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Abstract—A discrete-time predictive current controller, for

the application of active power filtering, is designed and 

analyzed in this paper. A modified algorithm of reference

current prediction in the conditions of step change in

amplitude and/or frequency is proposed. The theoretical

analysis and the validity of the proposed method are verified

by simulations. Comparison for the 5th and the 7th harmonic 

current control is made with the results achieved using

synchronous PI plus lead compensator.

I. INTRODUCTION

The use of active power filters (APF) in distribution
systems represents the best solution, in terms of
performance and effectiveness, for elimination of 
harmonic distortion as well as power factor correction,
balancing of loads, voltage regulation and flicker
compensation. The shunt APF, connected in parallel with
the non-linear load, is commonly utilized to compensate
for current disturbances while the series APF is utilized to
compensate for voltage disturbances.

The shunt APF generates the harmonic currents
required by the non-linear load so that the supply feeds 
only the fundamental component. The effectiveness of 
shunt active filters greatly depends both on the method to 
determine the current references and the current control 
strategy.

The main focus of this paper is the development of an
efficient current control design. Most commonly, active
power filters inject the 5th and the 7th harmonics as well as 
the reactive current component of the nonlinear load at the
point of connection with step change even in steady state.

Classical control approach using PI controllers
eliminates steady state error if reference signals are dc 
quantities. So multiple reference frames rotating at the
harmonic frequencies to be compensated need to be
implemented if the application of a traditional
proportional-integral control is required. Unfortunately the
interactions among these different frames and the presence 
of suitable band-pass filtering stages make the design and
tuning of these loops a quite complicated task.

A single dq frame controller, synchronous with the
50Hz supply voltage, is commonly found on commercial
products, as it provides a good compromise between
implementation simplicity, limited commissioning and
control robustness and stability. The PI controller 
characteristic of tracking dc quantities can be used in this
case also for sinusoidal currents which frequency is equal
to fundamental supply voltage frequency. In the case of 
active power filtering systems, reference currents consist
of higher harmonics, whose d-q components in this frame

are pulsating quantities and steady state error cannot be 
eliminated.

Predictive current control [1]-[5] is a linear control
technique suitable for APF applications offering the
advantage of precise current tracking over a wide
frequency range. A predictive current controller is model-
based controller; therefore knowledge of system
parameters is essential for satisfactory performance. In 
particular, stability problems occur in ac drive applications
[6] when back emf needs to be estimated. This drawback 
doesn’t apply for active power filtering systems because
line voltage is available and can be measured.

In this paper, dynamic as well as static performance of a 
predictive current control, which incorporates
computational delays, is analyzed. Since here the main
goal is focused on tracking performance of the current
control loop, it’s assumed that the reference current can be
arbitrary given. To take into account a more realistic case,
it is assumed that the waveform of the reference current is
not known, so a prediction of the reference current in the
control algorithm should be independent of the specific
waveform.

A modified algorithm for reference current prediction to
achieve good dynamic performance during transient
states, is here also proposed. The validity of the whole
prediction algorithm is verified by simulations developed
in Matlab/Simulink environment; SimPowerSystems
blocks were used for the power part of the simulation
model.

II. MATHEMATICAL MODEL

The circuit topology of the pulse width modulation
voltage-source converter (PWM-VSC) used in the
application as active power filtering systems is presented
in Fig. 1. The converter consists of six fully controllable
switches (Sa, Sb, Sc) and it is connected to the grid via
input inductors. The output power stage of APF (single
phase equivalent) can be described with the following
linear first order differential equation:
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Fig.1 Main topology of the analyzed system

1-4244-0121-6/06/$20.00 ©2006 IEEE EPE-PEMC 2006, Portorož, Slovenia1677



L

ve
i

L

R

dt

di
(1)

where e - supply voltage, i – active filter current, v – 
active filter voltage, R, L –resistance and inductance of
input inductors. The discretized solution [2] of the system
differential equation (1) is: 
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where the coefficients a and b are approximated by Taylor
series, active filter and supply voltage are assumed to be 
constant and equal to V and E respectively during one 
sampling time Ts. The time constant of the output stage of 
APF is denoted with =L/R. APF current at time instants k
and k+1 is denoted by i(k) and i(k+1) respectively.

