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Abstract—In this paper two general-purpose (GP)
biquadratic filters are analyzed and optimized. The design
equations for both filters are given, and the methods used to 
optimize the dynamic range and reduce the noise are
described. On one example of the 2nd-order Butterworth
filter, PSpice analyses were carried out, and a comparison of
noise, referred to the input, is given. The dynamic range is 
optimized such as to have the same signal level at each 
amplifier output. Both optimization procedures are highly
effective and can be applied to the similar filter design
problems.

I.

II.

INTRODUCTION

Nowadays, analog active-RC filters (e.g. in [1]) in the
VLSI implementation are very often realized by the use of
integrators. Because of their easy implementation, a lot of 
well-known filter topologies tend to be converted into 
circuits having integrators and appropriate connections
between them. Very effective tool used in the analysis and 
design of such filters is a signal-flow-graph (SFG) 
representation [2][3]. It enables a straightforward analysis, 
synthesis and, finally, an optimisation procedure. In what
follows, using SFGs, we present two well-known multi-
amplifier filter biquads: GP sections. We apply the
dynamic range optimisation using SFGs method in [4], and
we investigate which design procedure provides us with a 
circuit having optimal thermal (Johnson’s) noise
performance.

DIRECT REALIZATIONS OF GP SECTIONS

We present the well-known realization of biquadratic
sections in direct form. Starting from general form of a 2nd-
order transfer function to build the corresponding SFG, we 
realize the filter circuit using integrators [5]. Consider the
biquadratic transfer function given by:
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Dividing numerator and denominator by s2 we obtain:
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We can readily calculate a transfer function T between 
any two nodes in SFG by application of Mason’s multi-
path (general) reduction rule, which is given by:
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, (3) 

where  is the graph determinant of the form =1-(sum of 
all loops taken one at a time)+(sum of products of all
nontouching loops taken two at a time)-(sum of all
nontouching loops taken three at a time)+... . Pk is the gain
of the kth forward path, and k is the part of the graph 
determinant which contains only loops that have no
common nodes with the path Pk [2][3]. Now we can make
the following assumptions: (i) every forward path Pk
touches every loop Li therefore all k=1; (ii) all loops touch
each other thus in the graph determinant  all loop

products are equal to zero, i.e. ,0ji LL

0'kji LLL , etc. Thus, we can rewrite (3) in simple

form and equate it to (2). We obtain:
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Equality in (4) permits the desired transfer function
T(s) given by (2) to be directly realised by the two SFGs
that are presented in Fig. 1 in that each coefficient ai and bi
(i=0,1,2) appears as a transmission value (see [5]). 

Two SFGs in Fig. 1(a) and (b) realize the identical 
transfer function Vout/Vin. It can be seen from (3) for the 
two SFGs, that the forward paths and loops, as well as 
topological relations between them, should be the same.
We refer to the two graphs, having the above relationship,
as transposed. Recall, that the rules by which we can
construct the transposed SFG are: (i) change the direction
of every branch in the SFG, while keeping the branch 
transmittances; (ii) make a mirror of the graph; (iii)
exchange input and output nodes [2][3].

There are two 3-amplifier realization of 2nd-order filter 
circuits given in [1], i.e. GP-1 and GP-2 sections, based on 
direct form I and II in Fig. 1, respectively. They provide
low-pass (LP), band-pass (BP) and high-pass (HP) outputs
[and with an additional opamp also band-rejection (BR)
and all-pass (AP) outputs].
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Figure 1.

III.

SFG realization of (2). (a) Direct form I. (b) Direct form II. 

Note that LP, BP and HP outputs correspond to the nodes
at opamp outputs. In what follows we demonstrate our 
optimization method only at the BP filter example,
whereas other cases can be treated in the same way. 

We demonstrate, as well, that the approach using SFG
is very useful in optimization of filter performances.

GP-1 BIQUADRATIC SECTION

Consider general-purpose realization known as GP-1
biquadratic section shown in Fig. 2, which has two
negative integrators with time constants:

1=R5C6, 2=R7C8. (5)

The voltage transfer function at the BP output for 
section in Fig. 2 is given by:
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where:
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We represent the circuit in Fig. 2 by a SFG in Fig. 3. Note
that (7) permits independent tuning by prescribed non-
iterative tuning sequence of firstly p by R4 and lastly qp
by R2 [1]. It can be shown that an important quantity that
should be minimized in order to minimize the sensitivity to 
active component variations is the gain-sensitivity product 
(GSP) of a filter. (The GSP gives a measure of a filter’s 
magnitude sensitivity to the open-loop gain (A) variation of 
the active component [1].)
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Figure 2. 2nd-order general purpose GP-1 biquad with three opamps.

