000
010000
101000
101000

)(' 2GM

Fig. 3. Second level of incidence in graph G

After getting null-matrix as result of powering M’(G) matrix, we can define
function F which will for each vertex vi attach ordered triplet (pi, ci, ri) where pi and ci
are total number of parents and children for vi, while ri is number of round
connections (cycles) for vi.

(3)

[]{ }

1 1

1 1

, ,

() (, ,)

min : '() 0

, ()

m m
k k

i i i i
k k

n

i i i i j

F v p c r

m n N M G

c a M G a

− −

= =

=

= ∈ =

⎡ ⎤= = ⎣ ⎦

∑ ∑

If we put in order results of function fi for each vertex in directed graph G we will
have table 1.

Table 1. Vertices and results of function fi

 f1 f2 f3 F
v1 (0,1) (0,2) (0,1) (0,4,0)
v2 (0,1) (0,2) (0,1) (0,4,0)
v3 (2,2) (0,1) (0,0) (2,3,1)
v4 (1,1) (2,0) (0,0) (3,1,0)
v5 (1,0) (1,0) (2,0) (4,0,0)
v6 (1,0) (2,0) (0,0) (3,0,0)

More important are those vertices having less number of parents. If two vertices

have same number of parents than more important would be the one having greater
number of children. In case of two vertices having equal number of parents and equal
number of children, than more important one would have greater number of cycles.
By this principle, vertices v1 and v2 are the most important and have the same weight
factor. Next important vertex is v3. Vertices v4 and v6 have equal number of parents,
but v4 is more important because having one child. If we sort ascending results of F
function for each vertex than we will have sequence:

(4,0,0) , (3,0,0) , (3,1,0) , (2,3,1), (0,4,0)
(4)

This sequence has 5 elements and by dividing index of the element with overall
number of elements in sequence, we will calculate weight factor for each element in
sequence. The least weight factor has v5 while v1 and v2 have weight factor equal to 1,
which is also maximal value for the weight factor.

Fig. 4. Weight factors for vertices in graph G

After determination of weight factor for vertices in directed graph, weight factor
for edge is calculated as average of weight factors for vertices on that edge. Figure 5

shows that edges having tail in v
5
3

10
7

3 will have weight factor and .

Fig. 5. Weight factor for edges in graph G

Weight factor of properties in frame of generic node will depend on weight factor
of node. For example, if the weight factor of generic node is k and that node has a
frame with m properties, than weight factor for each property in this node’s frame will

be
m
k . On the same principle is calculated the weight factor for property values in

frames of individual nodes.
Obviously there is bijection between graph’s vertices and nodes in semantic

network, as well as graph’s edges and node’s connections. This bijection translate
weight factor of vertices and edges into weight factor of nodes and connections.

Fuzzy-Logic Appliance in Knowledge Evaluation

Student’s knowledge evaluation can be generally described using fuzzy system [8]
having uncertain input vector and certain output scalar as a presentation of student
knowledge mark.

Input variable in fuzzy system for determining mark of the knowledge is 4-
dimensional uncertain vector. Every element of this vector represents achieved scores
for specific semantic network with frames element. Conversion from uncertain to
certain is practiced by membership functions. Membership degrees are going to be
calculated using center to maximum method. Output value of the fuzzy system is
knowledge evaluation mark.

Score for semantic network with frames elements will be proportion of weight

factor in solution base with sum of weight factor for nodes in expert and problem
bases. We will define weight functions V(base, element) where base parameter can be
task, solution or expert, while element parameter can be node, link, property or
property value. Weight function for specific base and specific semantic network with
frames element is a sum of all weight factors for specific kind of element. For
example, V(task, node) is sum of weight factor of all nodes in task base.

Table 2. Certain vector determination by using importance function

Knowledge bases
Task Solution

Score Certain Vector
Expert

Node 3.4 4.1 6.2 0.87
Link 4.4 5.2 8.7 0.55
Property 2.9 4.4 4.9 0.75

(0.87, 0.55, 0.75, 0.90)

E
le

m
en

t

Property Value 3.2 5.1 5.3 0.90

It is naturally to define function Score(element) as ratio of difference V(solution,

element) – V(problem, element) with difference V(expert, element) – V(problem,
element). In table 2 is given example for determining certain vector by weighting
elements of semantic network with frames in expert, problem and solution knowledge
bases. In case to facilitate difference between importances for expert and problem
knowledge bases for a given element of semantic node with framework, than score for
that element is not taken in certain vector, thus vector’s dimension is decreased.