III. CONTROL STRATEGY

The proposed predictive current control is based on the
discretization of the system differential equation so the
discretized model in (3) is used for current controller
design. The aim of this control is to calculate such an APF 
voltage v=vi (i=a, b, c) that the current error at the end of
the sampling period is eliminated (8). For the purposes of
control, current error at the time instants k and k+1 can be 
introduced:
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where i*(k) and i*(k+1) denote the reference currents at 
time instants k and k+1 respectively. From (3), (6), (7) and 
(8) the desired active filter voltage is: 
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Including a computational delay, which in this case is
kept constant and equal to one sampling period, equation
(9) becomes:
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In this analysis it is assumed, at first, that the waveform
of reference current is known. This is a case when each of 
the harmonics is detected separately, so two-ahead
prediction of reference current is straightforward.

The current prediction at time instant k+1 is: 
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This control approach eliminates the steady sate error and 
the transient inside one sampling period without
oscillations as shown in (13).
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To take into account changes in the supply voltage
during one sampling period, an integral of supply voltage
between the time instants k+1 and k+2, in the solution of
system differential equation (1), is modeled by average 
value of voltage assuming it changes linearly. The
prediction of the supply voltage at time instants k+1 and 
k+2 is made using a linear-type prediction:
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If the waveform of the reference current i*(k+2) is not
known two-ahead prediction first need to be applied. Most
commonly in active filter applications the reference
currents consist of the 5th and the 7th harmonics, so a 
simple linear prediction does not give a satisfactory
accuracy; at least a second order polynomial extrapolation
needs to be applied. A Lagrange second order polynomial-
type prediction here is used:
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The second order Lagrange extrapolation formula uses 
the current value and two recent previous values with 
suitable coefficients to predict the value of the signal at 
the instant k+2. During amplitude and/or frequency
transients this method gives incorrect results for next two
sampling periods, as shown in Fig. 2.

To avoid this problem here it is proposed a modified
algorithm for reference generation in transient conditions.
At first a transient state needs to be identified. The
identification is based on a maximum allowable prediction
error. To define this limit prediction error independently
from the value of current amplitude, a maximum
amplitude of reference current need to be defined. Third-
order extrapolation is used for the reference current 
prediction error calculation. The maximum error of the 
one-step-ahead Lagrange third-order extrapolation is
0.25%, as shown in Fig. 3. The third-order one-step-ahead
extrapolation of reference current is:
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After detecting the transient state, during next two
sampling periods, reference is generated using the value
i*(k) instead of the two-ahead predicted value i*(k+2). If 
the reference current i*(k) is used instead of the two-ahead 
predicted one, the delay between the reference and real 
current is two sampling periods.
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Fig. 2 Comparison of the measured reference current (blue) and two-

ahead predicted reference current (green) using second order Lagrange

formula (at t=0.027s step change from 5A to 15A)
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Fig. 3 Absolute value of the prediction error using one-step-ahead

Lagrange third-order extrapolation

(at t=0.027s amplitude change from 20A to 5A) 

The system control structure is cascaded, current 
control as inner and voltage control as outer control loop.
The time constant of the voltage control loop is at least ten
times higher then the current control loop time constant so 
the design of these two loops can be independent. The
block diagram of the proposed control strategy is
presented in Fig. 4. The output of voltage PI controller
presents the active component of the active power filter 
current to cover losses of switching devices and parasitic
resistance in the circuit. The active component need to be 
added to the harmonic reference current demanded by the
nonlinear loads at the point of connection. The predictive
current controller is made in a-b-c coordinate frame so to
add the active component to harmonic reference current,
the supply voltage needs to be measured, Fig 4.
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Fig. 4 Block diagram of the proposed control strategy (single phase 

representation)

IV. SIMULATION RESULTS

The theoretical analysis is verified on the simulation
model developed in MATLAB/SIMULINK environment.
This model includes real switches (IGBT plus anti-parallel
diode) and supply voltage distortion (3% of the 5th and the
7th harmonics) as well as 3% of measuring noise. The 
parameters of input inductors and output capacitor are 
(Fig. 1): inductance L=3.75 H, resistance R=0.3  and 
capacitance C=1000 F. Asymmetrical centre aligned 
pulse width modulation with switching frequency fs=5kHz
is applied. The asymmetrical PWM is achieved by
updating the duty cycle twice per switching period
(sampling frequency is f=10kHz). Using this approach the
need for anti-aliasing filters is eliminated. Current
sampling is applied at the beginning and at the end of 
PWM cycle. It must be assured that all calculations are
done inside one sampling period.

At first some simulation results using a synchronous PI 
plus lead compensator are given in Fig. 5. In this reference
frame the 5th and the 7th harmonics appear as signals at
300 Hz. So the bandwidth of the current control loop
needs to be higher then 300Hz. Although to obtain
acceptable results the achieved bandwidth of this current 
control loop is almost 1kHz, the control of the 7th

harmonic current results in amplitude discrepancy of 13% 
while the phase delay is 24 , Fig. 5. A steady state current 
error always exists because the current reference varies in
time and cannot be eliminated by PI controller.