(a)

Figure 3. SFG of the GP-1 filter circuit in Fig. 2 showing relationship 
with component values.

It was shown in [1] that we reduce GSP if we let 1= 2

in (7).

Example: Consider 2nd-order Butterworth BP filter 
having fp=10kHz center frequency. To realize this filter we 
have the pole Q factor, qp= p/B=0.7071.

(b)

We usually start the design with the normalized center
frequency p=1 and obtain the normalized component
values. Then we denormalize elements to the frequency 

p=2 fp, and to the resistance R0=( pC0)
-1, where fp and C0

are the desired center frequency and the capacitance. Final 
resistance and capacitance values follow from:

normdenorm RRR 0 ; . (8) normdenorm CCC 0

The step-by-step design procedure for the filter in Fig.
2. is given in [1], and it provides min-GSP filter: 

i) calculate R0=( pC)-1, and choose Rd; where R0 is the
optimal resistor for low GSP, and Rd is discrete resistor
value, which should be close to R0;
ii) choose R1=R3=R5=R7=Rd; and choose C6=C8=C0; in
doing so we actually choose 1= 2 [see (5)];
iii) finally calculate:

  R4=Rd(Rd/R0)
2; 1
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The equations for LP and HP gains, KLP and KHP are also 
given in [1].

After some calculation we obtain C0=100pF,
R0=159.16 k , KBP=0.41421, and the remaining values
that are listed in line 2 in Table I. The corresponding
magnitudes of the transfer function characteristics are 
shown in Fig. 4. Note that the frequency response in Fig. 4
at the output node “BP” within the circuit of Fig. 2 is
approx. 1.4142 times lower than that at the output nodes
“LP” and “HP”. It can happen, as well, that some of the 
nodes have a peaking above 0dB, thus signal overdrive and 
distortion may ensue at these nodes. 

TABLE I. COMPONENT VALUES FOR GP-1 FILTER

(Rs in [k ], Cs in [pF]).

No. Filter R1=R3=R4 R2 R5 C6 R7 C8 RTOT

1) 0.7 1= 2 159.16 32.16 187.24 100 135.28 100 832.16

2) 1= 2 159.16 65.92 159.16 100 159.16 100 861.72

3) 2 1= 2 159.16 159.16 112.54 100 225.08 100 974.26
4) 4 1= 2 159.16 291.0 79.58 100 318.3 100 1166.4
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Figure 4. Magnitudes of all outputs of the GP-1 filter no. 2 in Table I. 

One criterion that is useful to guarantee max. dynamic
range is to specify that the maximum signal level at any 
node within the circuit should at no time exceed the signal
level at the input or output. On the other hand if some of 
the nodes have much lower signal level than those at the
other nodes, it also deteriorates the dynamic properties of
the filter. Thus, for input signal equal to 1V the largest 
signal within the circuit should everywhere in the circuit
be equal to 1V. 

A simple way of signal level scaling within a circuit is 
to consider the equivalent SFG as given in Fig. 3. Now, to
change (i.e., increase or decrease by an amount 1) the 
voltage level inside any cutset of the graph, we must
multiply every incoming branch by the factor 1 and divide
every outgoing branch by the same amount. (A cutset is a 
minimal set of branches which, when removed, will 
separate the graph into exactly two parts: subgraphs—a
subgraph can be a single node, as well). Thus, if the signal
level at node BP is to be changed by a factor 1, we obtain
the new SFG given in Fig. 5 with subgraph (containing
node V2) surrounded by a dashed circle. Here all incoming
signal paths to the subgraph, have been multiplied by 1,
while all outgoing paths have been divided by 1. To do so 
we must multiply or divide one multiplicative component
in the corresponding transmission quantity. In Fig. 5 we do 
this by dividing R5 and multiplying R7 by 1, and 
calculating new ratio R2/R1 (as a function of 1). In our 
example we have found the scaling factor 1=1.4142,
numerically, observing magnitudes in Fig. 4, that are
calculated using PSpice.

Finally, we obtain optimized component values of the
filter no. 3 in Table I, for which: (i) 1= 2/2; (ii) the 
amplitudes at all filter (opamp) outputs (see Fig. 6), all
reach the maximum value of 1V. Magnitudes of (not 
optimized for dynamic range) filters no. 1 and 4 are not
presented.

Figure 5. SFG of Fig. 3 with output BP scaled by 1.
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Figure 6. Magnitudes of all outputs of the GP-1 filter no. 3 in Table I. 

