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Chapter 1

Introduction

1.1 Motivation

In this thesis, images will be treated as two-dimensional signals, so the words signals
and images will be interchanged with the similar meaning. We will use a wavelet
transform in order to process images. By using the transform one wants to obtain a
more compact representation of an image. Applying a transform means splitting an
image into a set of elementary functions, under some conditions called basis functions
[Vetterli 95]. The image will be represented as a weighted sum of those basis functions.
The values of those weights, obtained as scalar products with the basis functions, are
called the transform coefficients.

One of the best known transforms is the Fourier transform. It decomposes an ana-
lyzed signal into a set of weighted complex exponentials [Katznelson 76]. It is very use-
ful for analyzing periodic signals. Yet, the treatment of some short transients present in
the signal is rather poor. One says that the Fourier transform has good frequency res-
olution but poor temporal resolution. An improvement of the given problem is to use
windowed basis functions. It leads to the well-known Short-Time Fourier transform
(STFT) [Cohen 94]. It creates uniform tilings in time and frequency.

Compared to the STFT, the wavelet transform gives more convenient splitting of the
time-frequency plane [Mertins 99]. The frequency axis is logarithmic with larger time
step in the time-frequency plane for smaller frequencies and finer time sampling for
higher frequencies. The decomposition relies on a set of locally supported functions
that are translates and dilates of one "mother" function. Such a decomposition can
cope better with local variations in the signal. It means that although the analyzed
signal is composed of some temporal glitches, the resulting transform coefficients will
be sparse, leading to a more efficient description of the analyzed signal. The sparser
the signal representation the better the transform is.
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An important concept that comes with wavelets is the multiresolution [Mallat 89a].
Wavelet transform leads to a set of different resolution levels called scales. Every res-
olution level is represented with basis functions that are appropriately scaled. There
are two types of basis functions: wavelet functions and scale functions (see Figure 1.1).
The scale functions are used to approximate the analyzed signal in different resolution
levels while the wavelet functions are used to add more detail to the approximation
from a given scale. The wavelet transform coefficients corresponding to the wavelet
function are called detail coefficients while the coefficients corresponding to the scaling
functions are called approximation coefficients. Starting from a coarse approximation
of a given image that is obtained with very wide scaling functions, one can obtain more
precise approximations of the original image by adding wavelet detail coefficients from
finer and finer resolution levels in order to obtain the original image.

(a) The wavelet function. (b) The scale function.

Figure 1.1: An example of two-dimensional nonseparable wavelet and scale functions
derived in [Kovacevic 00].

Additional important property of wavelets is the polynomial approximation prop-
erty [Burrus 97]. Since most real-world images can be approximated with piecewise
polynomials, the wavelets will be appropriate to analyze them. Detail coefficients for
such signals will be mostly set to zero, since the approximation coefficients will hold
the most of the information.

While being very efficient in representing real-world images, wavelets still do not
give the best possible, i.e. the sparsest possible representation of the signal. In order
to obtain a more efficient image decomposition, one should change the basis functions
according to the local properties of the analyzed image. This way, one will approach
the goal to obtain a transform that gives more compact representation of an image.
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1.1.1 Custom Designed Image Decomposition

Let us consider a simple test image shown in Figure 1.2(a). It consists of two distinct
parts, each part contains a single spatial sine wave with a different frequency and ori-
entation.

(a) Original image. (b) Noisy image.

Figure 1.2: Test images composed of two different patterns.

Figure 1.3(a) represents the image decomposition obtain by using nonseparable in-
terpolating quincunx wavelets that are presented in Section 2.3.3. The original image
is represented with a single image of coarse approximation coefficients and a number
of detail coefficients at different resolution levels.

It can be seen that for both regions the wave pattern is still present in the detail
coefficients, meaning that the decomposition is not tailored to the underlying signal.
So besides the coarse approximation additional details are needed to have a complete
description of the analyzed image. In order to tailor a decomposition for the analyzed
image, one should adapt it to the local image properties. For a given image, one would
like to have two flavors of the basis functions for the two distinct regions of the image
shown in Figure 1.2(a). Therefore, an appropriate decomposition should be found for
each distinct region of the given image.

The result of applying different decompositions in two different regions is shown
in Figure 1.3(b). The obtained representation is much more sparse. Values of detail
coefficients are more close to zero since the decomposition is now more appropriate
for a given image.

1.1.2 Oracle Image Denoising

Such an improved transform is much more appropriate for analysis and processing of
the given image. The reason is that it is better tailored to the features that character-
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(a) Fixed wavelet decomposition.

(b) Adaptive wavelet decomposition.

Figure 1.3: Approximation and detail coefficients for nonseparable quincunx wavelet
decomposition of the image shown in Figure 1.2(a). Coarse approximation coefficients
are shown top left. Images of detail coefficients are shown from the left to the right
from the coarsest to the finest resolution levels.

ize the given image. To justify the usefulness of this approach of custom designing a
wavelet transform, we will demonstrate its use in an image denoising application.

Wavelet domain strategies for image denoising rely on the threshold operation of
the wavelet detail coefficients [Donoho 95a, Donoho 95b]. Simply, the detail coeffi-
cients smaller than a given threshold will be set to zero. One expects those small
wavelet coefficients to represent insignificant information present in the image and
(hopefully) mostly related to the noise. The reconstruction is performed by using those
thresholded wavelet coefficients. The choice of the threshold determines the compro-
mise between the noise reduction and the original image features degradation.
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First, let us consider the noisy image given in Figure 1.2(b). It is the original image
from Figure 1.2(a) degraded with additive zero mean Gaussian noise. As shown in Fig-
ure 1.4(a), detail coefficients obtained with a nonadaptive wavelet transform contain
information on both the original image features and the noise.

(a) Fixed wavelet decomposition.

(b) Adaptive wavelet decomposition.

Figure 1.4: Wavelet decomposition of a noisy image from Figure 1.2(b).

Consider now the previously presented locally adaptive wavelet transform. Since
it is tuned to the main features of the image, the detail coefficients will predominantly
contain the information on the noise, i.e. the content not inherent to the image 1.4(b).
Now, applying a rather high threshold will not be a problem. It will reduce the noise
efficiently without degradation of the original image. These results will be presented
in Chapter 6.

The presented example emphasizes the need to improve the wavelet transform and
make it sensitive to the local features of the image.
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1.2 Problem Statement

Continuing the above discussion, we state that we want to obtain a wavelet transform
that adapts its properties according to the features of the analyzed image in order to
obtain a more compact representation of the analyzed image.

Wavelet Transform by Filter Banks

Since we are primarily interested in analyzing digital images, we will use the discrete
wavelet transform. As shown in [Mallat 89b], the wavelet transform coefficients can be
calculated using a discrete-time filter bank. Once having the filters, one can easily come
to the underlying analysis and synthesis functions as it will be shown in Chapter 2. So,
we are shifting our problem from pure mathematical domain to the filter bank world.
In other words, in order to obtain a different wavelet transform, we will use different
filter banks. Furthermore, to have locally adaptive wavelet transform, we will create a
wavelet filter bank that can adapt its properties according to the local image features.

Vanishing Moments

While building the adaptive filter bank we would also like it to retain some impor-
tant wavelet properties. First of all, we want to retain the polynomial approximation
property of the resulting wavelet decomposition. In other words, we would like to
retain a desired number of vanishing moments of dual and primal wavelet functions
[Mallat 99].

The Lifting Scheme

In order to build such an adaptive wavelet filter bank we choose to use a concept called
lifting scheme [Sweldens 96b]. Besides being algorithmically very efficient, its main
feature is that it allows rather straightforward construction of the wavelet filter bank.
It automatically satisfies the desired perfect reconstruction property of the filter bank.
Being constructed as a tool to build second generation wavelets, wavelets that are not
necessarily translates and dilates of a single function, it is very susceptible to introduc-
tion of the adaptivity in the filter bank structure. By using the lifting scheme, we can
modify the existing wavelet transform, retain its good approximation properties, and
further improve it with additional lifting steps, as shown in Chapter 3.
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Nonseparable Versus Separable

Furthermore, we want to make our decomposition isotropic, i.e. we want it to have
similar properties in all directions in the image. Typically, separable wavelet filter
banks are more often used in image processing than nonseparable wavelet filter banks.
Their most important advantage is that the transform coefficients can be obtained by
using one-dimensional filters which are first being applied over rows and then over the
columns of the analyzed image [Mallat 89b]. However, these separable wavelet trans-
forms are biased in horizontal and vertical directions. On the other hand, nonseparable
wavelet filter banks require two-dimensional image processing which is computation-
ally more demanding but can result in more isotropic wavelet decompositions. For
that reason we choose to deal with nonseparable wavelet filter banks. In particular, we
choose the quincunx sampling, which is the simplest nonseparable sampling scheme.

Adaptation of the Wavelet Filter Bank

The adaptation of the filter bank parameters will be based on the local properties of
the image. For each pixel, the filter bank properties will be tuned according to some
pixel neighborhood. In order to obtain better results we want the neighborhood to
cover only pixels that have similar properties as the pixel for which the adaptation is
being performed. It is desirable to have a neighborhood that is wide enough, in order
to obtain a more reliable estimate, while still covering only a part of the image of the
same property.

Denoising Applications

We want to make our adaptation robust to the presence of noise. In other words, we
want to make the adaptation algorithm focus on the content of the original image and
disregard the locally uncorrelated noise.

1.3 Related Work

1.3.1 Wavelet Revolution

The term wavelet appeared in the literature for the first time in 1984 [Grossmann 84].
The petroleum engineer Jean Morlet introduced "wavelets of constant shape" that he
found very useful in analyzing geologic signals. Soon after that, in 1985, Meyer dis-
covered the first smooth orthogonal wavelet [Meyer 95].
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The true breakthrough for the engineering community happened when Stephane
Mallat has shown the relation between wavelets and filter banks [Mallat 89b]. The
filter bank theory was connected with multiresolution analysis and wavelets. Finally,
the wavelet decomposition was made algorithmically very efficient, using the iterated
filter bank structure.

Ingrid Daubechies presented the construction of the first orthogonal wavelets with
compact support [Daubechies 88]. Her wavelet decomposition is obtained by using
iterated filter bank structure with finite impulse response (FIR) filters [Daubechies 92].

Further improvement in wavelet construction and implementation came with the
introduction of the lifting scheme by Wim Sweldens [Sweldens 95], [Sweldens 96a].
The lifting scheme provided an effective tool to build biorthogonal wavelet filter banks.
Furthermore, because of its inherent perfect reconstruction properties, it gave rise to
the second generation wavelets [Sweldens 97], wavelets that are not necessarily trans-
lated and dilated copies of a single function.

1.3.2 Nonseparable Wavelets

Wavelet decomposition relies heavily on the underlying subsampling scheme used. In
the one-dimensional case a signal is typically being split into two phases correspond-
ing to even and odd-numbered samples. In the two-dimensional case, an image can
be subsampled in many different ways [Dubois 85, Theussl 01, Dudgeon 83]. The sim-
plest possible choice is the separable sampling, obtained by sampling and filtering
along rows and columns of the image separately [Mallat 89b].

The alternative is to use nonseparable sampling scheme leading to nonseparable
wavelets. The treatment of two-dimensional and multidimensional FIR perfect re-
construction filter banks for arbitrary sampling lattices can be found in [Karlsson 90]
and [Viscito 91]. A design of multidimensional wavelet filter banks is presented in
[Kovacevic 92, Simoncelli 90, Chen 93]. The constructions of two-dimensional non-
separable wavelet bases [Kovacevic 95, Cohen 93] allows one to obtain a wavelet de-
composition with different orientational properties than the separable wavelet decom-
position. In [Kovacevic 00], the construction of compactly supported biorthogonal
wavelets and perfect reconstruction filter banks for any lattice in any dimension with
any number of primal and dual vanishing moments was presented.

1.3.3 Adaptive Wavelets and Adaptive Lifting Schemes

Wavelets that can adapt their properties to the features of the analyzed signal represent
a step further towards more efficient image processing algorithms. The adaptations
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can be generally done in two ways: globally or locally. Global adaptation searches for
a wavelet decomposition that does not change across the image. Instead, it is tuned
for the whole image. Typical representative for this group is the best basis algorithm
[Coifman 92]. Depending on the criterion (e.g. signal entropy), the optimal basis for
the whole image is obtained. However, the adaptation that is performed locally, based
on the local features of the analyzed image, can outperform the global adaptation
methods.

An example of a locally adapted wavelet transform is the so-called ENO-wavelet
transform [Chan 02]. The authors do not change the filter coefficients but rather the in-
put signal in order to treat discontinuities in a more efficient way. The idea comes from
essentially non-oscillatory (ENO) schemes for numerical shock capturing [Harten 97].
The idea is to locate the discontinuities in the signal and then to extrapolate smooth
signals on opposite sides of the discontinuity.

The lifting scheme structure, being based on predict and update steps that automat-
ically lead to the perfect reconstruction property, allows one to directly introduce the
adaptation in the filter bank. Claypoole et al. proposed the so-called space-adaptive
transform (SpAT) based on the lifting scheme that for every signal sample changes the
predictor order in order to minimize detail coefficients [Claypoole 97, Claypoole 03].
Therefore, near the edges the shorter prediction filters will be used in order to avoid
prediction over the edges. In order to obtain greater flexibility in the prediction fil-
ter design while still retaining desirable properties of the wavelet transform, they
perform the update step first, followed by the adaptive prediction. The update first
scheme allows to maintain multiresolution properties despite the introduced nonlin-
earity through the adaptive predict step.

A locally adaptive filter bank structure for image coding has been proposed by
Gerek and Cetin [Gerek 00]. Their filter bank is based on the lifting scheme with the
adaptation of the prediction filter. The least mean squares (LMS) [Haykin 86] adapta-
tion algorithm was used in order to improve the properties of the resulting polyphase
structure. They use both separable and quincunx prediction filters. However, the pro-
posed adaptive structures do not have wavelet properties. In [Gerek 06] they present
edge sensitive adaptive prediction based on the similar lifting scheme structure.

Adaptive prediction stage is also used in [Boulgouris 01] to improve the image
decorrelation efficiently for the purpose of lossless image compression. Similar to the
previous approach, these filter banks do not have wavelet properties either.

The approach presented in [Piella 02a] and [Piella 02b] is different. They use the
update first structure with the adaptation of the update step. The update filter is being
changed based on the local gradient information in order to smoothen less the sharp
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variations in the signal than the more homogenous regions. Also, the choices of update
filters can be automatically reconstructed on the synthesis side so no bookkeeping is
required in order to have perfect reconstruction.

In another approach presented in [Gouze 04], in order to obtain multidimensional
nonseparable wavelet transform, the prediction step is designed in order to minimize
the variance of the signal, and the update step is designed in order to minimize a
reconstruction error.

In [Seršić 02, Vrankić 04], Seršić and Vrankić proposed a nonseparable two-dimensional
adaptive wavelet filter bank based on the one-dimensional construction proposed in
[Seršić 00]. The proposed two-dimensional construction is based on the lifting scheme
and it introduces the adaptation in the predict stage of the filter bank while still retain-
ing a desired number of vanishing moments of the corresponding wavelet functions.

1.4 Thesis Outline

Fundamentals

Chapter 2 gives an overview of the wavelet and filter bank theory. The concepts will
be presented for the general two-dimensional sampling and the quincunx sampling in
particular. The theory will be supplemented with the examples obtained by using the
quincunx interpolating filter bank proposed in [Kovacevic 00]. The filter bank will be
used in the following chapters in order to obtain an improved wavelet decomposition
by means of adaptive lifting scheme structure.