Each dimension of certain vector has defined membership function. Determination
of these functions is intuitive and is based on experience. Usually, scores for nodes
and links are more important than other elements. On figure 6 are given membership
functions for all elements of semantic network with frames.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Score(Node)

M
em

be
rs

hi
p

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Score(Link)

M
em

be
rs

hi
p

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Score(Value)

M
em

be
rs

hi
p

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Score(Property)

M
em

be
rs

hi
p

Fig. 6. Membership function for each element of semantic network with frames

If we look on membership function results for scores of semantic network with
frames exampled in table 2, then we would get uncertain values as shown in a table 3.

Table 3. Uncertain values example determined by membership functions

 Node Link Property Value
Score 0.87 0.55 0.75 0.90
Membership 0.96 0.61 0.42 0.67

By fuzzy reasoning uncertain membership function’s values for semantic network

with frames element scores are numbers between 0 and 1. Simple rule for determining
that uncertain number is absolute value of membership function’s values. Graphically
result is displayed as a weight of geometric figure whose vertices are defined by
coordinates of certain and uncertain value of membership function, as on figure 7.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Node
Link
Property
Value

Fig. 7. Method for determining uncertain mark

 Output and certain vector of this fuzzy system is mark of learner’s knowledge. It is
important to define function that for each uncertain number trace concrete number.
Similar as membership function, this function is also based on experience. Example
of this function is given in figure 8.

0
1
2
3
4
5
6
7
8
9

10

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Fuzzy mark

M
ar

k

Fig. 8. Determining knowledge mark as function of uncertain mark

Conclusion

Intelligent Tutoring Systems can have different methods for knowledge evaluations.
Fuzzy system is one of ordinary choice because of its functionality similar to human
process of reasoning. Knowledge mark, as result of approximately human
consideration is hardly to explain on precise and procedural way. Fuzzy systems give
acceptable and flexible reasoning methods, but sacrifice precision and correctness.
One of the main problems during development of fuzzy systems is comprehensible
presentation of fuzzy rules and membership functions. Often is necessary to
synchronize fuzzy rules with membership function resulting in satisfying results.

One of the solutions is employment of machine learning methods that would
improve fuzzy rules and membership functions.

References

1. Brandon Hall: Learning Management Systems 2001: How to Choose the Right System for
Your Organization, brandon-hall.com (2000).

2. P. Brusilovsky, E. Schwarz, G. Weber: "An intelligent tutoring system on World Wide
Web", in Frasson, C., Gauthier, G., Lesgold, A., editors, Intelligent Tutoring Systems, Vol.
1086 of Lecture Notes in Computer Science, Berlin, Germany (1996) pp. 261-269,

3. Burns, H. L., Capps, C. G.: Foundations of intelligent tutoring systems: an introduction,
Poison, M.C., Richardson, J. J. (Ed.) Foundations of intelligent tutoring systems, Lawrence
Eribaum, London, (1988) 1-19

4. Stankov, S.: Isomorphic Model of the System as the Basis of Teaching Control Principles in
an Intelligent Tutoring System, PhD Diss, Faculty of Electrical Engineering, Mechanical
Engineering and Naval Architecture, University of Split, Split, Croatia, (in Croatian) (1997)

5. Quillian, M.R.: Semantic memory, in Minsky, M. (ed.), Semantic Information Processing,
MIT Press (1968)

6. Rosić, M: Establishing of Distance Education Systems within the Information Infrastructure,
M.Sc.Thesis, Faculty of Electrical Engineering and Computing, University of Zagreb,
Zagreb, Croatia (in Croatian) (2000)

7. Stankov, S., Glavinić, V., Rosić, M.: On Knowledge Representation in an Intelligent
Tutoring System, Proc. 4th IEEE International Conference on Intelligent Engineering
Systems 2000 – INES'2000, Portorož, Slovenia, September 17-19 (2000) pp. 381-384

8. Passino, K. M., Yurkovich, S.: Fuzzy Control, Addison Wesley Longman, Menlo Park, CA
(1998)

