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Abstract. The application of global optimisa-
tion algorithms for modelling of enzyme kinetics 
and parameters of the central metabolism is ana-
lyzed. The model is a set of 10 highly complex 
stiff ordinary differential equations with 132 
adaptive parameters. The efficacies of Nedler-
Mead, simulated annealing, and differential evo-
lution for minimization of variance between 
simulations of a model of the central metabolism 
and experimental data of the corresponding in-
tracellular key metabolites are compared. Ex-
perimental data obtained during response of  
population of E. coli cultivated in a batch biore-
actor are applied. Data are obtained during 
transients of 15 seconds upon a glucose impulse.  

Results are discussed in view of metabolic 
flux analysis and genetic engineering.  
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1. Introduction 
 

Advances of bioinformatics based on auto-
matic determination of genome leads to a possi-
bility to development of computer models of a 
living cell. Living cells are highly complex regu-
lated and adaptive dynamic systems, and com-
puter models need to account for the main regu-
lation mechanisms by which a cell grows and 
adapts to a changing environment. One of the 
modelling approaches, which has a potential to 
provide insight in the key features, is based on 
dynamic material and energy balances of me-
tabolite [1]. This approach is seriously limited by 
the difficulties in estimation of enzyme kinetic 
functions and numerous parameters. Choice of 
the kinetic functions is usually limited to the 
fundamentally founded and generally accepted 
Michaelis-Menten functions with several activa-
tion and inhibition effects. Unfortunately, kinetic 
parameters, at present knowledge, can not be   

determined from fundamental principles, and 
have to be based on empirical methods.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Model of flux network of E. coli 
central metabolism. 
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Usually, the parameters are estimated by the sta-
tistical least squares method to minimize vari-
ance between a model predictions and experi-
mental observations. This approach leads to nu-
merically very difficult optimisation. Due to sig-
nificant measurement errors, modelling inaccu-
racies, and overlapping effects of kinetic parame-
ters, a response surface has multiple local min-
ima, and numerous “flat” patches. A good initial 
point in parametric space is usually unknown, 
and an unwary algorithm that always accepts a 
step which minimizes a function freezes in a lo-
cal minimum. In such situations gradient based 
methods have poor efficacy, and require multiple 
restarts with new guess of initial points. A poten-
tial alternative is application of non-gradient 
methods with a chance to perform as a global op-
tima search algorithm. 
 Here are compared three attractive non-
gradient methods, of which two mimic how na-
ture, biology (differential evolution, a variant of 
genetic algorithm) and thermodynamics (simu-
lated annealing), adapts and self-organise to op-
timise its structure. These methods are multidi-
mensional search algorithms, which are generally 
considered to have a chance to perform global 
optimisation. In this work they are applied for 
minimisation of the sum of squares of errors be-
tween the experimental data and a model predic-
tion from the experiment with central metabo-
lism response to glucose impulse. 
 
2. Model 
       
    Model is based on experimental data published 
by D. Degenring [2,3]  from rapid sampling ex-
periment with E. coli exposed to glucose pulse. 
The results from simulations of the original 
model showed significant difference from ex-
perimental data for some metabolites and the 
original model was altered and improved by S. 
Čerić [3]. The changes introduced include inser-
tion of two novel reactions, (PEP carboxykinase 
and conversion of pyruvate into biomass), altera-
tion of three kinetic rate equations (PTS, 
phosphoglucose-isomerase and aldolase). The al-
tered model predicts increase through Entner-
Dourdof pathway, and in this work the model is 
further extended by closing this flux into pyru-
vate pool.  The alterations of the original model 
are depicted in Fig. 1 as the rates r14 and r23. 
 The dynamic balances (1) are given by the 
product of the stoichiometric matrix α and the 
vector of reactions r. The stoichiometric matrix 
has a full rank which proofs independence of the 

mass balances. In Fig. 1. are listed components 
of the reaction vector, i.e. fluxes. The total num-
ber of fluxes is 24, of which 11 fluxes are intra-
cellular, 13 are extracellular (1 is inbound meas-
ured assimilation of glucose, and 12 are unmeas-
ured outbound fluxes from the central metabo-
lism into anabolite reactions). Based on the flux 
count and the number of intracellular balances 
(1) determined is the model degree of freedom of 
13. High degree of freedom of the model pro-
foundly effects efficacy of the model adaptation 
and validity.   
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The mass balances of the intracellular species c 
are dependent on unbalanced cofactors cu. The 
cofactors are measured under experimental tran-
sient conditions and are included into the model 
as continuous interpolated functions. The rates 
include forward and backward reactions and re-
action kinetic functions  are of Michaelis-Menten 
type. For example, the first flux  is given by: 
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which is kinetics of assimilation of extracellular 
glucose by phospho-transferase systems (PTS). 
The kinetic expression of all of the reactions is 
given by S. Čerić [4]. The kinetic model includes 