Making the Wavelet Filter Bank Adaptive

In Chapter 3, the quincunx interpolating filter bank based on the lifting scheme will be
made adaptive. This chapter presents the construction of adaptive wavelet filter banks
based on the adaptation of the predict filter. Although being adaptive, the filter bank
will retain the important wavelet properties such as the number of vanishing moments.

Tuning the Filter Parameters

Once having the adaptive filter bank structure, in Chapter 4 we introduce the adap-
tation criterion: The energy of detail coefficients will be minimized. The adaptation
is being performed for every pixel of the image based on the neighborhood of a free
shape.
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In Pursuit for Appropriate Adaptation Regions

Chapter 5 provides a method for obtaining the appropriate adaptation neighborhood
for each pixel of the image. It is based on the Intersection of Confidence Intervals (ICI)
rule [Katkovnik 99].

Image Denoising

In Chapter 6 the proposed adaptation algorithm is used in the framework of image
denoising by wavelet thresholding. The image denoising results are presented for both
synthetic and real-world images.

11
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Chapter 2

Two-Dimensional Quincunx Wavelets
and Filter Banks

2.1 Introduction

This chapter gives an overview of the wavelet and filter bank theory. It is rather short
and giving only the most important results. A more detailed treatment of these basic
concepts can be found in [Vetterli 95, Vaidyanathan 92].

First, we give an introduction to two-dimensional filter banks. Although the theory
can be generalized for multiple dimensions, all the results are mostly stated for 2-D
case, and for quincunx sampling in particular. The lifting scheme fundamentals are
also explained in brief.

Following the filter bank theory overview, the wavelet theory overview is provided.
It emphasizes the main concepts of multiresolution analysis and the connection be-
tween wavelets and filter banks. The results are again presented for two-dimensional
case and in particular for the interpolating quincunx wavelet filter bank designed by
Kovacevic and Sweledens [Kovacevic 00].

2.2 Two-dimensional Sampling

2.2.1 Notation

In order to simplify mathematical expressions which treat two-dimensional signals, we
introduce vector notation

z =

[

z1

z2

]

, X(z) = X

([

z1

z2

])

= X (z1, z2) . (2.1)

13



Taking another vector k = [k1 k2]
T we define

z
k = zk1

1 · zk2

2 (2.2)

Raising the z vector to a 2 × 2 matrix M power yields

z
M =

[

z
m1

z
m2

]

, (2.3)

where mi denotes the i-th column of the matrix M. Combining relations 2.2 and 2.3
yields

z

264 1 1

−1 1

375
=






[

z1

z2

]

264 1

−1

375 [

z1

z2

]

2641
1

375


T

=

[

z1z
−1
2

z1z2

]

. (2.4)

Finally, the Schur product of two vectors is defined as:

m ◦ n =

[

m1n1

m2n2

]

. (2.5)

2.2.2 Sampling Lattices

The fundamental part of the multirate system is the subsampling operation. The sam-
pling operation takes sets of signal elements (image pixels) that are positioned on a
certain sampling grid called lattice [Conway 93]. Examples of some typical sampling
lattices are shown in Figure 2.1.

The sampling lattice is completely defined with a dilation matrix [Dubois 85]

LAT (D) = Dn, n =

[

n1

n2

]

∈ Z2. (2.6)

A dilation matrix is an integer matrix whose columns are basis vectors of a given lattice.
The separable sampling lattice from Figure 2.1(a) is defined with

Ds =

[

2 0

0 2

]

(2.7)

The quincunx sampling lattice from Figure 2.1(b) is defined with

Dq =

[

1 1

−1 1

]

. (2.8)

14



The same lattice can also be obtained with the sampling matrices

Dq2 =

[

1 1

1 −1

]

Dq3 =

[

1 −1

1 1

]

(2.9)

A unit cell of a lattice spanned by colum vectors of a dilation matrix is called fun-
damental parellelepiped (FPD). The number of integer points belonging to the FPD

is obtained as | det(D)|. For the separable case, as shown in Figure 2.1(a), there are
M = | det(Ds)| = 4 elements of the FPD, and for the quincunx case (Figure 2.1(b)) there
are M = | det(Dq)| = 2 elements of the FPD. It is important to note that only the ele-
ment of the FPD positioned at the origin belongs to the lattice. All the other elements
of the FPD can be regarded as origins of the other shifted lattices. Therefore, we can
conclude that the integer rectangular lattice can be split into M = | det(D)| disjoint
(sub)lattices.

(2,0)

(0,2)

n2

n1

(a) Separable sampling.

(1,-1)

(1,1)

n2

n1

(b) Quincunx sampling.

(1,-2)

(1,2)

n2

n1

(c) Hexagonal sampling.

Figure 2.1: Three different sampling lattices. The fundamental parallelepiped is
marked gray. Samples belonging to the FPD are marked with bold circles.

2.2.3 Downsampling

The downsampling operation of an image consists of discarding all the samples that
are not elements of a given lattice [Vaidyanathan 92]. Therefore,

yD[n] = x[Dn], for every n =

[

n1

n2

]

∈ Z2. (2.10)

For the quincunx downsampling, relation 2.10 becomes

yD[n1, n2] = x[n2 + n1, n2 − n1], (2.11)
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Fourier domain equivalent of relation 2.10 is

YD(ω) =
1

| detD|
∑

k∈N (DT )

X(D−T (ω − 2πk)), (2.12)

where N (DT ) is a set of integer vectors in the FPD(DT ), D
−T = (D−1)T and ω =

[ω1 ω2]
T . A spectrum of the decimated signal is obtained by adding M = | detD|

copies of X(D−T
ω) which is a stretched input signal’s spectrum. Each stretched copy

is shifted for the corresponding 2πk. For the quincunx case

YD(ω) =
1

2
[X(

[

0.5 0.5

−0.5 0.5

][

ω1

ω2

]

) +X(

[

0.5 0.5

−0.5 0.5

][

ω1

ω2 − 2π

]

)]. (2.13)

It the z-domain,

YD(z) =
1

| detD|
∑

k∈N (DT )

X
(

z
D

−1 ◦ e−j2πk
T
D

−1
)

, (2.14)

where N (DT ) is a set of integer vectors in the fundamental parallelepiped FPD(DT ).

For the quincunx case

D =

[

1 1

−1 1

]

, D
−1 =

1

2

[

1 −1

1 1

]

, (2.15)

YD(z) =
1

2

[

X
(

z
D

−1 ◦ e−j2πk
T
1
D

−1
)

+X
(

z
D

−1 ◦ e−j2πk
T
2
D

−1
)]

, (2.16)

where

k1 =

[

0

0

]

, k2 =

[

0

1

]

. (2.17)

Therefore,

YD(z) =
1

2

[

X

(

z
D

−1 ◦
[

1

1

])

+X

(

z
D

−1 ◦
[

−1

−1

])]

, (2.18a)

YD(z) =
1

2

[

X
(

z
D

−1
)

+X
(

−z
D

−1
)]

, (2.18b)

or written in a different way

YD(z1, z2) =
1

2

[

X
(

z
1

2

1 z
1

2

2 , z
− 1

2

1 z
1

2

2

)

+X
(

−z
1

2

1 z
1

2

2 ,−z
− 1

2

1 z
1

2

2

)]

. (2.19)
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2.2.4 Upsampling

Upsampling an image corresponds to placing the image pixels on the lattice points and
setting all the other integer valued pixels outside the lattice to zero [Vaidyanathan 92]:

yE[n] =







x[D−1
n] if n ∈ LAT (D),

0 otherwise.
(2.20)

For the quincunx case

yE[n1, n2] =







x[1
2
(n1 − n2),

1
2
(n1 + n2)] if n ∈ LAT (D),

0 otherwise.
(2.21)

Equation 2.20 states that samples from the input image are placed on the points of the
output images that belong to the lattice LAT (D). All the other points of the output
image are filled with zeros.

In the frequency domain the upsampling operation gives:

YE(ω) = X(DT
ω), (2.22)

or expressed in the z-domain:

YE(z) = X(zD). (2.23)

Given a quincunx dilation matrix, equation 2.23 becomes

YE(z1, z2) = X(

[

z1

z2

]

264 1 1

−1 1

375
) = X(

[

z1

z2

]

264 1

−1

375
,

[

z1

z2

]

2641
1

375
) = X(z1z

−1
2 , z1z2) (2.24)

Quincunx Dowsampling Followed by Upsampling

For the case of quincunx sampling, the result of downsampling followed by upsam-
pling can be obtained by using equations 2.19 and 2.24:

Y (z1, z2) =
1

2
[X (z1, z2) +X (−z1,−z2)] , (2.25)

or written in the Fourier domain

Y (ω1, ω2) =
1

2
[X (ω1, ω2) +X (ω1 + π, ω2 + π)] . (2.26)
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2.3 Two-dimensional Filter Banks

2.3.1 Perfect Reconstruction Filter Banks

A filter bank splits a signal into a number of frequency bands. For a two-channel filter
bank, such as the one shown in Figure 2.2, the spectrum of the input image is split in
two parts, low-pass and high-pass frequency band.

In the two-channel filter bank the index 0 denotes low-pass filters and index 1 de-
notes high-pass filters. Hence, H0 and G0 are analysis and synthesis low-pass filters
and H1 and G1 are analysis and synthesis high-pass filters respectively.

D

D

D

D

x
H0(z1,z2)

H1(z1,z2)
x̂

G0(z1,z2)

G1(z1,z2)

Figure 2.2: Two-channel critically sampled quincunx filter bank. The dilation matrix
D = Dq. The number of channels is defined with | det(Dq)| = 2.

An important requirement imposed on filter banks is to enable perfect reconstruc-
tion (PR) of the analyzed signal [Strang 96], i.e. the output has to be an exact copy of
the input.

Downsampling and upsampling operators are elementary building blocks of a crit-
ically sampled filter bank. A critically sampled filter bank does not introduce redun-
dancy in the signal description while at the same time preserves the perfect reconstruc-
tion property. In the case of quincunx sampling, the subsampling by a factor of two
will be performed based on the checkerboard quincunx lattice. In general, the criti-
cally sampled filter bank will have exactly | det(D)| channels which split a signal into
| det(D)| appropriate frequency bands. For example, the separable sampling matrix
from equation 2.7 will lead to the 4-channel critically sampled filter bank as shown in
Figure 2.3.

The analysis and synthesis filters are selected in such a way that the PR requirement
is satifsied [Viscito 91]. The output of the quincunx filter bank from Figure 2.2 can be
expressed using equation 2.25 as

X̂(z) =
1

2
[H0(z)G0(z) +H1(z)G1(z)]X(z)

+
1

2
[H0(−z)G0(z) +H1(−z)G1(z)]X(−z).

(2.27)
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D

D

D

D

x

H0(z)

x̂

G0(z)

H1(z)

D

D

D

D

H2(z) G2(z)

H3(z) G3(z)

G1(z)

Figure 2.3: Four-channel critically sampled filter bank. The number of channels is
defined with | det(D)| = 4.

To obtain the perfect reconstruction property of the given filter bank, i.e. in order to
make X̂(z) = X(z), filters should be chosen such that

H0(−z)G0(z) +H1(−z)G1(z) = 0 (2.28a)

H0(z)G0(z) +H1(z)G1(z) = 2, (2.28b)

or stated in the Fourier domain:

H0(ω + π)G0(ω) +H1(ω + π)G1(ω) = 0 (2.29a)

H0(ω)G0(ω) +H1(ω)G1(ω) = 2, (2.29b)

where π = [π π]T .
The filter bank structures in Figures 2.2 and 2.3 with filtering followed by down-

sampling are far from being computationally efficient. A more efficient structure can
be obtained by performing downsampling prior to filtering. This is the well-known
polyphase filter bank implementation [Vaidyanathan 92]. Also, on the synthesis side
performing upsampling after filtering will lead to more efficient filter bank structures.
The exchange of filters and sampling rate converters is known as First and Second Noble

identities [Vaidyanathan 92].

2.3.2 The Lifting Scheme

The lifting scheme is an efficient tool for building PR filter banks. It was proposed
by Sweldens [Sweldens 95] and it became an important tool for building biorthogo-
nal wavelet filter banks [Sweldens 96a] and more generally a tool for building second
generation wavelets [Sweldens 97].
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The lifting scheme leads to efficient filter bank implementations. It relies on the
polyphase decomposition of the input signal. The signal/image at the filter bank input
is being split into M = | det(D)| phases. For the quincunx case, samples from the first
quincunx phase will go in the first channel and samples from the second quincunx
phase will go in the second channel.

As shown in Figure 2.5, the polyphase decomposition is followed by the prediction
step. The filter P predicts the values of pixels from the second phase based on the pixels
from the first phase. The prediction error is calculated with the difference operator
leading to the output of the high-pass channel. The update step which follows creates
the low-pass output of the filter bank.

The reconstruction is readily obtainable. The synthesis filter bank is constructed
using the same steps but in the opposite order from that on the analysis side and with
the opposite signs. This way, the operations from the analysis side have been reversed
and cancelled on the synthesis side.

The analyisis of the lifting scheme is usually performed in the polyphase domain,
i.e. every filter is expressed as a sum of its polyhpase components.

The analysis polyphase matrix of the filter bank from Figure 2.5 [Kovacevic 00] is:

Hp(z) =

[

H0e(z) H0o(z)

H1e(z) H1o(z)

]

=

[

1 U(z)

0 1

][

1 0

−P (z) 1

]

=

[

1 − U(z)P (z) U(z)

−P (z) 1

]

, (2.30)

which can be written as

H0(z) = 1 − P (zD)U(zD) + z
−tU(zD), (2.31a)

H1(z) = −P (zD) + z
−t, (2.31b)

where t = [1 0]T . The synthesis polyphase matrix follows directly from analysis
polyphase matrix:

Gp(z) =

[

G0e(z) G0o(z)

G1e(z) G1o(z)

]

= H
∗−1
p (z) =

[

1 P ∗(z)

−U∗(z) 1 − U∗(z)P ∗(z)

]

. (2.32)

Therefore,

G0(z) = 1 + z
tP ∗(zD), (2.33a)

G1(z) = −U∗(zD) + z
t(1 − P ∗(zD)U∗(zD)). (2.33b)

2.3.3 Quincunx Interpolating Filter Banks

It this section we introduce filters that will be used in the rest of the thesis. They
are proposed by Kovacevic and Sweldens. In [Kovacevic 00] a method is proposed,
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which allows to build perfect reconstruction filter banks for any lattice and in any
dimension. The construction is based on the lifting scheme. We use these results to
build the quincunx filter bank shown in Figure 2.5.

The proposed construction leads to interpolating synthesis low-pass filter. Interpo-
lating means that the impulse response of the filter has zero values in all locations of
its first phase except at the origin where it has value of 1. Therefore, applying an inter-
polating filter on a single image pixel leaves the very pixel unchanged and influences
the positions that do not belong to the phase to which the pixel itself belongs.

The filters used to build the predict and update lifting steps are called Neville filters.
They are based on the polynomial interpolation. To understand the role of Neville
filters, let us consider a polynomial of degree lower than N and the Neville filter P
of degree N or higher. Filtering the polynomial with the Neville filter P gives the
samples of the same polynomial but sampled on the lattice shifted by τ . Following the
notation from [Kovacevic 00], we define π to be a multivariate polynomial, and π(Z2)

the sequence formed by evaluating the polynomial on the lattice Z2. Then, applying
the Neville filter P on the sampled polynomial yields

Pπ(Z2) = π(Z2 + τ ) (2.34)

where τ ∈ R2.