The performance of the predictive current controller is 
tested at first for the case when the waveform of the 
reference current is known, excluding the impact of the
reference prediction error on the controller behavior. A 
dynamic response can be seen in Fig.6 and Fig.7.
Transient response is reduced inside one sampling period
without overshoot.
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Fig. 5 Comparison of the d and q current components (full line) and the 

current reference (broken line)
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Fig. 6 Comparison of the phase current (red) and the current reference

(black) assuming that the waveform of the reference current is known 

(at t = 0.027 s step change in amplitude from 5A to 15A) 
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Fig. 7 Comparison of the phase current (red) and the current reference

(black) assuming that the waveform of the reference current is known 

(at t = 0.027 s step change in frequency from 350Hz to 50Hz)
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Fig. 8 Comparison of the phase current (blue) and the current reference

(green) using Lagrange formula for the current reference prediction

 (at t = 0.027 s step change in amplitude and frequency)
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Fig. 9 Comparison of the phase current (blue) and the current reference

(green) using proposed modified reference prediction

(at t = 0.027 s step change in amplitude and frequency)
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Fig. 10 Comparison of the phase current (green) and the current

reference (blue) using proposed modified reference prediction

Including the reference prediction, the response of the
analyzed system has instead a big oscillation in the
transient state, Fig. 8. 

The response of the system including the modification
of reference prediction is presented in Fig. 9 and Fig. 10.
Transient response is reduced inside four sampling periods
with significantly reduced overshoot.

V. STABILITY ANALYSIS

The performance of the analysed predictive current 
controller, which is a model-based controller, depends on
the accuracy of the model parameters. The system stability 
according to inaccuracy of the supply impedance
parameters is here examined.

The following discrete equations describe the presented
predictive current controller:
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where the modeled input impedance is denoted by R R
and L L, where R and L present the actual values of the 
input impedance and R and L represent the inaccuracy 
of the input resistance and the input inductance
respectivly. The integral of the supply voltage in the
sampling period between the time instants k+1 and k+2 is 
modeled by the average value of voltage assuming it
changes linearly. The prediction of the supply voltage at
the time instants k+1 and k+2 is made using linear-type
prediction (14) and (15) while for the prediction of the
reference current the Lagrange interpolation formula (17) 
is used. Transforming the equations (14), (15), (17), (19)
and (20) in the z-domain, the closed loop transfer
functions can be obtained:
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where the supply voltage is considered as a disturbance.

The closed-loop characteristic equation is given:
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To get root locus of the system as the parameters L
and R vary, the characteristic equation is then rewritten
into the desired form:

 (24) 0)(1 zGk o

where Go(z) denotes the open loop transfer function and k
is the gain of the system. Rewritten equation (24) to get
root locus as the parameter L varies, is giving:
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Similar procedure can be done to get root locus as the
parameter R varies. Fig. 11 presents placement of roots 
varying the L parameter (25). The system is stabile, as it
is well known, if all roots are inside the unit circle. As it
can be seen from Fig. 11 and as could be expected, an
overestimation of the input inductance is more critical 
situation. This stability analysis proves a good model
robustness for parameters inaccuracy. The system is stable
up to 100% error in the modeled inductance L. It is worth 
to mention that the system also goes into the instability
region for 100% error in the modeled inductance L when 
the PI controller plus lead compensator is used. The 
accurate knowledge of the input resistance is less critical. 
The system is tested also for a step change in the supply
voltage. The step variations in the supply voltage don’t
affect noticeably the current tracking (small value of the
gain in the transfer function (22)). For the same conditions
of the supply voltage step variations, the analyzed system
with PI controller plus lead compensator is tested. A
supply voltage step decrease of 30% introduces a transient
response of about 20ms for the 7th harmonic of the active 
filter current showing therefore a not optimized behavior
compared with the predictive approach.

VI. CONCLUSION

A detailed analysis of high performance predictive
current control in active filter applications is given. A two-
ahead prediction of reference current is obtained by
Lagrange extrapolation formula using the fact that the
sampling period is constant. Active filter current includes

step variations even in steady state so the prediction of
reference current in the conditions of amplitude and/or
frequency change is of a great importance. Second order 
Lagrange polynomial-type prediction gives satisfactory
steady state accuracy but fails in transient conditions. To
overcome this drawback a modified prediction of 
reference generation is proposed. Using this modified
prediction of reference current, the settling of  transient
response is achieved inside four sampling periods and 
overshoot is significantly reduced. Theoretical results are 
verified by simulations.
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