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	1. Introduction



Hydraulic transients can cause high pressures, which can be dangerous for the piping systems, especially in hydroelectric powerplants. During the simulation of transient pipe flow, friction losses are often estimated by using steady or quasi-steady friction terms. The velocity profiles in rapid transients significantly differ from the "steady" profiles in slowly varying transients. Since hydraulic transients can be described by the hyperbolic conservation laws and since the source term cannot be exactly evaluated due to increasingly more complicated expressions, it would be desirable to apply numerical schemes that are high order accurate. The numerical schemes satisfying the stated requirements are finite volume ENO schemes, which are used in this paper. 
	2. Mathematical model




Allievi's liquid pipe flow mathematical model is derived from mass and momentum conservation laws [8],[6]. However, the model does not consider cavitation and liquid density variations as a consequence of pressure variations. Therefore it can be written as
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where Q=Q(x,t) is pipe volume discharge, H=H(x,t) denotes pressure head, A=A(x) is pipe cross-section area, a is speed of sound, and f=f(x,t) is friction coefficient.
	2.1 Unsteady friction




Steady friction models do not give the satisfactory results during rapid transients, that is, the model showed large discrepancies in attenuation, shape and timing of pressure wave if computational results were compared to measurement results. Numerous unsteady friction models were proposed and investigated. One-dimensional unsteady friction models can be classified in two groups: 
(1) Friction term is dependent on instantaneous mean flow velocity and instantaneous flow acceleration (local (temporal)); local and convective (temporal and spatial) and 

(2) Friction term is dependent on instantaneous mean flow velocity and weights for past velocity changes (as the result of a frequency-dependent relation between skin friction and flow acceleration). 

Brunone's unsteady friction model is chosen due to its acceptable accuracy and ease of implementation.

	Brunone unsteady friction model




The friction factor used in (2) is considered as the sum of steady part fq and the unsteady part fu. The steady part of the friction factor is known, while the unsteady part is related to the instantaneous local (temporal) acceleration 1/A(∂Q/∂t) and instantaneous convective (spatial) acceleration 1/A(a∂Q/∂x), that is: 
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Equation (3) is Vítkovský’s formulation [2] of the original Brunone model [5]. The Brunone friction coefficient k can be predicted either empirically or analytical expression can be used. Here the analytical definition of k using Vardy and Brown’s shear decay coefficient C* [2] is used: 

	
[image: image5.wmf](

)

ï

î

ï

í

ì

=

=

flow

ent 

for turbul

Re

41

.

7

flow

laminar 

for 

0476

.

0

;

2

05

.

0

Re

/

3

.

14

log

*

*

C

C

k


	(4)

	2.2 The Momentum Correction Factor



The Brunone unsteady friction formulation considers the effect of the velocity profile on the unsteady frictional head loss term. However, the effect of the velocity profile is not considered in the flow acceleration terms in (2), that is the Brunone unsteady friction model cannot produce the low frequency shift noticed in experimental results [2]. Almeida and Koelle [1] and Brunone et al. [5] presented equations of motion that include the momentum correction factor β and the kinetic energy correction factor α. Since a one-dimensional transient model does not keep information about the velocity distribution, it is assumed that α and β are relatively constant in space and time during the transient, causing all dependence on α to be eliminated leaving β remaining in the equations. Several studies pointed by Brunone et al. [5] suggest that realistic values of β do not vary greatly during a transient event. Using Reynolds transport theorem, it can be shown that if the linear-momentum correction term is considered, then (2) becomes 
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where the momentum correction factor β0 is defined from βAV2 = ∫A v2dA. The momentum correction factor can be determined from either the log or power laws for the velocity distribution. When (5) and (1) are solved, system eigenvalues become (1,2=±a β0-1/2 representing slowing of the transient. 