The construction of such filters relies on solving the interpolation problem. The so-
lution of the interpolation problem in multiple dimensions is given by de Boor and Ron
in [de Boor 90, de Boor 92]. In [Kovacevic 00] the authors give Neville filter coefficients
for the quincunx case obtained by using de Boor-Ron algorithm. The predict filter co-
efficients are shown in Table 2.1. Higher order prediction filters use more coefficients
for the interpolation. The coefficients are grouped into rings with same values.

Order ring 1 ring 2 ring 3 ring 4 ring 5 ring 6 ring 7
2 1 ×2−2

4 10 -1 ×2−5

6 174 -27 2 3 ×2−9

8 23300 -4470 625 850 -78 9 -80 ×2−16

Table 2.1: Quincunx Neville filter coefficients. Filter of a given order consists of one
or more rings. Each ring includes a number of filter coefficients. The ring numbering
scheme is shown in Figure 2.4.
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(a) Interpolating rings on the
quincunx lattice.
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(b) Interpolating rings in the sampled do-
main.

Figure 2.4: Rings for the quincunx interpolation. Samples are marked with the num-
bers of rings they belong to. The bold white circle represents the sample from the sec-
ond coset whose value is being predicted based on a number of neighboring samples
from the first coset (gray circles).

Vanishing Moments

An analysis filter bank has Ñ vanishing moments if its high-pass channel annihilates
polynomial sequences of degree lower than Ñ . Also, a synthesis filter bank has N van-
ishing moments if its synthesis high-pass channel annihilates polynomial sequences of
degree lower thanN . The vanishing moments of the analysis filter bank are called dual
(DM), and the vanishing moments of the synthesis filter bank are called primal (PM).

In order to have Ñ dual vanishing moments, P has to be a Neville filter of the order
Ñ and shift τ = D

−1
t [Kovacevic 00]. In that case the prediction of a sampled poly-

nomial will be perfect, and the resulting high-pass output, calculated as a prediction
error will be equal to zero.

In order to obtain N primal vanishing moments, with P being a Neville filter of the
order Ñ and shift τ = D

−1
t, 2U∗ has to be a Neville filter of the order N and shift τ

[Kovacevic 00]. Consequently, 2U has to be a Neville filter of the order N and shift −τ

[Kovacevic 00]. The simplest choice is to make

U = UN =
1

2
P ∗

N , (2.35)

where PN is a Neville filter of the order N and shift τ while UN per se in not a Neville
filter.
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+
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-
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Xe
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D
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Figure 2.5: Quincunx interpolating filter bank. Downsampling and upsampling oper-
ators are defined with a quincunx dilation matrix, D = Dq.

It is important to note that the prediction filter by itself defines the number of dual
vanishing moments and the update filter influences only the number of primal vanish-
ing moments as long as Ñ ≥ N [Kovacevic 00].

For example, the filter bank with 2 dual vanishing moments and 2 primal vanishing
moments will be constructed using the prediction filter P2 and the update filter U2 =

1/2P ∗
2 (see Table 2.1):

P2(z1, z2) =
1

4
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 ), (2.36)

U2(z1, z2) =
1

2
P ∗

2 (z1, z2) =
1

8
(1 + z1 + z2 + z1z2). (2.37)

In order to have more dual vanishing moments, e.g. 4, one should use the P4 prediction
filter:

P4(z1, z2) =
10

32
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 )

− 1

32
(z−2

1 + z−2
2 + z−2

1 z−1
2 + z−1

1 z−2
2 + z1 + z2 + z1z

−1
2 + z−1

1 z2),
(2.38)

U2(z1, z2) =
1

2
P ∗

2 (z1, z2) =
1

8
(1 + z1 + z2 + z1z2). (2.39)

The analysis and synthesis filter for various combinations of primal and dual van-
ishing moments are shown in Figure 2.6.
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Figure 2.6: Magnitude frequency responses for analysis and synthesis filter banks with
spatial frequencies ω1 and ω2 in the range from 0 to π. Every figure column represents
one combination of P and U filters.
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2.4 Wavelets and Filter Banks

2.4.1 Multiresolution Analysis

In this section we give a brief overview of the multiresolution analysis (MRA) by gen-
eralizing its concepts in two dimensions. For a detailed treatment of multiresolution
analysis see [Vetterli 95].

The MRA of L2(R
2) is based on a sequence of embedded closed subspaces

{0} → . . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .→ L2(R2) (2.40)

satisfying the following properties:

Scale invariance

f(t) ∈ Vj ⇐⇒ f(Dt) ∈ Vj−1. (2.41)

or stated in another way

f(t) ∈ Vm ⇐⇒ f(Dm
t) ∈ V0. (2.42)

Shift invariance

f(t) ∈ V0 =⇒ f(t − n) ∈ V0, for all n ∈ Z
2. (2.43)

Existence of a basis

There exists a function ϕ(t) in V0 such that

{ϕ(t − n) | n ∈ Z
2} (2.44)

is an orthonormal basis for V0. The function ϕ(t) is called a scaling function. From the
above properties, an orthonormal basis for V−j is

{M j/2ϕ(Dj
t − n) | n ∈ Z

2}, (2.45)

where M = | det(D)|.
There are additional requirements imposed on the dilation matrix D. Firsty, it needs

to have integer entries. Secondly, its eigenvalues λ1 and λ2 must satisfy

|λm| > 1, (2.46)
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in order to have dilation in both dimensions. Therefore, the approximation will get
finer in every direction as j decreases.

For the case of quincunx sampling |λ1| = |λ2| =
√

2. For separable sampling |λ1| =

|λ2| = 2. So, the advantage of quincunx sampling is that its scale change is more
gradual, by a factor

√
2, twice smaller than for the separable case.

The number of wavelets is obtained as | det(D)| − 1. So, for the quincunx case there
will be one mother wavelets while for the separable case there will be three mother
wavelets.

Based on the embedding of spaces and the scaling property the dilation equation or
a two scale equation [Vetterli 95] for two-dimensional case can be written as

ϕ(t) =
∑

n∈Z2

g0[n]
√
Mϕ(Dt − n). (2.47)

Complementary to approximation spaces Vj , there are detail spaces Wj such that

Vj

⊕

Wj = Vj−1. (2.48)

Wavelets as basis function for those detail spaces can be expressed in terms of scaling
function using refinement relation

ψ(t) =
∑

n∈Z2

g1[n]
√
Mϕ(Dt − n). (2.49)

The coefficients g0[n] and g1[n] correspond to the low-pass and high-pass filters of the
synthesis filter bank [Vetterli 95].

2.4.2 Biorthogonality

In the thesis we will consider biorthogonal wavelet filter banks. In the case of biorthog-
onality there also exist dual scaling function ϕ̃ and M dual wavelet functions ψ̃i. Dual
functions will be the ones on the analysis side and the primal functions are the ones
from the synthesis side. Dual and primal scaling functions are orthogonal to their in-
teger translates:

〈ϕ(t), ϕ̃(t − n)〉 = δ[n]. (2.50)

The same holds for all scales:

〈ϕ(Dj
t − n), ϕ̃(Dj

t − n
′)〉 = 〈ϕ−j,n(t), ϕ̃−j,n′(t)〉 = M−jδ[n − n

′]. (2.51)

Also, the M primal and dual wavelets are orthogonal to each other and their integer
translates.

〈ψi(D
j
t − n), ψ̃i′(D

j
t − n

′)〉 = 〈ψi;−j,n(t), ψ̃i′;−j,n′(t)〉
= M−jδ[i− i′]δ[n − n

′].
(2.52)
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Similarly, the scaling function is orthogonal to each of the M dual wavelets:

〈ϕ(t), ψ̃i(t − n)〉 = 0. (2.53)

wavelets and dual wavelets are orthogonal across scales [Kovacevic 92, Vetterli 95]

〈ψi(D
j
t − n), ψ̃i′(D

j′
t − n

′)〉 = 〈ψi;−j,n(t), ψ̃i′;−j′,n′(t)〉
= M−j−j′δ[i− i′]δ[j − j′]δ[n − n

′].
(2.54)

The image representation can be obtained using wavelet functions from all scales
as

x(t) =
∑

j∈Z

∑

n∈Z2

M−1∑

i=1

〈ψ̃i;j,n, x〉ψi;j,n(t) (2.55)

where for the quincunx case the innermost summation over all wavelets does not exist
since there is only one wavelet function. In practice, there is only a finite number
of scales used so an image representation is obtained by using a number od wavelet
functions and the coarsest scale function

x(t) =
J∑

j=1

∑

n∈Z2

M−1∑

i=1

〈ψ̃i;j,n, x〉ψi;j,n(t) +
∑

n∈Z2

〈ϕ̃J,n, x〉ϕJ,n(t) (2.56)

2.4.3 Iterated Quincunx Filter Banks

The construction of wavelets and scaling functions can be obtained by using the filter
bank structure iterated on the low-pass channel as shown in Figure 2.8(a). The scal-
ing function is connected with the impulse response of the low-pass channel, and the
wavelet function is connected with the impulse response of the high-pass channel. In
the z-domain the equivalent low-pass and high-pass filters after N iterations are:

G
(N)
0 (z) =

N−1∏

i=0

G0(z
D

i

), (2.57)

G
(N)
1 (z) = G1(z

D
N−1

)
N−2∏

i=0

G0(z
D

i

). (2.58)

Frequency response magnitudes of the corresponding filters are shown in Figures 2.9,
2.10, 2.11, and 2.12.

Continuous-time functions associated with these discrete filters’ impulse responses
are [Kovacevic 95]:

ϕ(N)(t) = 2
N
2 g

(N)
0 [n], (DT )N

t ∈ n + [0, 1)2, (2.59)
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ψ(N)(t) = 2
N
2 g

(N)
1 [n], (DT )N

t ∈ n + [0, 1)2. (2.60)

Underlying scaling and wavelet functions are obtained as

ϕ(t) = lim
N→∞

ϕ(N)(t), (2.61)

ψ(t) = lim
N→∞

ψ(N)(t). (2.62)

Necessary (but not sufficient) conditions for the existence of the limit is a zero of a
low-pass filter at aliasing frequencies, i.e.

G0(−1,−1) = 0. (2.63)

In case of a biorthogonal filter bank the dual scale and wavelet functions ψ̃, ϕ̃ are
obtained in the same way by using iterated analysis filers H(N)

0 and H
(N)
1 (see Figure

2.7).

Wavelet Series From Iterated Filter Banks

The famous Mallat’s algorithm [Mallat 89b] allows to calculate wavelet series of a continuous-
time signal in an efficient way by using an iterated discrete-time filter bank struc-
ture. In this way, the wavelet series coefficients are calculated without calculating
continuous-time integrals. The only assumption made is that the analyzed continu-
ous time image belongs to V0

x(t) ∈ V0 (2.64)

A discrete signal that is an input to a filter bank should represent coefficients of the
projection onto V0, i.e

〈ϕ̃(t − n), x(t)〉 (2.65)

The coefficients of the projections onto V1, W1, V2, W2... will be obtained iteratively
by following the filter bank structure as shown on Figure 2.7(a). Approximation coeffi-
cients a(j) shown in the figure represent coefficients of projection of the analyzed signal
onto Vj since

a(j)[n] = 〈ϕ̃j,n, x(t)〉. (2.66)

Detail coefficients d(j) represent coefficients of projection of the analyzed signal onto
Wj :

d(j)[n] = 〈ψ̃j,n, x(t)〉. (2.67)

To further simplify the calculation of the wavelet series, the discrete-time input
signal to the filter bank will simply be the sampled continuous-time signal. This is
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possible if the resolution corresponding to V0 is fine enough when compared to the
continuous-time input signal [Vetterli 95]. Then, the projection coefficients onto V0 can
be approximated as

〈ϕ̃(t − n), x(t)〉 ≃ x(n) (2.68)

since the integral of ϕ̃(t) = 1.

2.4.4 Vanisihing Moments

Moments of the primal and dual wavelet and scaling functions are defined as

mp =

∫

t
pϕ(t)dt m̃p =

∫

t
pϕ̃(t)dt (2.69a)

np =

∫

t
pψ(t)dt ñp =

∫

t
pψ̃(t)dt (2.69b)

where p ∈ N. The scaling functions are normalized in order to have

m0 =

∫

ϕ(t)dt = 1 (2.70a)

m̃0 =

∫

ϕ̃(t)dt = 1 (2.70b)

If the following equation holds
∫

t
pψ̃(t)dt = 0 for |p| < Ñ (2.71)

then it is said that a wavelet has Ñ vanishing moments. This is equivalent to the pri-
mal scaling function being able to reproduce polynomials of degree lower than Ñ . In
the same manner, if the primal wavelet has N vanishing moments then a dual scal-
ing function can reproduce polynomials up to degree N [Burrus 97]. In signal and
image processing applications it is in general desirable to have more vanishing mo-
ments. Usually, the primal vanishing moments are more important than dual vanising
moments since they are related to the smoothness of the reconstruction functions.

These requirements on wavelets can be easily translated to filters present in re-
finement relations leading to vanishing moments of discrete filters as stated in section
2.3.3.

The limit wavelet and scale function obtained for different choices of primal and
dual vanishing moments are shown in Figure 2.13.
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Figure 2.7: (a) Analysis filter bank iterated on the low-pass filter channel results in a
wavelet series expansion. (b) Equivalent structure obtained by using the interchange
of downsampling and filtering called First Noble Identity.
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Figure 2.8: (a) Synthesis filter bank iterated on the low-pass filter channel. (b) Equiva-
lent synthesis structure obtained by using the interchange of upsampling and filtering
called Second Noble Identity.
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Figure 2.9: Frequency response magnitudes of the upsampled low-pass and high-pass
synthesis filters obtained with P4 and U2 lifting steps with spatial frequencies ω1 and
ω2 in the range from −π to π.
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Figure 2.10: Frequency response magnitudes of the iterated low-pass and high-pass
synthesis filters obtained with P4 and U2 lifting steps.
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Figure 2.11: Contour plots for frequency response magnitudes of the upsampled low-
pass and high-pass synthesis filters from Figure 2.9.
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Figure 2.12: Contour plots for frequency response magnitudes of the iterated low-pass
and high-pass synthesis filters from Figure 2.10.
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(a) Analysis wavelet for P2U2. (b) Analysis wavelet for P4U2. (c) Analysis wavelet for P4U4.

(d) Analysis scale for P2U2. (e) Analysis scale for P4U2. (f) Analysis scale for P4U4.

(g) Synthesis wavelet for P2U2. (h) Synthesis wavelet for P4U2. (i) Synthesis wavelet for P4U4.

(j) Synthesis scale for P2U2. (k) Synthesis scale for P4U2. (l) Synthesis scale for P4U4.

Figure 2.13: Limit wavelet and scale functions obtained after seven iterations on the
low-pass channel. Every column represents a different combination of predict (P ) and
update (U ) filters leading to different number of dual and primal vanishing moments.
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Chapter 3

Adaptive Lifting Scheme Structure

3.1 Introduction

As stated in Section 1.2, the goal is to create an adaptive wavelet transform based on the
well-known wavelet family. In this way we would like to keep the good properties of
the known transform, such as the polynomial approximation property, and introduce
additional improvements by adapting the transform locally. In order to build adaptive
wavelets, we use interpolating quincunx wavelets described in the previous chapter.

The lifting scheme structure enables us to introduce the adaptation in the filter bank
structure while still retaining the necessary perfect reconstruction property of the filter
bank.

In this chapter we present two filter bank structures that will allow the filter bank
to become locally adaptive while still retaining the number of primal and dual vanish-
ing moments. The first structure called PPaU has already been proposed in [Seršić 02,
Vrankić 03]. The novel second structure called PUPa introduces significant improve-
ments in the adaptive filter bank structure.