132 parameters which need to be estimated 
through minimisation of the sum of squares (3) 
of differences between predicted by model intra-
cellular concentrations c and the measured con-
centrations cm. 
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The experimental methods are highly complex 
and automated by a robotic system [2-3] ena-
bling fast sampling with frequency of 4 Hz. Data 
are collected during the first 17 s of the transients 
induced by the glucose impulse.  Collected are 
data for 21 intracellular species, each 4 times 
sampled in a second, which yields in total a data 
set of 1428 concentrations. Random dispersion 
of the experimental data is very pronounced, 
with approximate variability coefficient of 0,25. 
An example of the response of intracellular glu-
cose-6-phosphat (G6P) with dispersion of data 
points is depicted in Fig. 2.  
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Figure 2. Experimental data ( ) and the 
model simulation ( ) of G6P (mmol/L) in-
tracellular concentration upon glucose 
impulse.  
 

3. Model optimisation 
  
 In this work are applied and compared three 
potentially effective algorithms for global opti-
misation over a continuous multidimensional 
space of kinetic parameters in the model of cen-
tral metabolism. The model simulation and pa-
rameter optimisation is realised in Wolfram Re-
search "Mathematica" [5]. 
  
3.1.  Nedler-Mead optimisation 
 
 A simple, but very "code cost effective" 
method of Nedler-Mead is applied. The method 

can be described as a "down hill " simplex de-
scent. The method has a "reputation" of being the 
best first choice, which will work provided it has 
a suitable initiation. It starts with an initial (usu-
ally randomly picked) simplex of N+1 vertices in 
the N dimensional space. The simplex edges are 
taken as unit vectors, and at the vertices objec-
tive function is evaluated, and values sorted in 
decreasing order. In the next step the vertex with 
the highest value is improved. Centroid of N ver-
tices is calculated, excluding the highest (la-
belled with i=1), by: 
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From this a new search direction is determined 
by reflection from the centroid 
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If ( ) ( )11 +< N

new xfxf  then the new vertex is in a 
downhill direction. A better point is attempted by 
doubling the move. If after the reflection the new 
point is still the highest, a reflection and shrink-
ing is attempted: 
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If this does not improve, then just shrinking is at-
tempted: 
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Finally, if this also fails, then all the vertices are 
shrunk toward the best one 
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Through successive iterations, a simplex 

tumbles downhill with change of scale continu-
ously adapting in size and location to configura-
tion of the response surface. However, for effi-
ciency and success to locate a global minimum, a 
good starting simplex is required, and restart 
with different initial simplexes is needed.  
 
3.2.  Simulated annealing algorithm 
 
 Simulated annealing is inspired by thermo-
dynamic consideration of energy distribution of 
multi-component systems. By the law of statisti-
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cal thermodynamics, a probability p to find a 
system in a state with energy E at temperature T 
is given by Boltzman law: 
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where k is Boltzman constant. Value of the ob-
jective function f  here represents energy E of a 
system. Energy of a system state is calculated 
from the initial, usually randomly picked, set of 
initial points and initial temperature. A new state 
reachable from the current state is randomly se-
lected and its energy is evaluated. If energy is 
lower, the new state is always adopted. But if it 
higher it is accepted based on the probability of 
observing a fluctuation of size exp(- E/kT), de-
cided by comparison with a random number 
from interval [0,1] with uniform probability dis-
tribution. Successively, "temperature" of system 
is lowered and smaller energy fluctuations be-
come more statistically significant. Theoretically, 
as T  0 system approaches the global minimum. 
However, in practice, search is stopped when a 
maximum number of iterations exceed a prede-
fined limit. Restarting the procedure with a new 
set of initial points increases a chance for obtain-
ing global minimum.    
 
3.3.  Differential evolution algorithm 
 
 The differential evolution (DE) method is a 
variant of the genetic algorithm (GE). It starts 
with a population of n (predetermined size of 
population) random vectors 1x , 2x , . nx of real 
numbers from N dimension, called "genes". In 
every iteration, for each ix  integers a, b, and c 
are randomly chosen yielding construction of a 
corresponding mate 
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where γ  is fixed and predetermined scaling fac-
tor. Then ix  is mated with iy according to the 
given crossover probability. Gene exchange is 
performed by exchange of vector components. In 
addition, o point mutation randomly occurs at 
randomly selected component. Product of muta-
tion is a child vector iz  which competes by fit-
ness evaluation with its parent ix  for a place in a 
new population. 
 The method is very robust, but to increase a 
chance for convergence to a global minimum a 

restart of iterations from new initial populations 
is required.   
 