	3. Finite volume ENO scheme




Since the considered one-dimensional conservation law described in the previous section is of the form
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we look for the solution u(x,t). The general structure of corresponding conservative scheme for solving (6) is
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Here ui(t) denotes the approximation to the average value of the solution over the cell Ii, 
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is the numerical approximation to the value f(u(xi+1,t),xi+1), while Gi approximates the term 
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.The left side of the above equation, i.e. the time part, is solved by using the TVD Runge-Kutta time integration. The approximations of the terms on the right side of (6) are based on ENO reconstruction [7] and on the solution of the generalized Riemann problem. 
ENO (essentially non--oscillatory) reconstruction is based on high order polynomial approximations, where the main idea is to avoid the polynomials with spurious oscillations, which appear around the discontinuities. To achieve this effect, the Newton formulation of interpolating polynomial and the corresponding divided differences are considered. Since a smaller divided difference value implies that the function is smoother in the observed stencil, we pick the stencil with smaller absolute divided difference value. For the high order approximation we take the polynomial constructed over the chosen stencil. The details of this algorithm are given in [7]. Since at each time step the average values 
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, which approximate the exact value of the solution at the considered cell boundary can be determined by using the described ENO polynomial reconstructions. Then the corresponding Riemann problem on the (i+1/2)th cell boundary should be solved. Since the exact values of such solution are not always available or inexpensive, the approximate Riemann solvers are used, i.e.
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where F is the numerical flux function consistent with the physical flux. In this work the Roe and Lax-Friedrichs fluxes are used [7]. 
	4. Numerical results




In order to illustrate the quality of the proposed computational procedure taking into an account the momentum correction factor and unsteady friction model, experimental data that have been performed in Robin hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of Adelaide are used. The example piping system used for investigating water hammer wave forms comprises a copper pipeline of length 37.2 m, 22 mm internal diameter and 1.6 mm wall thickness that is upward sloping (Figure 1). The transient event is generated by a rapid closure of the downstream end valve. The initial flow velocity in this case study is V0 = 0.2 m/s, static head in the tank 2, HT = 32 m, valve closure time tc = 0.009 s, and water hammer wave speed a = 1319 m/s [3]. 
[image: image15.jpg]Valve Pipeline




Figure. 1.  Experimental apparatus with copper pipeline
Numerical results with momentum correction factor β0 = 1.019 [3] are compared with the measured results from the experimental run with identical system parameters to the numerical model. The Reynolds number of the initial flow is 4,369, making the initial flow-state turbulent.  Results are compared at the valve and at the midpoint in copper pipeline. Numerical tests were conducted with finite volume ENO scheme using the Lax Friedrichs flux, with time order 3 and space order 2. In order to investigate the robustness of the proposed method, different computational number of points was used, that is 256, 128, 64 and 32 points. Also different Ccfl coefficients were used: 0,9, 0,75 and 0,5.
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Figure 2. Numerical results with Ccfl=0,75 at pipeline midpoint
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Figure 3. Numerical results with Ccfl=0,5 at pipeline midpoint
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Figure 4. Numerical results with Ccfl=0,9 at pipeline midpoint
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Figure 5. Numerical results with N=128 numerical points used at pipeline midpoint
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Figure 6. Numerical results with Ccfl=0,75 at the valve
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Figure 7. Numerical results with Ccfl=0,5 at the valve
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Figure 8. Numerical results with Ccfl=0,9 at the valve
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Figure 9. Numerical results with N=128 numerical points used at the valve
There remain some small differences between the model results and the experimental data mainly with respect to the high frequency components of the response. This difference points towards a high frequency damping phenomena that is not currently being adequately modelled. Moreover, there is evident dependency upon the cfl and number of computational points used. However, all simulations model water hammer's attenuation fairly correctly, while its shape is not so accurately modeled, which suggests model's lack of diffusion present in experimental data.
	5. Conclusion




Implementation of finite volume ENO scheme to the hydraulic transients modeling was proven to be justified. Applied one dimensional assumptions fail to capture the full three dimensional nature of the resulting damped oscillatory flow. Unsteady friction is the primary manifestation of this effect. However, conducted numerical simulations have shown to be in a good agreement with measured data.
 It is also worth noting that coarse grids give adequately good results compared to denser grid. Moreover, ccfl number variation shows that finite volume ENO scheme produces very little numerical diffusion.
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