3.2 The PPaU Structure

The adaptive lifting scheme structure that has been proposed in [Vrankić 03] is shown
in Figure 3.1. It consists of a fixed prediction step that guarantees Ñ vanishing mo-
ments of a dual wavelet. The fixed prediction step is followed by an adaptive predic-
tion step. The analysis filter bank structure ends with the fixed update step that gives
N vanishing moments to the primal wavelet. The predict and update filters are given
is Section 2.3.3.
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Figure 3.1: PPaU analysis and synthesis adaptive filter bank structure.

3.2.1 Dual Vanishing Moments are Preserved

The analysis filter bank structure is shown in Figure 3.2. The dual vanishing moments
condition requires that

(↓ D)H1π = 0 for π ∈ ΠÑ , (3.1)

where ΠÑ denotes the space of all polynomial sequences of total degree strictly less
than Ñ .

Downsampled output of the analysis high pass filter can be expressed in terms of
the polyphase components, each polyphase component affecting one sublattice which
leads to

(↓ D)H1π(Z2) = H1eπ(DZ2) +H1oπ(DZ2 + t) = 0 for π ∈ ΠÑ . (3.2)

Using equation 2.30

Hp(z) =

[

H0e(z) H0o(z)

H1e(z) H1o(z)

]

=

[

1 U(z)

0 1

][

1 0

−P (z) 1

]

=

[

1 − U(z)P (z) U(z)

−P (z) 1

]

,

the DM condition becomes:

−Pπ(DZ2) + π(DZ2 + t) = 0 for π ∈ ΠÑ , (3.3)

which yields
Pπ(DZ2) = π(DZ2 + t) for π ∈ ΠÑ . (3.4)

Equation 3.4 can be expressed in the downsampled domain as

Pπ(Z2) = π(Z2 + D
−1

t) for π ∈ ΠÑ . (3.5)

Now, introducing the overall prediction filter P = PÑ + pPa that consists of the fixed
branch and the adaptive branch we obtain

(PÑ + pPa)π(Z2) = π(Z2 + D
−1

t),

PÑπ(Z2) + pPaπ(Z2) = π(Z2 + D
−1

t).
(3.6)
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Since PÑ is a Neville filter of order Ñ and shift τ = D
−1

t

PÑπ(Z2) = π(Z2 + D
−1

t) for π ∈ ΠÑ . (3.7)

which gives
π(Z2 + D

−1
t) + pPaπ(Z2) = π(Z2 + D

−1
t), (3.8)

which further simplifies the DM condition to

pPaπ(Z2) = 0 for π ∈ ΠÑ . (3.9)

So, in order to keep Ñ dual vanishing moments introduced with PÑ , filter Pa must
cancel polynomials of degree lower than Ñ .

Our choice is to create
Pa = PR̃ − PS̃ , (3.10)

where PR̃ and PS̃ are Neville filters of shift τ = D
−1

t and order R̃ ≥ Ñ and S̃ ≥ Ñ

respectively (see Figure 3.2). Applying this filter section to a polynomial sequence
π ∈ ΠÑ gives

p(PR̃ − PS̃)π(Z2) = p(π(Z2 + D
−1

t) − π(Z2 + D
−1

t)) = 0 for π ∈ ΠÑ . (3.11)

Therefore, with the choice of the Pa filter from equation 3.10, the Ñ dual vanishing
moments are guaranteed no matter what values the p parameter may take.

X
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D

-

z1
-1

Xe

Xo -

p

UN

A

+

PN~ PR-PS~ ~

Figure 3.2: Analysis filter bank.

In [Vrankić 03] a more general structure has been proposed with more than one
adaptive branch. However, more than one adaptive branch was not practical in con-
structing the adaptation algorithm.

We define the filter adaptive prediction filter PÑ+ composed of Neville filters as

PÑ+ = PÑ + p(PR̃ − PS̃) for R̃ ≥ Ñ and S̃ ≥ Ñ . (3.12)
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3.2.2 Primal Vanishing Moments are Preserved

Now, we will show that a number of primal vanishing moments N that is fixed with
the update filter is not influenced by the adaptive prediction branch as long as

Ñ ≥ N . (3.13)

The synthesis filter bank is shown in Figure 3.3.
With the filter P satisfying the DM condition, filter U is defined to satisfy the PM

condition:
G1(↑ D)π = 0 for π ∈ ΠN , (3.14)

where ΠN denotes the space of all polynomial sequences of total degree strictly less
than N .
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p
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X̂

Figure 3.3: Synthesis filter bank.

Using equation 2.32

Gp(z) =

[

G0e(z) G0o(z)

G1e(z) G1o(z)

]

= H
∗−1
p (z) =

[

1 P ∗(z)

−U∗(z) 1 − U∗(z)P ∗(z)

]

,

the PM condition can be stated in terms of polyphase components:

G1(↑ D)π(Z2) = G1eπ(DZ2) +G1oπ(DZ2 + t)

= −U∗
Nπ(DZ2) + (1 − U∗

NP
∗
Ñ+

)π(DZ2 + t)

= −U∗
Nπ(DZ2) + π(DZ2 + t) − U∗

NP
∗
Ñ+
π(DZ2 + t) = 0 for π ∈ ΠN .

(3.15)

If filter PÑ+ is such that

Ñ ≥ N ,

R̃ ≥ N ,

S̃ ≥ N ,

(3.16)
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then

P ∗
Ñ+
π(DZ2 + t) = (P ∗

Ñ
+ p(P ∗

R̃
− P ∗

S̃
))π(DZ2 + t)

= P ∗
Ñ+
π(DZ2 + t) + p(P ∗

R̃
− P ∗

S̃
)π(DZ2 + t)

︸ ︷︷ ︸

=0

= π(DZ2),

(3.17)

since P ∗
Ñ

is a Neville filter of order Ñ and shift −τ , which equals −D
−1

t. Therefore,
the PM condition becomes

2U∗
Nπ(DZ2) = π(DZ2 + t) for π ∈ ΠN , (3.18)

which is always true since 2U∗
N = PN .

3.3 The PUPa Structure

The proposed novel adaptive structure is shown in Figure 3.4. The analysis filter bank
consists of three stages. After the polyphase decomposition the fixed quincunx Neville
predict filter of order Ñ is applied. This stages results in Ñ vanishing moments of
a dual wavelet. Next, the update filter UN is applied which results in N vanishing
moments of a primal wavelet. As stated before, N ≤ Ñ .

The adaptation is introduced in the final lifting stage with the pPa filter. The big
advantage of such a structure compared to the PPaU structure is that the adaptation in
one decomposition level of the iterated filter bank structure influenced only that very
decomposition level and it does not influence next adaptation levels. In other words,
iterated analysis low-pass filter H(k)

0 remains the same, only the high-pass filters H(k)
1

change.
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Figure 3.4: PUPa analysis and synthesis adaptive filter bank structure.
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3.3.1 Dual Vanishing Moments are Preserved

The polyphase matrix of the analysis filter bank from Figure 3.5 is

Hp =

[

1 0

−pPa 1

][

1 UN

0 1

][

1 0

−PÑ 1

]

=

[

1 − PÑUN UN

−pPa(1 − PÑUN) − PÑ −pPaUN + 1

] (3.19)

Therefore, the polyphase components of the analysis filters are

H1e = −pPa(1 − PÑUN) − PÑ

H1o = −pPaUN + 1
(3.20)
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Figure 3.5: Analysis filter bank.

Using the DM condition

H1eπ(DZ2) +H1oπ(DZ2 + t) = 0 for π ∈ ΠÑ . (3.21)

gives

(−pPa(1 − PÑUN) − PÑ)π(DZ2) + (−pPaUN + 1)π(DZ2 + t) = 0 for π ∈ ΠÑ . (3.22)

Taking the Pa filter from equation 3.10

Pa = PR̃ − PS̃ where R̃ ≥ Ñ and S̃ ≥ Ñ ,

for which

Paπ(Z2) = 0 for π ∈ ΠÑ . (3.23)
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the expression 3.22 becomes

PÑπ(DZ2) = π(DZ2 + t) for π ∈ ΠÑ . (3.24)

which is always true.

Therefore, with the choice of the Pa filter from equation 3.10 the Ñ dual vanishing
moments are guaranteed no matter what values the parameter p may take!

3.3.2 Primal Vanishing Moments are Preserved

The synthesis polyphase matrix of the filter bank from Figure 3.6 can be obtained from
the analysis polyphase matrix 3.19 as

Gp =

[

−pPaU
∗
N + 1 pPa(1 − P ∗

Ñ
U∗

N) + P ∗
Ñ

−U∗
N 1 − P ∗

Ñ
U∗

N

]

(3.25)

Therefore,

G1e = −U∗
N

G1o = 1 − P ∗
Ñ
U∗

N

(3.26)

which is the same as for the PPaU structure so we conclude that N primal vanishing
moments are preserved as long as

Ñ ≥ N . (3.27)
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Figure 3.6: Synthesis filter bank.

This result is obvious since the adaptive predict step does not influence the high-
pass filter on the synthesis side, as shown in Figure 3.6.

41



3.4 Changing the p Parameter

This section investigates the influence of the value of the parameter p on the resulting
filters and wavelet and scale functions. The smallest support P2 and U2 filters shown
in figures 3.7 and 3.8 will be used.
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Figure 3.7: PPaU analyisis and synthesis adaptive filter bank structure.
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Figure 3.8: PUPa analyisis and synthesis adaptive filter bank structure.

3.4.1 Resulting Filters

The magnitude frequency responses of the resulting filters for p = 2 for PPaU and
PUPa structures are shown in Figures 3.9 and 3.10 respectively. The magnitude fre-
quency responses of the analysis high-pass filters for different values of the parameter
p are shown in Figures 3.11 and 3.12. It is important to note that with the increase of the
parameter p the zero ditch appears in the resulting magnitude response of the analy-
sis high-pass filter. As shown in Figure 3.12, the zero ditch grows with the parameter
p. Therefore, by changing the value of the parameter p, it is possible to cancel some
frequency components present in the input image.
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Figure 3.9: The PPaU structure with p = 2. Magnitude frequency response for analysis
and synthesis filters with spatial frequencies ω1 and ω2 in the range from 0 to π.
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Figure 3.10: The PUPa structure with p = 2. Magnitude frequency response for analysis
and synthesis filters.
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Figure 3.11: The PPaU structure. Analysis high-pass filter resulting for different values
of p.
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Figure 3.12: The PUPa structure. Analysis high-pass filter resulting for different values
of p.
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Figure 3.13: The PPaU structure. Zero locations of the magnitude frequency responses
of the analysis high-pass filter for different values of p.
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3.4.2 Limit Wavelet and Scale Functions

The limit wavelet and scale functions are obtained by setting a single value of the para-
meter p in all decomposition levels and calculating the impulse response of the 7-level
iterated filter bank. The analysis and synthesis limit wavelet and scale functions for dif-
ferent values of the parameter p for the PPaU and PUPa structures are shown in Figures
3.14 and 3.15 respectively. In Figures 3.16 and 3.17, the analysis limit wavelet functions
are shown for a wider range of the values of p. The synthesis limit wavelet functions
are shown in Figures 3.18 and 3.19. The limit functions are regular for smaller values
of the parameter p. However, for absolute values of p greater than approximately 5,
the limit functions become increasingly irregular. Therefore, for a limited range of p
values, the "well-behaved" analysis and synthesis functions are obtained.

Comparing the wavelet figures for the PUPa and the PPaU structure, it can be seen
that synthesis wavelet function behave similarly when the parameter p grows, they be-
come increasingly irregular. On the other hand, the analysis wavelet functions behave
differently. For the PPaU structure, the analysis wavelet functions change significantly
with the increase of parameter p. Yet, for the PUPa structure, the analysis wavelet func-
tions look similar for the whole range of the p values. The reason lies in the fact that
the analysis low-pass filter of the iterated filter bank does not change so the iterated
analysis high-pass filter changes only because of the value of the p parameter it the last
level of the filter bank cascade.
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(a) Analysis wavelet for p = 1 (b) Analysis wavelet for p = 3 (c) Analysis wavelet for p = 5

(d) Analysis scale for p = 1 (e) Analysis scale for p = 3 (f) Analysis scale for p = 5

(g) Synthesis wavelet for p = 1 (h) Synthesis wavelet for p = 3 (i) Synthesis wavelet for p = 5

(j) Synthesis scale for p = 1 (k) Synthesis scale for p = 3 (l) Synthesis scale for p = 5

Figure 3.14: The PPaU structure. Analysis and synthesis limit wavelet and scale func-
tions obtained as impulse responses of the high-pass and low-pass filters after 7 itera-
tions of the FB structure.
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(a) Analysis wavelet for p = 1 (b) Analysis wavelet for p = 3 (c) Analysis wavelet for p = 5

(d) Analysis scale for p = 1 (e) Analysis scale for p = 3 (f) Analysis scale for p = 5

(g) Synthesis wavelet for p = 1 (h) Synthesis wavelet for p = 3 (i) Synthesis wavelet for p = 5

(j) Synthesis scale for p = 1 (k) Synthesis scale for p = 3 (l) Synthesis scale for p = 5

Figure 3.15: The PUPa structure. Analysis and synthesis limit wavelet and scale func-
tions obtained as impulse responses of the high-pass and low-pass filters after 7 itera-
tions of the FB structure.
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(a) p = −5 (b) p = −4 (c) p = −3

(d) p = −2 (e) p = −1 (f) p = 0

(g) p = 1 (h) p = 2 (i) p = 3

(j) p = 4 (k) p = 5 (l) p = 6

Figure 3.16: The PPaU structure. Analysis limit wavelet functions obtained as impulse
responses of the high-pass filter after 7 iterations of the FB structure.
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(a) p = −5 (b) p = −4 (c) p = −3

(d) p = −2 (e) p = −1 (f) p = 0

(g) p = 1 (h) p = 2 (i) p = 3

(j) p = 4 (k) p = 5 (l) p = 6

Figure 3.17: The PUPa structure. Analysis limit wavelet functions obtained as impulse
responses of the high-pass filter after 7 iterations of the FB structure.
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(a) p = −5 (b) p = −4 (c) p = −3

(d) p = −2 (e) p = −1 (f) p = 0

(g) p = 1 (h) p = 2 (i) p = 3

(j) p = 4 (k) p = 5 (l) p = 6

Figure 3.18: The PPaU structure. Synthesis limit wavelet functions obtained as impulse
responses of the high-pass filter after 7 iterations of the FB structure.
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(a) p = −5 (b) p = −4 (c) p = −3

(d) p = −2 (e) p = −1 (f) p = 0

(g) p = 1 (h) p = 2 (i) p = 3

(j) p = 4 (k) p = 5 (l) p = 6

Figure 3.19: The PUPa structure. Synthesis limit wavelet functions obtained as impulse
responses of the high-pass filter after 7 iterations of the FB structure.
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Chapter 4

Adapting the Filter Bank Parameters

4.1 Introduction

In the previous chapter filter banks that can tune their properties while still keeping
a number of vanishing moments were presented. In this chapter, we introduce the
adaptation methods that will be used to tune the parameter p of the filter bank. The
goal of the adaptation is to minimize the energy of the detail coefficients.

In this chapter we use the undecimated filter bank structure for two reasons. Firstly,
we will use our decomposition for the image denoising. It was shown that for denois-
ing purposes the undecimated wavelet filter bank outperforms a decimated filer bank
[Coifman 95]. Secondly, the undecimated filter bank structure leads to simpler expres-
sions and the results obtained for the undecimated filter bank will be straightforwardly
applicable to the decimated filter bank structure.