4. Results and discussion  
 

The model consists of 10 stiff ordinary 
differential equations with 132 adaptive pa-
rameters. The initial conditions are known 
from the experimental data [4].  A good ini-
tial estimate of the parameters is also known 
from the published data [2-4]. However, in 
order to test efficacy of the optimisation al-
gorithms, initial set of parameters are ran-
domly selected. An example of a typical it-
eration sequences is depicted in Fig. 3.    
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Figure 3. Minimization of the sum of 
squares S2  by the algorithms: Nelder-
Mead (MN), Simulated Annealing (SA), and 
Differential Evaluation. 

 
Nelder-Mead and differential evolution con-
verge relatively fast, and in approximately 
60 iterations are sufficient for acceptable 
minimum. Acceptable level of the sum of 
squares depends on the level of random 
components in input (measured data). When 
NM is compared to DE, an indication of a 
better performance of NM is noticeable. 
Simulated annealing method does not reach 
the minimum at the same number of itera-
tions. Similar results are obtained for re-
peated experiments with different sets of ini-
tial points. Tracking of the parameters during 
iterations is depicted in Fig. 4. For illustra-
tion purpose only the dominant parameter 
Vfpts in the model of initial intake of glucose 
by PTS system. The result shows that pa-



rameters do not converge to the same values.
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Figure 4. Estimation of the maximum PTS 
rate parameter by the algorithms: Nelder-
Mead (MN), Simulated Annealing (SA), and 
Differential Evaluation (DE). 

 
This clearly shows that the response surface of 
the model has several, possibly many equally ac-
ceptable minima. From statistical point of view, 
it can be inferred that the model parameters have 
large joint confidence intervals.        
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Figure 5. Simulated vPTS (mmol/Ls) of PTS 
transferase rate upon glucose impulse. 
 
Results of the model simulation are presented 

in Fig. 2. and Fig. 5. Response of the concentra-
tion of intracellular glucose-6-phosphat shows 
statistically appropriate unbiased interpolation 
with randomly distributed error. Most of the er-
ror dispersion can be interpreted as a result due 
to analytical, i.e pure error.  

The main objective of the modelling is to re-
veal regulation of the intracellular process. The 
strong regulation effect of the phospho-
transferase system can be observed in Fig. 5. 

Cells kept in environment with almost com-
pletely exhausted from source of carbon (glu-
cose) immediately commence with high rate of 
assimilation at the very start of the impulse. By 
the model predictions, Fig. 5., maximum assimi-
lation rate (2-5 mmol/Ls) occurs during 0,1 s, af-
ter which a strong feedback regulation mecha-
nism drastically decreases the rate in an expo-
nentially decaying manner, and in 15 s ap-
proaches to about 10 % of the initial maximum.  

The model predicts further distribution of the 
metabolites due to the glucose impulse. The dis-
tribution of the metabolite flux is a highly regu-
lated process, and the model enables flux analy-
sis, gives mechanism of regulation, and possible 
determination of the “bottle necks” in the net-
work.   

Implications of the modelling and analysis are 
strain improvement by genetic engineering 
methods and improved process control of indus-
trial biotechnology processes.      
 
5. Conclusions 
 
 Analysis of dynamics of metabolic networks 
is a difficult task and challenge for computer 
modelling, simulation and optimisation. Here are 
investigated three numerical methods for kinetic 
parameter optimisation, namely Nedler-Mead, 
stochastic annealing, and differential evolution. 
 The methods are compared for their potential 
ability to provide global optima by adaptation 
and random search. The method of Nedler-Mead 
and differential evolution gave better efficacy 
compared to simulated annealing. However, 
convergence properties are case and initial point 
dependent, and need to be tested or “tuned” for 
each particular project. The attractive property of 
the methods is their independence on gradient 
evaluation, and their better performance for large 
systems compared to classical methods for pa-
rameter estimation, such as Marquard-
Levenberg. 
 Analysis of the optimisation on the parameter 
space (variable) clearly shows the problem of 
overlapping effects of many parameters. Simula-
tion results confirm the well known effect of in-
terdependent relation between maximum rate and 
saturation (and inhibition) constants in Michaels-
Menten type kinetic models. Inability to resolve 
individual kinetic effects can be elevated by use 
of models with simpler kinetic structure, such as 
“log type” kinetics. 
 However, here the main purpose of the mod-
elling is not focused on precision of estimation of 
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kinetic parameters, but to use the model for 
evaluation of the flux rates through the network. 
Determination of distribution of fluxes provides 
clues to metabolic limitations in specific path-
ways and indicates possible flux control enzymes 
and cofactor dependencies.  Computer modelling 
of metabolic networks and the flux analysis pro-
vides rational computer aided approach to ge-
netic engineering method for improvement of 
strains and industrial biotechnological processes.  
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