Figure 7. 

IV.

Input noise of the BP output of the GP-1 filters in Table I. 

Noise referred to the input was calculated for the
examples in Table I using PSpice and shown in Fig. 7. In 
spite of ascending total resistance level (see RTOT column
in Table I), the noise is getting lower for the case when 1

is getting larger than 2 and it is minimum for the circuit
no. 4. It is recommended, when applying the GP filters,
they should be designed with the maximum total
permissible capacitance values (from an IC-technology
point of view) in order to minimize the thermal noise.

Consequently the most promising circuit is no. 3,
which has both lower noise and optimized dynamic range, 
whereas the circuit no. 2 has minimum GSP. Thus, which
way to choose is one of typical trade-offs in filter design. 

GP-2 BIQUADRATIC SECTION

Consider general-purpose realization GP-2 biquadratic
section shown in Fig. 8, which has integrators with s:

1=R2C3, 2=R5C6. (10)

The voltage transfer function at the BP output for this
section has the form (6), with:
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We can represent the circuit in Fig. 8 by a SFG in Fig. 9. 

Step-by-step design procedure for the GP-2 filter in
Fig. 8. is given in [1], and it provides minimum-gain-
sensitivity-product (min-GSP) filter circuit: 

i) calculate R0=( pC)-1, and accordingly choose Rd R0;
ii) choose R2=R7=R8=Rd; and choose C3=C6=C0 ( 1= 2);
iii) finally calculate:

33



R1

R2

4 R5
R7

R8

C3

O1

BP LP1

LP2

O2
O3

C6
Vin

Vout

V1
V2

V3

Figure 8.

R

p

qp

K

2nd-order general purpose GP-2 biquad.

Figure 9. SFG of the circuit in Fig. 8 with component values.
Outputs BP and LP are scaled by 1 and 2, respectively. 
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After calculation with 1= 2 we obtain filter 
component values listed in line 1 in Table II. The
corresponding magnitude is shown in Fig. 10(a), from
which we see that the frequency response at the node “BP”
within the circuit is approximately 1.4142 times lower than
that at the “LP”.

TABLE II. DENORMALIZED COMPONENT VALUES FOR GP-2 FILTER.

No. Filter R1 R2 C3 R4 R5 C6 R7=R8

1. 1= 2 225.08 159.16 100 112.54 159.16 100 159.16

2. 2 1= 2 112.54 112.54 100 112.54 225.08 100 159.16

Figure 10. Magnitudes of all outputs of the GP-2 filters in Table II. 
(a) Filter eg. no. 1. (b) Dynamic-range-optimized filter eg. no. 2. 

Figure 11. Input noise of the BP output of the GP-2 filters in Table II. 

To maximize dynamic range of the filter circuit no. 1 in
Table II we have to scale its voltage levels at nodes V1 and 
V2 (V2=V3) by factors 1=1.4142 and 2=2, respectively, as 
shown in SFG in Fig. 9. To optimize dynamic range we 
must scale one component in the corresponding SFG 
branch. In Fig. 9 we do this by dividing R1 by 1,
multiplying R5 by 1/ 2, and finally multiplying R2 by the
ratio 2/ 1. We obtain component values of the filter no. 2
in Table II and the transfer function magnitudes shown in
Fig. 10(b). Notice that the latter filter is well optimized for
the dynamic range. 

PSpice runs of the input noise (reduced from the BP
output) emanating from the multiamplifier biquad in Fig. 8
are shown in Fig. 11 for the two filter examples in Table
II. It can be seen again, that, luckily, the filter no. 2
optimized for dynamic range has lower noise than the
filter no. 1, which was designed for min. GSP according
to [1]. As already stated above, it is the trade off in the
filter design. If we compare two optimized filter examples
no. 3 in Table I (i.e. GP-1) and no. 2 in Table II (i.e. GP-
2), regarding input noise in Figs. 7 and 11, we can see that
both GP-1 and GP-2 sections have equal noise
performance.

1 V. CONCLUSION

In this paper we presented design equations for the two
commonly used GP filter types and a method of optimizing
theirs dynamic range. PSpice analyses of the frequency 
response, and simulations of thermal noise, referred to the
input, were carried out. It is recommended, that the GP
filters be designed with minimized noise, and optimized
dynamic range by signal scaling at appropriate circuit
nodes. Both procedures are highly effective and may well
be used in all other similar filter designs. It was 
demonstrated that both GP-1 and GP-2 biquads have 
identical performance regarding noise.
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