4.2 Problem Framework

The undecimated analysis filter bank based on the PPaU structure that was presented
in Section 3.2 is shown in Figure 4.2 and its simplified equivalent is shown in Figure
4.3. The adaptation of the parameter p will first be derived for the PPaU structure and
then the results will be generalized for the PUPa structure from section 3.3.

4.2.1 Notation

For simplicity of notation we will use linear indexing of the image pixels so that the
two-dimensional indexes (j, k) will be replaced with a single index i. Therefore, instead
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of indexing a pixel of the image x as x(j, k) we will use xi with such i that

i = (k − 1) · J + j, (4.1)

where J is the number of rows of the image.

In the following sections a pixel of a filtered image (obtained by convolution) will be
represented as a weighted sum of a number of pixels from a predefined configuration
shown in Figure 4.1.
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13

Figure 4.1: The numbering scheme based on a central pixel surrounded with rings of
pixels on the quincunx lattice. Only the first two rings are marked.

We introduce relative indexing xin that is based on enumeration of pixels starting
from a single pixel xi. The pixel xin is the one that is located at the position marked
with n of the constellation from Figure 4.1 centered at the the pixel xi.

4.2.2 Input Image Corrupted With Additive Noise

We will consider the case when the clean input image x0 is corrupted with additive
zero mean Gaussian noise w, so the processed image is

x = x0 + w. (4.2)

The original image x0 will be treated as deterministic and the samples of the noise will
be treated as independent and identically distributed (IID) random variables.
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Figure 4.2: The first decomposition level of the adaptive filter bank where P42 = P4−P2.
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Figure 4.3: Simplified adaptive prediction stage.

The xp represents the image at the output of the P42 = P4 − P2 filter. The corre-
sponding impulse responses are

p2 =
1

4






0 1 0

1 0 1

0 1 0




 (4.3)

p4 =
1

32











0 −1 0 −1 0

−1 0 10 0 −1

0 10 0 10 0

−1 0 10 0 −1

0 −1 0 −1 0











(4.4)

so the impulse response of the filter P42 = P4 − P2 is

p42 =
1

32











0 −1 0 −1 0

−1 0 2 0 −1

0 2 0 2 0

−1 0 2 0 −1

0 −1 0 −1 0











. (4.5)
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The image resulting after the fixed prediction branch is denoted as xh. It is obtained by
convolution with the high-pass filter

h =






0 −1
4

0

−1
4

1 −1
4

0 −1
4

0




 (4.6)

Therefore, a pixel xhi, as shown in Figure 4.4(b), will be obtained as a weighted sum of
5 pixels from the input image x as

xhi = xi1 −
1

4
(xi2 + xi3 + xi4 + xi5) (4.7)
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(a) Support in x for obtaining
xpi.
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(b) Support in x for obtaining
xhi.

Figure 4.4: Filter supports. Circles marked with gray represent pixels in x that are used
for obtaining xpi at position 1 (marked with bold circle).

The xp and hp can be expressed in terms of the original input image x0 and the zero
mean Gaussian noise w as

xp = (x0 + w) ∗ p42 = x0p + wp

xh = (x0 + w) ∗ h = x0h + wh

(4.8)

where p42 is the impulse response of the quincunx-upsampled filter P42. The signals
x0p and x0h, which come from filtering the original image will represent a deterministic
components of xp and xh respectively.

Since xp = x ∗ p42, variance of xp for any pixel can be obtained as

V ar(xpi) = V ar(wpi) = σ2
w

∑

n

p2
42n = σ2

w

(

4

(
2

32

)2

+ 8

(−1

32

)2
)

=
6

256
σ2

w = 0.0234σ2
w

(4.9)
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Figure 4.5: Original image x0 is a spatial sine wave with T = 10. The input image x
(second row) is obtained by adding white Gaussian noise with σw = 10 to the original
image, x = x0 + w. xp = x ∗ p42 and xh = x ∗ h.

Similarly, we obtain

V ar(xhi) = V ar(whi) = σ2
w

∑

n

h2
n = σ2

w

(

1 + 4

(

−1

4

)2
)

= 1.25σ2
w (4.10)

where σ2
w is the variance of the additive Guassian noise present in the input image.

Therefore,

σxp
= 0.153σw

σxh
= 1.118σw.

(4.11)

The variance of xh is much higher than the variance of xp. This result is verified in
Figure 4.6.
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Figure 4.6: Histograms of values of a single pixel in x, xp and xh from Figure 4.5.
Histograms are based on 10000 realizations of white Gaussian noise with σw = 10.
Histograms have the same scale on the x-axis for easier comparison.
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4.3 Minimizing the Energy of Detail Coefficients

The image xh represents detail coefficients resulting from dual wavelet with two van-
ishing moments as stated in Section 2.3.3. Our goal is to minimize those detail coef-
ficients by changing the value of the p parameter. The reason for minimizing detail
coefficients is to obtain a more compact image representation. We have chosen to min-
imize the energy of detail coefficients since it leads to the well-known least squares
solution. The adaptation will not necessary be performed over the whole image. The
parts of the image for which the energy of details obtained with a fixed predictor is
negligible will remain unchanged.

4.3.1 Least Squares Solution for the Parameter p

The filters used in the prediction branch are Neville filters of degree Ñ . Hence, if the
input to the filter bank is a polynomial of degree lower than Ñ , the prediction will
be perfect, leading to zero detail coefficients. On the contrary, the prediction will not
be perfect for the components of the input signal that are not polynomials (or that
are polynomials of higher degree), and the prediction error will be represented with
wavelet detail coefficients. Our goal is to improve the prediction by additionally cap-
turing those non-polynomial components. It would lead to a smaller detail coefficients
and finally to a more compact image representation.

The prediction error for the i-th pixel is defined as

ei = xhi − x̂hi (4.12)

where

x̂hi = p · xp (4.13)

The adaptation of the parameter pwill be performed for every pixel of the analyzed
image based on a given neighborhood as shown in Figure 4.7. A given pixel and its
neighborhood form a region on which the value of the parameter p will be calculated.
If a pixel is indexed with r then the appropriate region will be denoted as Rr. For every
region Rr the adaptation algorithm will set the value of the parameter pr in order to
minimize the sum of squared errors. So, the function

F (pr) =
∑

i∈Rr

e2i =
∑

i∈Rr

(xhi − pr · xpi)
2 (4.14)

needs to be minimized. Calculating the least squares (LS) solution leads to minimizing
the energy of detail coefficients. The optimal parameter pr is the one for which the
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derivative of F (pr) equals zero.

∂F (pr)

∂pr

=
∑

i∈Rr

2(xhi − pr · xpi)(−xpi) = 0

∑

i∈Rr

(xhi − pr · xpi)xpi = 0

∑

xhi · xpi −
∑

pr · y2
i = 0

pr

∑

y2
i =

∑

xhi · xpi

(4.15)

which gives

pr =

∑

i∈Rr

xhi · xpi

∑

i∈Rr

x2
pi

(4.16)

For simplicity of notation, the index r will be omitted in the following equations.

(a) Region in xp. (b) Region in xh.

Figure 4.7: Value of the parameter p for a pixel represented with a bold-line circle will
be calculated based on the neighborhood of pixels marked gray.

4.3.2 Parameters Affecting the Estimation of p

As stated in equation 4.16, the parameter p is calculated as a quotient of the two func-
tions of region elements in xp and xh. As stated in equation 4.8 every xpi has its deter-
ministic component x0pi and a random component wpi. The random variable wpi is a
function of 12 independent random variables of the additive noise present in the input
image from the constellation given in Figure 4.7(a):

wpi = (w ∗ p42)i =
2

32
(wi2 + wi3 + wi4 + wi5)

− 1

32
(wi6 + wi7 + wi8 + wi9 + wi10 + wi11 + wi12 + wi13).

(4.17)

62



In a similar manner xhi consists of a deterministic component x0hi and a random
variable whi where whi is a weighted sum of 5 independent random variables

whi = (w ∗ h)i = wi1 −
1

4
(wi2 + wi3 + wi4 + wi5) (4.18)

Therefore, the wpi and whi are dependent random variables, and the summations
in numerator and denominator of p are also dependent random variables. There are
various factors influencing the statistical properties of the estimated p.

Input noise. Statistical properties of the input noise w directly influence the properties
of the p estimator.

Shape of the region. Various shapes of the region on which the LS solution is being
calculated result in different constellations of the input noise samples included
in the calculation and therefore different statistical properties of the calculated p

parameters.

Value of the original image. The value of the original image x0 significantly affects
the distribution of the calculated p parameter. In general, the value of the original
image is not known in denoising applications. Figure 4.8 represents histograms
of the calculated p parameters on the region of the same size but on different parts
of the analyzed image, including different values of the original image.

4.3.3 The Estimate of p is Biased

As it can be seen from Figure 4.8 the calculated values of p are biased. The bias of p is
defined as

bias(p) = E[p− p̂] = p− E

[∑

i xhi · xpi
∑

i x
2
pi

]

(4.19)

As shown in Figure 4.10 the estimation bias depends on the variance of the input noise,
the values of the original image and the size (and shape) of the region on which the LS
solution is being calculated. If one would know the estimation bias than an unbiased
estimator of p could be calculated as

p̂u = p̂+ bias(p) (4.20)

Unfortunately, there is no closed form expression for the expectation of the estimated
p and the value of the original image is unknown in image denoising applications so
the unbiased estimator is not available.
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4.4 Solution for the Biasness Problem

The true value of the parameter p is obtained as a function of the original image pixels
only, i.e.

p =

∑

i x0hi · x0pi
∑

i x
2
0pi

=
q(x0)

r(x0)
, (4.21)

where q represents the numerator and r represents the denominator. The estimate of p
is obtained as a function of the image pixels corrupted with noise

p̂ =

∑

i xhi · xpi
∑

i x
2
pi

=
q̂(x0, w)

r̂(x0, w)
(4.22)

In the following sections we show that the biases of estimating q and r have closed
form expressions and do not depend on the values of the original image. Therefore, we will
introduce an improved estimator p̂c which is obtained as

p̂c =
q̂(x0, w) + bias(q)

r̂(x0, w) + bias(r)
=
q̂c
r̂c

(4.23)

and which is quite different from the unbiased estimator p̂u but, as it will be shown, for
a class of input images, it gives less biased values of the parameter p than the basic LS
estimator given in 4.16.

4.4.1 Bias of the Numerator

Bias of the numerator q is

bias(q) = E[q − q̂] = q − E[q̂] (4.24)

where the expectation of q̂

E[q̂] = E
[∑

xhixpi

]

= E
[∑

(x0hi + whi)(x0pi + wpi)
]

= E
[∑

x0hix0pi + x0hiwpi + whix0pi + whiwpi

]

=
∑

(x0hix0pi + x0hiE[wpi] + E[whi]x0pi + E [whiwpi])

=
∑

(x0hix0pi + E [whiwpi])

= q +
∑

E [whiwpi]

(4.25)

since E[wpi] = 0 and E[whi] = 0. It follows that

bias(q) = q − E[q̂] = −
∑

i

E [whiwpi] (4.26)
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Sincewin are independent and identically distributed random variables with zero mean
we have

E(wimwin) =







0 for m 6= n

σ2
w for m = n

(4.27)

so by restating equations 4.18 and 4.17

whi = (w ∗ h)i =wi1 −
1

4
(wi2 + wi3 + wi4 + wi5)

wpi = (w ∗ p42)i =
2

32
(wi2 + wi3 + wi4 + wi5)

− 1

32
(wi6 + wi7 + wi8 + wi9 + wi10 + wi11 + wi12 + wi13)

we can write

E [whiwpi] = E

[

−1

4
· 2

32
(w2

i2 + w2
i3 + w2

i4 + w2
i5)

]

= −1

4
· 2

32
· 4E[w2] = − 1

16
σ2

w

(4.28)

Therefore, the summation over the whole region gives
∑

i

E [whiwpi] = N · E [whiwpi] = −Nσ
2
w

16
(4.29)

where N is the size of the region. By using equation 4.26 we obtain the bias of q:

bias(q) = −
∑

i

E [whiwpi] =
Nσ2

w

16
(4.30)

It can be seen that the estimation of the numerator of p is biased but the value of bias(q)
in neither dependent on the value of the original signal x0 nor the shape of the region.
The bias depends only on the size of the region on which the estimation is based and
the variance of the additive zero-mean noise present in the image.

4.4.2 Bias of the Denominator

Bias of the denominator r is

bias(r) = E[r − r̂] = r − E[r̂] (4.31)

where the expectation of r̂

E[r̂] = E
[∑

x2
pi

]

= E
[∑

(x0pi + wpi)
2
]

= E
[∑

x2
0pi + 2x0piwpi + w2

pi

]

=
∑

(x2
0pi + E[w2

pi])

= r +
∑

E[w2
pi]

(4.32)
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hence
bias(r) = r − E[r̂] = −

∑

i

E[w2
pi] (4.33)

Since from E[wi] = 0 it follows that E[wpi] = 0, by using equation 4.9 we have

E[w2
pi] = σ2

wpi
=

6

256
σ2

w (4.34)

The denominator’s bias can now be expressed as

bias(r) = −
∑

i

E[w2
pi] = −

∑

i

6

256
σ2

w = −6N

256
σ2

w (4.35)

Again, as for the denominator, the estimation of the numerator of p is biased but the
value of the bias is neither dependent on the value of the original signal x0 nor the
shape of the region but rather on the size of the region on which the estimation is
based and the variance of the additive zero-mean noise present in the image.

4.4.3 Improved Estimation Formula

Using the relations in 4.30 and 4.35 for the bias of the numerator and denominator
respectively, we introduce an improved estimator of the parameter p as

p̂c =
(
∑

i xhi · xpi) + N
16
σ2

w
(∑

i x
2
pi

)
− 6N

256
σ2

w

(4.36)

The p̂c is not the same as the unbiased estimator p̂u from equation 4.20 since correcting
the bias of numerator and denominator separately is not the same as correcting the
overall bias. In practice the p̂c estimator gives values that are closer to the true value
of the parameter p then the ones obtained by using the p̂ estimator from equation 4.16.
This is true as long as the distribution of corrected denominator has negligible density
around 0 (as shown in Figures 4.12 and 4.13). In the case of sine-wave images, distribu-
tion of denominator comes around zero for higher values of the sine-wave period T (as
shown in Figures 4.14, 4.15 and 4.11), which correspond to low-frequency components
present in the image. However, for those low-frequency components the adaptation
will not be needed since the signal will already be well suppressed in the high-pass
channel by the fixed prediction stage.

Therefore, the adaptation of the filter bank parameters by using the improved esti-
mator p̂c will not be performed for the whole image. The adaptation will be performed
only in the regions which result in higher values of the estimator’s denominator. In the
regions where the the estimator’s denominator is close to zero the adaptation will not
be necessary since the signal is already well suppressed in the high-pass channel.
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Figure 4.8: Histograms of p obtained for different windows in xp and xh from Figure
4.5. Histograms are based on 10000 realizations of white Gaussian noise with σw = 10.
True value of p is represented with the vertical dashed line.
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(a) 2x2 window (b) 4x4 window (c) 6x6 window

(d) 8x8 window (e) 10x10 window (f) 15x15 window

Figure 4.9: Different window sizes (regions) over the original sine-wave image.
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Figure 4.10: Bias of p for different window sizes and different sine wave images. The
true value of p is shown with a solid horizontal line in figures of the first column. Every
row stands for one picture type with a sine wave of different period T . Window size is
defined as n× n where n is the number on the abscissa.
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Figure 4.11: Bias of the improved p for different window sizes and different sine wave
images. Every row stands for one picture type with a sine wave of different period T .
The window size is defined as n× n where n is the number on the abscissa.
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Figure 4.12: Results on calculating the parameter p. First column: biased p and its
numerator and denominator. Second column: improved p obtained with unbiased
numerator and denominator. Region size: 5 × 5. Image: sine-wave with T = 5. Input
noise is white Gaussian zero-mean noise with σw = 10.
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Figure 4.13: Results on calculating the parameter p. First column: biased p and its
numerator and denominator. Second column: improved p obtained with unbiased
numerator and denominator. Region size: 5 × 5. Image: sine-wave with T = 10. Input
noise is white Gaussian zero-mean noise with σw = 10.
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Figure 4.14: Results on calculating the parameter p. First column: biased p and its
numerator and denominator. Second column: improved p obtained with unbiased
numerator and denominator. Region size: 5 × 5. Image: sine-wave with T = 20. Input
noise is white Gaussian zero-mean noise with σw = 10.
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Figure 4.15: Results on calculating the parameter p. First column: biased p and its
numerator and denominator. Second column: improved p obtained with unbiased
numerator and denominator. Region size: 5 × 5. Image: sine-wave with T = 30. Input
noise is white Gaussian zero-mean noise with σw = 10.
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4.5 Adaptation in the PUPa structure

The expressions derived for the PPaU structure in the previous sections will now be
derived for the PUPa structure. The adaptive PUPa analysis filter bank is shown in
Figure 4.16 and the equivalent simplified structure is shown in Figure 4.17.
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Figure 4.16: The first decomposition level of the adaptive PUPa filter bank where P42 =

P4 − P2.
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Figure 4.17: Simplified adaptive prediction stage.

The impulse response of the filter P242 is
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The obtained impulse response is significantly wider than the one of the PPaU struc-
ture from equation 4.5. The image obtained after applying the fixed prediction branch
to the input image is denoted as xh. It is a result of a convolution of the original image
with the high-pass filter H whose impulse response is

h =






0 −1
4

0

−1
4

1 −1
4

0 −1
4

0




 (4.38)

The variances of the xpi and xhi pixels are

V ar(xpi) = V ar(wpi) = σ2
w

∑

n

p2
242n = 0.0193σ2

w (4.39)

and

V ar(xhi) = V ar(whi) = σ2
w

∑

n

h2
n = σ2

w

(

1 + 4

(

−1

4

)2
)

= 1.25σ2
w. (4.40)

Similarly as in section 4.4.1, the bias of the numerator can be obtained as

bias(q) = −
∑

i

E [whiwpi] , (4.41)

where

E [whiwpi] = E

[

−1

4
· 52

1024
(w2

i2 + w2
i3 + w2

i4 + w2
i5)

]

= −1

4
· 13

256
· 4E[w2] = −0.0508σ2

w,
(4.42)

which is independent on the position i and the values of the original image x0. There-
fore,

bias(q) = −N · E [whiwpi] = 0.0508Nσ2
w. (4.43)

Using the fact that E[wpi] = 0, the bias of the denominator is obtained similarly as
in section 4.4.2:

bias(r) = −
∑

i

E[w2
pi] = −N · V ar(wpi) = −0.0193Nσ2

w. (4.44)

Hence, the improved estimation of the parameter p can be obtained as

p̂c =
q̂(x0, w) + bias(q)

r̂(x0, w) + bias(r)
=

(
∑
xhi · xpi) + 0.0508Nσ2

w
(∑

x2
pi

)
− 0.0193Nσ2

w

(4.45)
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4.6 Adaptation in the Iterated Filter Bank

4.6.1 The Iterated PPaU Structure

The results in the previous sections were presented for a single-level filter bank struc-
ture. However, in practice, four to eight-level iterated filter banks are used. The first
two levels of the iterated PPaU structure are shown in Figure 4.18.
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Figure 4.18: The first two decomposition levels of the adaptive PPaU filter bank.

The adaptation of the parameter pj in the j-th level will be based on the correspond-
ing P42j and Hj filters. Therefore, the p42j will be the impulse response of the j-level
filter bank structure up to the input to the multiplier pj . Also, the hj will be the impulse
response of the j-level filter bank structure up to the summation operator at the output
of the pj multiplier, similar as in Figure 4.3.

It is important to note that the adaptation in lower levels affects the P42j and Hj fil-
ters in all the successive levels. Since the adaptation is being performed pixelwise, the
impulse responses p42ji and hji will be different for every pixel position i. Therefore,
the bias correction in level j will have different values for every pixel of the image, de-
pending on the adaptation in the previous j−1 levels. The estimation of the parameter
p at level j and for the position i will be obtained as

p̂cji =
q̂ji(x0, w) + bias(qji)

r̂ji(x0, w) + bias(rji)
(4.46)

The numerator’s bias is obtained as

bias(qji) = −
∑

i

E [whjiwpji] = −Nσ2
w

∑

m=n

hjimp42jin (4.47)

and the denominator’s bias is obtained as

bias(rji) = −
∑

i

E
[
w2

pji

]
= −Nσ2

w

∑

n

p2
42jin (4.48)

where N is the number of pixels included in the region.
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4.6.2 The Iterated PUPa Structure

The iterated PUPa filter bank structure is shown in Figure 4.19. The advantage of the
PUPa structure is that P242j and Hj filters at level j do not depend on the adaptation
in the lower decomposition levels. Therefore, the nonlinearity introduced with the
adaptation in level j is not propagated to successive decomposition levels.
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Figure 4.19: The first two decomposition levels of the adaptive PUPa filter bank.

The estimation of the parameter p at level j will be obtained as

p̂cj =
q̂j(x0, w) + bias(qj)

r̂j(x0, w) + bias(rj)
(4.49)

The numerator’s bias is obtained as

bias(qj) = −
∑

i

E [whjiwpji] = −Nσ2
w

∑

m=n

hjmp242jn (4.50)

and the denominator’s bias is obtained as

bias(rj) = −
∑

i

E
[
w2

pji

]
= −Nσ2

w

∑

n

p2
242jn (4.51)

where N is the number of pixels included in the region.
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Chapter 5

Finding the Appropriate Adaptation
Region

5.1 Introduction

In the previous chapter we have presented a technique for estimating the parameter
p. The parameter p for a single image pixel is being calculated based on a region. As
it was shown in Figure 4.11, the standard deviation of p̂ decreases as the region size
increases. So, in order to obtain more reliable estimates we want to have the parameter
p calculated on a region that is as big as possible but still not incorporating parts of the
image with different statistical properties.

In order to obtain such regions we will use a statistical method called Intersection
of Confidence Intervals (ICI) rule [Goldenshluger 97, Katkovnik 98, Stankovic 98]. The
ICI method will allow us to obtain better and more reliable estimates of the parameter
p. A short introduction to confidence intervals that are used in this chapter is given is
Appendix.

5.2 The Intersection of Confidence Intervals Rule

5.2.1 Overlapping Confidence Intervals

The intersection of confidence intervals rule [Katkovnik 99, Stankovic 04] is based on a
number of estimates of some parameter or a signal value. The estimates are based on
different window sizes. We define a set of growing window sizes:

H = {hj|hj > hj−1, j = 1, 2, . . . , J} (5.1)
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The window hj−1 is be a subset of the next window hj . The J estimates are calculated
for J successive windows. Now we define confidence intervals of the estimate x̂j as

Dj = [x̂j(t) − Γσx̂j(t), x̂j(t) + Γσx̂j(t)] (5.2)

where Γ is an empirically set constant that defines the width of the confidence inter-
val. In this section Dj will be used for the j-th confidence interval and should not be
confused with wavelet detail coefficients.

Let us consider an original two-valued signal corrupted with zero-mean Gaussian
noise. A value of a signal or some parameter of the signal is calculated based on a set
of growing regions. The wider estimation regions result in a more efficient estimator
with smaller variance. On the other hand, if growing windows start covering parts of
the signal with different value of the estimate x then the bias will start increasing, as
shown in Figure 5.1.

x̂

x

h1 h2 h3 h4 h5 h6

Figure 5.1: Probability distribution functions of x̂ for growing window sizes hi.

5.2.2 The ICI algorithm

The ICI algorithm starts with the smallest window size and calculates the appropriate
confidence interval D1. Then, the next estimate is calculated and the appropriate confi-
dence interval D2 is obtained. The intersection of confidence intervals for j successive
estimates is obtained as

Ij = ∩j
i=1Di (5.3)

One wants to obtain the estimate that is based on the biggest possible window size but
still statistically related to the previous estimates. In terms of confidence intervals this
means that the optimal scale that will be denoted as j+ will be the largest of indices for
which Ij 6= ∅. The ICI algorithm consists of the following steps:
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First estimate. Obtain the estimate x̂ for the smallest window. Calculate L1 and U1 as
the lower and the upper bound of the confidence interval.

Successive estimates. Calculate successive estimates based on the growing windows.
Track the value of the highest lower confidence interval bound Lmax and the
smallest upper confidence interval bound Umin.

Stop enlarging the window. If Lmax > Umin, there is no intersection of confidence in-
tervals. The optimal window index j+ is the one from the previous step.

Select the estimate. The final estimate will be the one obtained with window size hj+ .
An example of intersecting confidence intervals is shown in Figure 5.2(b). In the
figure, j+ = 6, since for j = 7 there is no intersection of confidence intervals.

5.2.3 Motivational Example: Improving the Estimator of the Mean

Value

In this section we present a method to improve the estimator of a mean value for pur-
poses of signal denoising. Instead of using a fixed moving average filter, for each
signal sample, a moving average filter with appropriate order will be chosen. The ICI
rule will be used in order to select the appropriate averaging window.

The ICI method will use a number of estimates based on different overlapping sup-
ports. The first mean estimate can be obtained with a filter with an impulse response
h[n] = {1

2
, 1

2
}, where the underline denotes the sample at n = 0. Then, the second esti-

mator could have h[n] = {1
3
, 1

3
, 1

3
}, the third estimator could have h[n] = {1

4
, 1

4
, 1

4
, 1

4
} and

so on. For each estimate a confidence interval whose width is proportional to the stan-
dard deviation of the noise is built. The confidence interval for a mean of n samples is
obtained as

x̄± z
σ√
n

(5.4)

where σ is the standard deviation of the random variable x. For example, the 95%

confidence interval (CI) is obtained for z = 1.96. For every new estimate the algorithm
tracks the intersection of confidence intervals. The support of the moving average filter
is growing as long as there is an intersection of a current CI with all the previous CIs
(Figure 5.2).

Additionally, we have chosen to grow averaging windows in both directions from
a given sample. The ICI rule will give the optimal window sizes for both sides. Then,
the two windows will merge in one and the final average value for a given sample will
be calculated. An example of ICI based averaging of 1D signal is given in Figure 5.3.
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It can be seen that discontinuities in the signal are much better preserved by using ICI
based averaging than by using fixed window averaging.
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(a) Estimates based on windows growing to the left from the given sample.
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(b) Estimates based on windows growing to the right from the given sam-
ple. For the 7th estimate there is no more intersection of CIs. So, the final
estimate is the one obtained is step 6.

Figure 5.2: Intersections of confidence intervals for estimating x(25) from Figure 5.3(b).
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(b) Noisy signal: Gaussian noise with σ = 5 added to the original signal.
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(c) Denoising with moving average filter h = {0.25, 0.25, 0.25, 0.25}.
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(d) Denoising with the ICI adaptive moving average filter.

Figure 5.3: Mean estimate improved with the ICI rule.
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5.3 ICI-based Estimation of the Parameter p

We will use the ICI algorithm to improve the properties of the estimator of the pa-
rameter p. The example from the previous section will be generalized to the two-
dimenisonal case in order to obtain two-dimensional regions adapted to local image
statistics. For every pixel, in order to obtain a more efficient estimate, the parameter p
will be calculated on a different adaptive neighborhood selected using the ICI rule.

5.3.1 Wedge-Shaped Regions

The possible solution for different window sizes are concentric circles that grow from
the pixel for which the adaptation is being performed. However, such adaptive regions
will not be able to "avoid" parts of the image of different properties as shown in Figure
5.4(a). The ideal region would be the one shown in Figure 5.4(b).

(a) The widest circular re-
gion.

(b) Ideally estimated
adaptive region.

Figure 5.4: Pixels of different values of the ideal parameter p are marked with different
colors. Dashed line represents the adaptive region boundary.

In order to obtain regions closer to the one from Figure 5.4(b) the wedge-like re-
gions will be grown from the central pixels into different directions. Later on, when
each wedge grows to its maximum allowed size, the overall region will be obtained as
a combination of all wedge-like regions. The wedge of angle 2π/8 is used in order to
obtain sufficient angular resolution. Therefore, 8 wedges are grown in 8 distinct direc-
tions in order to obtain an anisotropic adaptation region. Narrower wedge regions of
smaller angles like 2π/16 will not be used since the improvement is not significant.

The wedge-shaped windows of growing sizes for a single direction are shown in
Figures 5.5 and 5.6. The wedge-shaped windows of the same size for all directions are
shown in Figures 5.7 and 5.8. Improved estimates of p are obtained by combining the
8 resulting windows into a single region and calculating p̂c for the new region.

84
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(e) h5 (f) h6 (g) h7 (h) h8

Figure 5.5: Window of different sizes for a single direction.

(a) h1 (b) h2 (c) h3 (d) h4

(e) h5 (f) h6 (g) h7 (h) h8

Figure 5.6: Window of different sizes for a single direction.
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(a) h9 (b) h9 (c) h9 (d) h9

(e) h9 (f) h9 (g) h9 (h) h9

Figure 5.7: Windows of the same size for different directions.

(a) h12 (b) h12 (c) h12 (d) h12

(e) h12 (f) h12 (g) h12 (h) h12

Figure 5.8: Windows of the same size for different directions.
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5.3.2 The Confidence Interval for p

The width of the confidence interval is central to implementing the ICI algorithm. The
confidence interval will be proportional to σp̂c

with the constant Γ. In general, higher
values of Γ give wider confidence intervals that result in smoother p parameters. Con-
trary, smaller values of Γ will give sharper edges among regions of various p parame-
ters.

It is important to note that the distribution of p̂c is slightly asymmetrical (see Figures
5.11, 5.12, and 5.13) so the corresponding confidence intervals are asymmetrical as well
(see Appendix).

Figures 5.9 and 5.10 show empirical confidence intervals for estimating the para-
meter p of the PPaU structure for different periods T of the sine wave present in the
original image and for different values of the standard deviation of the input noise σw.
The sample standard deviation Sp of the parameter p̂c has been obtained based on 1000
realizations of the noise. The confidence intervals are defined as p̂c ± Sp.

Graphs in the first column of Figure 5.9 are obtained for small regions that contain
only 4 pixels. The obtained confidence intervals for such small regions are often very
large (see Figure 5.9(g)). In order to obtain a more reliable estimate, wider regions
should be used. Figures 5.9(f) and 5.10(b) show that the regions containing 100 pixels
are much more acceptable since such regions result in much narrower confidence in-
tervals. It is important to note that the confidence interval width directly depends on
the period T of the signal. As the period T increases so does the standard deviation of
p̂c.

Figure 5.10(b) shows that the region of size 10× 10 allows the adaptation algorithm
to differentiate the two sine waves of periods T1 = 6 and T2 = 9 corrupted with zero-
mean noise of σw = 10.

Based on the experimental results, and in order to obtain reliable estimates of p, we
have chosen that the smallest allowed regions can be either 25, 50, or 100 pixels in size.
If the region does not grow over a predefined size, the obtained estimate will not be
accepted and the value of p parameter will be set to zero, degrading the structure for
that pixel to the fixed filter bank.

In image denoising applications, the standard deviation σp̂c
is unknown since it

depends on the unknown original image. Hence, its estimate Ŝp̂c
has to be used instead.

One possible way to find the estimate of σp̂c
is to use the Taylor series approximation

method.

The estimator p̂c from equation 4.36 can be expressed as a function of n statistically
independent random variables of the input noise wi that are included in the filters’
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Figure 5.9: Confidence intervals p̂c ± Sp. Period of the sine wave image is shown on
the x-axis. The region size on which the parameter p is being calculated is growing
across the rows, while the standard deviation of the input noise σw grows with the
columns. Circles represent true values of the parameter p and stars represent values of
p̂c averaged over 1000 noise realizations.

supports for a given region:

p̂c =
(
∑

i xhi · xpi) + N
16
σ2

w
(∑

i x
2
pi

)
− 6N

256
σ2

w

= g(w) (5.5)

where w is a vector containing all n random variables wi included in the calcula-
tion of p̂c. Based on the Taylor series expansion, the first-order approximate variance
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Figure 5.10: Magnified graphs from Figure 5.9 for σw = 10.

[Ayyub 02] can be calculated as

σ2
p̂c
≈

n∑

i=1

(
∂g(w)

∂wi

∣
∣
∣
E(wi)=0

)

σ2
wi

(5.6)

The results of calculating the approximation of the σ2
p̂c

are shown in Table 5.1 with the
sample variance S2

p̂c
. As presented in the table, the approximation error increases with

the region size. Also, the Taylor approximation of σ2
p̂c

has been calculated with the
values of the original image pixels that are unknown in practice. In practice, these val-
ues would be substituted with the values of the preliminary denoised image. Yet, the
calculation of partial derivatives needed in equation 5.6 becomes numerically increas-
ingly demanding as the region size increases. Hence, the approach that uses Taylor
approximation of the variance will not be used in numerical simulations in the next
chapter.
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Figure 5.11: Histogram of p̂c values for a region of size 1×2 with input sine wave image
with period T = 10 and input noise with standard deviation σw = 10.
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Figure 5.12: Histogram of p̂c values for a region of size 2×2 with input sine wave image
with T = 10 and input noise with σw = 10.
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Figure 5.13: Histogram of p̂c values for a region of size 3×3 with input sine wave image
with T = 10 and input noise with σw = 10.
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Region size 1 × 2 2 × 2 3 × 3

Sample variance 0.7805 0.1648 0.0823
Taylor approximation 0.7099 0.1332 0.0541
Error -9% -19% -34%

Table 5.1: Taylor approximation values for distribution of p̂c from Figures 5.11, 5.12,
and 5.13.

Instead of using Taylor series method to approximate σp̂c
, the estimate of the confi-

dence interval width will be obtained empirically:

Pilot estimate First, a pilot estimate of the original image will be obtained by denois-
ing the input image by using the wavelet thresholding [Donoho 95a]. For that
purpose we will use fixed separable undecimated wavelet decomposition.

Noise realizations Then, a number of realizations of the zero-mean Gaussian noise
with standard deviation σw will be created and added to the pilot estimate of the
original image. This way, a number of noisy images will be obtained with similar
statistical properties as the one for which the p̂c parameter is being calculated.

Estimate the CI width For a given region, p̂c parameter will be calculated for every
realization of the noise. The confidence interval for σp̂c

will be estimated based
on the histogram of the obtained p̂c parameters.

For more realizations of the noise, the estimation of σp̂c
will be more accurate. Yet,

in order not to make the algorithmic implementation computationally too demanding,
the number of noise realization should not be set to high. Figure 5.14 shows empiri-
cal confidence interval for p̂c obtained for various numbers of noise realizations and
(values on x-axes) and for regions of different sizes. The most accurate estimate of the
confidence interval shown is the one based on 10000 realizations. As the region size in-
creases, the difference between CI estimates decreases. Based on this fact and in order
to make the adaptation algorithm feasible in practice, we have chosen to use 20 noise
realizations in order to obtain the estimate of the CI width.

In image denoising applications the standard deviation of the input noise is usu-
ally unknown. However, robust algorithm can be used to calculate it, such as median
absolute deviation (MAD) of wavelet detail coefficients [Johnstone 97].
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(a) σw = 5. Wedge-shaped window with ra-
dius 5 contains 14 pixels.
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(b) σw = 10. Wedge-shaped window with
radius 5 contains 14 pixels.
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(c) σw = 5. Wedge-shaped window with ra-
dius 15 contains 98 pixels.
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(d) σw = 10. Wedge-shaped window with
radius 15 contains 98 pixels.
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(e) σw = 5. Wedge-shaped window with ra-
dius 50 contains 1014 pixels.

10 20 50 100 200 500 100010000
0.6

0.8

1

1.2

1.4

1.6

(f) σw = 10. Wedge-shaped window with ra-
dius 50 contains 1014 pixels.

Figure 5.14: Empirical estimation of the 0.9 confidence intervals of p̂c for sine-wave
image with T = 9 as a function of number of noise realizations (value on the x-axis) for
the PPaU structure. Horizontal line represents the true value of p.
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5.3.3 The Resulting Regions

The test image that will be used in examples is an image with two distinct regions
containing two different sine waves as shown in Figure 5.15.
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(a) The two regions with sines waves with
T1 = 9, θ1 = π/8 and T2 = 5, θ1 = −π/4.
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(b) The test image corrupted with additive
Gaussian noise with σw = 10.

Figure 5.15: The test image composed of two sine waves.

The ICI graphs for p̂c in the first decomposition level for both PPaU and PUPa struc-
tures are shown in figures 5.16 and 5.17. The ICI algorithm resulted with the most ap-
propriate region in Figure 5.16(b). Yet, for a different direction the noise present in the
image caused the algorithm to stop growing the window before the boundary of the
two sine waves was reached (Figure 5.16(a)). As shown in Figure 5.16(e), the 95% con-
fidence interval for the estimate obtained with the h5 window did not cover the true
value of the parameter p (shown with the horizontal line) and it significantly narrowed
the intersections of confidence intervals that followed.

The adaptive regions for the first decomposition level of the PPaU filter bank are
shown in Figure 5.18. The similar figures obtained for the PUPa structure are shown
in Figure 5.19.

The sensitivity of the ICI algorithm can be increased by using narrower confidence
intervals. Figures 5.20 and 5.21 show a region obtained for the same starting pixel but
with different CI widths. In general, narrower CIs will cause the region to stop growing
earlier, while wider CIs will result in wider regions that possibly spread across the
boundaries of the regions with different statistical properties.
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(b) The resulting window hj+ for direc-
tion 2.

0 2 4 6 8 10
−200

−150

−100

−50

0

50

100

150

(c) The ICI graph.
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(d) The ICI graph.
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(e) The magnified ICI graph.
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(f) The magnified ICI graph.

Figure 5.16: The ICI rule gives windows for calculating p̂c for the PPaU structure. Input
image contains Gaussian white noise with σw = 10. Adaptive regions obtained for
P = 0.95 are shown with black dots. The origin pixel is shown with the black circle.
True values of p are 1.169 and 1.945 for inner and outer sine wave respectively. Under
the region image, there are corresponding ICI graphs. The horizonatal line in the ICI
graphs represents the true value of p.
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(a) The resulting window hj+ for direc-
tion 1.
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(b) The resulting window hj+ for direc-
tion 2.
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Figure 5.17: The ICI rule gives windows for calculating p̂c for the PUPa structure. Input
image contains Gaussian white noise with σw = 10. Adaptive regions obtained for
P = 0.95 are shown with black dots. The origin pixel is shown with the black circle.
True values of p are 1.111 and 1.742 for inner and outer sine wave respectively. Under
the region image, there are corresponding ICI graphs. The horizonatal line in the ICI
graphs represents the true value of p.
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Figure 5.18: Regions obtained for different starting points (marked with bold circle) for
calculating p̂c in the PPaU structure for σw = 10. Adaptive regions obtained for CI with
P = 0.9 are shown with small black dots. True values of p are 1.169 and 1.945 for inner
and outer sine wave respectively.
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Figure 5.19: The PUPa structure, σw = 10. Adaptive regions obtained for P = 0.9 are
shown with small black dots. True values of p are 1.111 and 1.742 for inner and outer
sine wave respectively.
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Figure 5.20: The PPaU structure. Adaptive regions for different CI widths.
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Figure 5.21: The PUPa structure. Adaptive regions for different CI widths.
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5.3.4 Implementation Issues

Recursive Computation

In this section we present methods to obtain computationally more efficient adapta-
tion algorithms. The concepts are shown for the first decomposition level of the PPaU
structure but the generalization to any level and also to the PUPa structure is straight-
forward.

In order to make the ICI calculation of p̂c computationally more efficient the p̂c for
window hj

p̂j
c =




∑

i∈hj

xhi · xpi



+
N

16
σ2

w




∑

i∈hj

x2
pi



− 6N

256
σ2

w

=
q̂j
c

r̂j
c

(5.7)

is being calculated by reusing the results of the previous smaller window hj−1 that is
included in the current window hj .

p̂j
c =

q̂j−1
c + ∆q̂ + n

16
σ2

w

r̂j−1
c + ∆r̂ − 6n

256
σ2

w

(5.8)

where n is the number of pixels belonging to a difference of the two windows hj\hj−1

and
∆q̂ =

∑

i∈hj\hj−1

xhi · xpi, (5.9)

∆r̂ =
∑

i∈hj\hj−1

x2
pi. (5.10)

Therefore, in the step j, the previously stored values of q̂j−1
c and r̂j−1

c will be reused,
so only the calculations for the difference pixels will have to be performed. We have
chosen regions to grow for one pixel in radial direction, so the difference pixels are
those that belong to the next wider ring of one pixel width.

Acceptable Values of p

As shown in Chapter 3, as the value of the p parameter increases, the limit wavelet and
scale functions become irregular. Based on experimental results we define an allowed
range of p values to be

pa ∈ [−5, 5] (5.11)

For the values of p parameter inside the interval, the limit wavelet and scale functions
are satisfactory regular for image processing applications.
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Considering the estimation of the p parameter, the values of the estimate p̂c can be
strongly biased for its denominator from equation 4.36 being close to zero. Therefore,
as stated in Section 4.4.3, when the values of denominator are found to be close to zero,
the adaptation will not be performed. For such cases the value of p will be set to zero,
leading to the basic lifting scheme structure. Usually, the value of denominator will be
close to zero for the parts of the input image that contain low-pass frequency content.
For those parts the adaptation will not be necessary since the fixed part of the filter
bank will already cancel detail coefficients.
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Chapter 6

Results

6.1 Introduction

In this chapter we present the results of the adaptation of the parameter p. In the
first part of the chapter we analyze the obtained detail coefficients. As expected, the
adaptation in the filter bank results in smaller detail coefficients.

In the second part of the chapter, we present image denoising results. The denois-
ing is based on the undecimated filter bank since it was shown [Donoho 95b] that for
denoising purposes it outperforms the decimated filter bank.

6.2 Adaptation of the Parameter p

In the previous chapter the method for obtaining an appropriate adaptation region on
which to calculate the value of the parameter p for a singe pixel was given. The method
was based on the ICI rule. The adaptation region was obtained by merging 8 different
wedge-like regions. In this way, the adaptation region can grow asymmetrically and
cover a part of the image of a similar statistical property. It this chapter we compare
the results based on such shape-adaptive regions with the results obtained with the
adaptation based on the window of a fixed size.

6.2.1 Dependence of p on the Signal Frequency

The adaptation of the parameter p on an image with a single harmonic component
leads to a single value of the parameter p over the whole image. Spatial sine waves
with different periods T and orientation angles θ (see Figure 6.1) result in different
values of the parameter p. In the Fourier domain a single value of the parameter p
leads to a magnitude frequency response of the corresponding analysis high-pass filter
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with zeros at different spatial frequencies (see Figure 3.13). Therefore, a single sine
wave present in the analyzed image can be perfectly cancelled from wavelet detail
coefficients (that are obtained as an output of the high-pass channel) with the correct
choice of the parameter p.

(a) θ = 0 (b) θ = π/8 (c) θ = π/4

Figure 6.1: Sine waves with period T = 10 and different orientations.

Figure 6.2 shows different values of the parameter p corresponding to different pe-
riods of the sine wave pattern present in the image. As the signal frequency decreases
(T increases) so does the value of the parameter p. Since the value of the parameter
p decreases exponentially, the differentiation of smaller frequencies is better. Graphs
from Figure 6.2 shows that differently oriented sine waves with the same period T will
have different values of the corresponding parameter p. It is the consequence of the
the zero ditch in magnitude frequency response of the analysis high-pass filters (see
Figure 3.13) which tends to be diamond-shaped.

6.2.2 Adaptation for Synthetic Images

In this section we will use a test image called SineCirle composed of two sine waves
similar to the one shown in Figure 1.2. The sine wave in the center of the image has
period T = 9 and orientation θ = π/8. For the first two decomposition levels, its
corresponding filter bank parameters are p1 = 1.1292 and p2 = 1.2261. The outer sine
wave has period T = 5 and θ = −π/4. Its corresponding filter bank parameters are
p1 = 1.0257 and p2 = 1.0273.

The test image has been corrupted with additive zero-mean Gaussian noise with
σw = 10. Figures 6.3, 6.4 show the obtained values of the adapted p parameters for
the case of the adaptation performed on a fixed size 3 × 3 and 5 × 5 windows respec-
tively. As shown in the figures, the larger window suppresses noise better and gives
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Figure 6.2: p-T graphs. True values of the p parameter for adaptation in the first decom-
position level of the PPaU and PUPa structures for sine waves with different periods
T (x-axis) and different orientations θ (along columns).

distributions of the p̂c parameters more concentrated around the true value of the filter
bank parameters. However, the larger window across the edges of the two sine-wave
regions results in oversmoothing the p values on the boundary.

Figure 6.5 shows the results of the ICI adaptation. For every pixel of the image, the
parameter p̂c was calculated based on a shape-adaptive region. Histograms in Figures
6.5(c) and 6.5(d) show that the p values are much more concentrated around the true
p values. It is a very important advantage of the ICI-based adaptation over the one
based on the fixed size windows. Additionally, the adaptation algorithm did not allow
a region to be smaller than 100 pixels. For such regions smaller than 100 pixels, p̂c

was set to zero, which equals a fixed filter bank with two zero moments. Black dots in
Figures 6.5(a) and 6.5(a) represent those zeros.

We have introduced a hybrid adaptation algorithm called ICImix that uses ICI
adaptation in the first stage and in the second stage it replaces the zero values with
ones obtained based on a fixed 9 × 9 window. Such a method was shown to give im-
proved results in terms of image denoising while still retaining the sharp distributions
of the p parameters that are inherent to the original ICI method.
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(d) Histogram of p̂c parameters for level
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Figure 6.3: The undecimated PUPa structure with adaptation of p on a fixed 3 × 3

window size. The p̂c parameters for levels 1 to 2. The image was corrupted with zero-
mean Gaussian noise with σw = 10.
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Figure 6.4: The undecimated PUPa structure with adaptation of p on a fixed 5 × 5

window size. The p̂c parameters for levels 1 to 2.
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Figure 6.5: The p̂c parameters for levels 1 to 2 of the undecimated PUPa structure were
obtained with ICI for P = 0.9. The image was corrupted with zero-mean Gaussian
noise with σw = 10.
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Figure 6.6: The p̂c parameters for levels 1 to 2 of the undecimated PUPa structure were
obtained with ICI for P = 0.9. Additionally, the zero values have been replaced with
ones obtained with a fixed 9 × 9 window. The image was corrupted with zero-mean
Gaussian noise with σw = 10.
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The resulting detail coefficients obtained with the adapted p parameters from the
previous section are shown in Figures 6.8 and 6.9. When compared to the detail coeffi-
cients obtained with unadapted wavelet decomposition (Figure 6.7), it is obvious that
the adaptation introduced significant advantages, i.e. the detail coefficients are set to
zero in the whole image except at the circular boundary of the two sine-wave patterns.
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(a) D coefficients for level 1. (b) Magnified D coefficients for
level 1.
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(c) D coefficients for level 2. (d) Magnified D coefficients for
level 2.

Figure 6.7: The undecimated P2U2 structure with no adaptation. The D coefficients for
levels 1 to 2.
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Figure 6.8: D coefficients for levels 1 to 2 of the undecimated PUPa structure obtained
with adaptation on the fixed 5 × 5 window.
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(a) Magnified detail coefficients
for level 1 for ICI method.

(b) Magnified detail coefficients
for level 1 for ICImix method.

(c) Magnified detail coefficients
for level 2 for ICI method.

(d) Magnified detail coefficients
for level 2 for ICImix method.

Figure 6.9: D coefficients for levels 1 to 2 of the undecimated PUPa structure obtained
with ICI-based adaptation for P = 0.9.
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6.2.3 Adaptation for Real-World Images

The Barbara image from Figure 6.11 contains lots of periodic components, mostly
present on the Barbara’s striped robe. As shown in Figures 6.11(b) and 6.11(d), the
adaptation on those regions resulted in constant valued p parameters. Therefore, the
information of the periodic components locally present in the image is captured in the
filter bank parameters while the periodic components are being eliminated from the
wavelet detail coefficients. Figure 6.10(a) shows detail coefficients for the part of the
Barbara image obtained with fixed wavelet decomposition with two vanishing mo-
ments. Opposed to the fixed wavelet decomposition, the adaptation of the filter bank
parameters resulted in cancelling most of the periodic components from the detail co-
efficients, as shown in Figure 6.10(b).

(a) Details coefficients obtained with nonadaptive
P2U2 structure.

(b) Details coefficients obtained with adaptive
PUPa structure.

Figure 6.10: Detail coefficients of the original Barbara image (the part around the head)
for the first level of the fixed P2U2 structure compared with the ones obtained with the
PUPa scheme with fixed-size 5 × 5 window adaptation.

Figure 6.12(a) shows a part of the Barbara image with a striped robe. The image was
corrupted with zero-mean Gaussian noise with σw = 10. As shown in Figure 6.12(b),
the adaptation on the window of the fixed 5× 5 size was influenced by the presence of
the noise and resulted in p parameters with rather spread histogram. Contrary to the
fixed-size window, the ICI method gave p values that are more concentrated around a
single value. Figure 6.12(c) shows the appropriate histogram of p values which reveals
the presence of a single dominant periodic component. This example shows an impor-
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(a) Original image. (b) p̂c for the original image.

(c) Noisy image with σw = 20. (d) p̂c for the noisy image.

Figure 6.11: The adapted p̂c parameters for the first level of the PUPa scheme obtained
with the fixed-size 5 × 5 window.
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tant advantage of the ICI based adaptation method: the periodic components locally
present in the image can be isolated more efficiently when compared to the adaptation
on a fixed region.

(a) Part of the noisy Barbara image with σw = 10 for which the pc histograms are shown.
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(b) Histogram for p̂c obtained with adapta-
tion on the fixed 5 × 5 window.
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(c) Histogram for p̂c obtained with ICI-
based adaptation with P = 0.95.

Figure 6.12: The histograms of p̂c parameters for the part of the Barbara’s scarf at level
1 of the undecimated PUPa structure.
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6.3 Image Denoising

The wavelet thresholding was shown to be a very efficient method for image denois-
ing [Donoho 95a]. The wavelet thresholding is a nonlinear operation performed on
wavelet detail coefficients obtained in all decomposition levels. Wavelet coefficients
lower than a given threshold are being set to zero while the coefficients higher than
a given threshold either remain unchanged (hard thresholding) or are being reduced
for the value of the threshold (soft thresholding). Soft thresholding usually leads to
visually more pleasing results.

The wavelet thresholding relies on the fact that an image can be modelled as re-
gions that are locally smooth and edges that are represented with strong variatons of
the pixel values. Those locally smooth parts can be approximated well with the local
polynomial representation obtaied with wavelet decomposition. Therefore, the detail
coefficients for those smooth parts will be mostly turned to zero or very close to zero.
On the other hand the edges will be strongly present in the detail coefficients. The
noise present in the image representing an uncorrelated component of the analyzed
signal will also be present in the detail coefficients. The choice of the threshold is ob-
tained as a compromise for setting the detail coefficients that correspond to the noise
to zero but at the same time not degrading the information about edges present in the
detail coefficients.

More advanced approaches are used in order to obtain an appropriate value of
the threshold or even to change the threshold locally based on the properties of the
underlying image [Chang 00, Kivanc 99]. We will use soft and hard thresholding with
the same value of the threshold accros the whole image.

In [Coifman 95] it was shown that significant improvement can be obtained by us-
ing the undecimated wavelet decomposition comapred to the decimated one. There-
fore, we will present the results obtained by using the undecimated decomposition.

The image denosing results for adaptive wavelets will be compared with results
obtainded with corresponding nonadaptive wavelets. The adaptation of the p para-
meters will be performed locally by either using a fixed window size or an adaptive
window obtained by using the ICI rule.

6.3.1 Components of the Processed Image

Regarding the adaptation introduced in the filter bank and the image denoising appli-
cation, we will consider four elements of an input image:

Polynomial components. The polynomial components are cancelled from detail coef-
ficients. For a filter bank with Ñ vanishing moments the polynomials of degree
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lower than Ñ will be completely cancelled in the detail coefficients. This property
is already guaranteed with the fixed part of the filter bank.

Harmonic components. The adaptation of the parameter p leads to cancelling some
periodic components that are locally present in the analyzed image from detail
coefficients. The information on these periodic components will now be trans-
ferred into the p parameters. Therefore, the thresholding of detail coefficients for
purposes of image denoising will not degrade those periodic components present
in the original image.

Noise. The noise will remain present in detail coefficients in order to be cancelled by
means of wavelet thresholding. In the ideal case, although the adaptation is being
performed on the noisy image, the noise component should not be present in the
calculated p parameters.

Edges. The adaptation algorithm will mostly fail to detect edges. Therefore, the edges
will still remain in the detail coefficients and can be degraded by thresholding
operations.

6.3.2 Denoising With Adaptive Quincunx Wavelets

In this section, we present denoising results for various test images. The results are
presented in terms of the Peak Signal to Noise Ratio (PSNR) values. PSNR in decibels
(dB) is computed as

PSNR = 20 log10

255

RMSE
(6.1)

where 255 is the largest 8-bit pixel value, and RMSE is the root mean squared error.
Therefore, the PSNR measures the ratio of the peak value and the difference between
the original and the reconstructed image. The root mean squared error is obtained by
using

RMSE =
√
MSE =

√
∑N1−1

n1=0

∑N2−1
n2=0 (x[n1, n2] − x̂[n1, n2])2

N
(6.2)

where N is the total number of pixels (N = N1N2), x[n1, n2] is the original image and
x̂[n1, n2] is the reconstructed image.

Synthetic Images

Denoising results in terms of PSNR for the SineCircle image are shown in Figure 6.13.
Denoising was performed for a range of threshold values which are proportional to
the standard deviation of the noise present in the image. The two graphs compare the
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three wavelet denoising types: denoising with fixed quincunx wavelets (dotted line),
denoising with adaptive PUPa structure on a 5 × 5 region (solid line), and denoising
with the ICImix adaptation method for the PUPa structure (dash-dot line). As shown,
for σw = 10, the improvement obtained with the fixed-region adaptation over non-
adaptive wavelets is 7.5 dB for hard thresholding and 6.5 dB for soft thresholding. The
ICImix adaptation introduces additional 1dB improvement over the fixed region adap-
tation. The part of the noisy SineCircle image and the images obtained with the three
denoising methods are shown in Figure 6.14. For each method, a soft threshold value
corresponding to its highest PSNR value from Figure 6.13(b) was chosen.

It is important to note that the ICI-based method, although giving p parameters
very sharp distributions did not give a significant improvement over the adaptation
of a fixed region which in presence of noise gives less accurate values of p parame-
ters. The reason is that the p parameters obtained with the fixed-window method were
still precise enough to cancel the sine-wave components from the detail coefficients, as
shown in Figure 6.8.
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(a) σw = 10, hard threshold.
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(b) σw = 10, soft threshold.

Figure 6.13: Denoising results for SineCircle image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line repre-
sents results obtained with the fixed P2U2 structure. Dash-dot line represents results
obtained with the ICImix method.

Results from Figure 6.15 show that the adaptation introduced in the filter bank
significantly improves denoising results. The adaptation transferred the information
about the harmonic components in the filter parameters and the noise present in the
image was more efficiently suppressed.
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(a) Part of the noisy image. (b) Denoised image with fixed
P2U2 structure.

(c) Denoised image with
adaptation on a 5 × 5 region.

(d) Denoised image with
ICImix adaptation.

Figure 6.14: Denoising results for soft thresholding shown on the part of the SineCircle
image.
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(c) σw = 10, hard threshold.
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0 2 4 6 8
10

15

20

25

30

P
S

N
R

Normalized threshold

(e) σw = 20, hard threshold.

0 2 4 6 8
10

15

20

25

30

P
S

N
R

Normalized threshold

(f) σw = 20, soft threshold.

Figure 6.15: Denoising results for SineCircle image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line represents
results obtained with the fixed P2U2 structure.
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Real-world Images

In order to test denoising performance of the adaptive filter bank on real-world images,
the four typical test images from Figure 6.16 are used.

(a) Barbara (b) Mandrill

(c) Goldhill (d) Peppers

Figure 6.16: The 8-bit real-world test images of size 512 × 512.

As shown in Figure 6.17, the improvement obtained with the adaptation of the
filter bank compared to the denoising with fixed wavelets is rather small and around 1
dB. Visually, there is not a big difference between Figures 6.18(c) (fixed wavelets) and
6.18(d) (adaptive wavelets).

Denoising results are shown in Figures 6.19, 6.20, 6.21, 6.22, 6.23, 6.24 for images
Madnrill, Goldhill, and Peppers. The improvement of using adaptive wavelets over
nonadaptive wavelets is rather small. It clearly states that the model of locally present
harmonic components can only be partially applied to real-world images. While being
very suitable for representing images with dominant periodic content, the proposed
denoising method is not applicable to real-world images in general.
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Figure 6.17: Denoising results for Barbara image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line represents
results obtained with the fixed P2U2 structure.
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(a) Part of the original image. (b) Part of the noisy image.

(c) Denoised image with fixed P2U2

structure.
(d) Denoised image with adaptation on
a 5 × 5 region.

Figure 6.18: Denoising results for soft thresholding shown on the part of the Barbara
image.
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(a) σw = 5, hard threshold.
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Figure 6.19: Denoising results for Mandrill image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line represents
results obtained with the fixed P2U2 structure.
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(a) Part of the original image. (b) Part of the noisy image.

(c) Denoised image with fixed P2U2

structure.
(d) Denoised image with adaptation on
a 5 × 5 region.

Figure 6.20: Denoising results for soft thresholding shown on the part of the Mandrill
image.

125



0 2 4 6 8
28

30

32

34

36
P

S
N

R

Normalized threshold

(a) σw = 5, hard threshold.
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Figure 6.21: Denoising results for Goldhill image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line represents
results obtained with the fixed P2U2 structure.
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(a) Part of the original image. (b) Part of the noisy image.

(c) Denoised image with fixed P2U2

structure.
(d) Denoised image with adaptation on
a 5 × 5 region.

Figure 6.22: Denoising results for soft thresholding shown on the part of the Goldhill
image.
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(a) σw = 5, hard threshold.
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Figure 6.23: Denoising results for Peppers image. Solid line represents PSNR values
for the PUPa structure based on the 5 × 5 adaptation window. Dashed line represents
results obtained with the fixed P2U2 structure.
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(a) Part of the original image. (b) Part of the noisy image.

(c) Denoised image with fixed P2U2

structure.
(d) Denoised image with adaptation on
a 5 × 5 region.

Figure 6.24: Denoising results for soft thresholding shown on the part of the Peppers
image.
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Chapter 7

Conclusions and Future Directions

7.1 Main Conclusions

In this thesis we presented a novel construction of adaptive wavelet decompositions
based on adaptive wavelet filter banks. The purpose of the adaptation was to obtain a
more compact representation of an analyzed image when compared to the nonadaptive
wavelet transform.

We used the biorthogonal wavelet filter bank based on the lifting scheme, as pro-
posed by Kovacevic and Sweldens in [Kovacevic 00]. The filter bank is nonseparable,
and it is based on quincunx sampling, which gives a more isotropic transform than the
one obtained using the separable sampling.

Based on the selected filter bank, we created a wavelet decomposition that adapts
its properties according to the local properties of the analyzed image. The main de-
sign requirement was to make the wavelet decomposition locally adaptive while at
the same time retaining the polynomial reconstruction property of the transform, i.e.
keeping the vanishing moments. The adaptation was introduced by modifying the
predict stage in the lifting scheme, and the two schemes named PPaU and PUPa were
proposed (Chapter 3). Both schemes retain a desired number of dual and primal van-
ishing moments which are ensured with the fixed part of the filter bank. As shown in
Section 4.6, the advantage of the PUPa structure is that the adaptation in one level does
not influence following levels. On the contrary, the PPaU structure suffers from the in-
fluence of the adaptation in the lower decomposition levels to higher decomposition
levels. A drawback of the PUPa structure is much wider supports of the analysis high-
pass filters (see Section 4.5) in comparison to the PPaU structure which gives poorer
results near the edges present in the analyzed image.

The adaptation of the filter bank parameters was performed in order to minimize
the squared prediction error on a neighborhood of a given pixel, which led to the min-
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imization of the energy of the wavelet detail coefficients. The influence of the additive
zero-mean Gaussian noise to the estimation of the adaptive filter parameter p was also
considered. In Section 4.3.3, it was shown that the obtained estimate of p is biased
and that its bias depends on the variance of the input noise, the values of the original
image, as well as the size (and shape) of the region on which the estimate is being cal-
culated. Since there is no closed form expression for the expectation of the estimated
p, the unbiased estimator is not available.

In order to decrease the influence of the noise, in Section 4.4 we proposed the im-
proved estimator p̂c. Although this estimator is still not perfectly unbiased, the sim-
ulation results showed that the bias is much smaller if the probability distribution of
the denominator in the expression for p̂c (equation 4.23) is negligible around zero. It is
important to note that the improvement terms introduced in the expression for estima-
tor p̂c depend only on the number of pixels included in the adaptation region and the
variance of the input zero-mean noise (see equations 4.36, 4.45, 4.46, and 4.49).

In order to obtain the appropriate adaptation region for every pixel, we employed a
statistical method called intersection of confidence intervals (ICI) rule [Katkovnik 02].
The ICI method gives regions of similar statistical properties for estimating the value
of the parameter p (Chapter 5). Although it is computationally demanding, the ICI
method significantly improves the estimation of the parameter p.

Finally, in Chapter 6 the image denoising results were presented for both synthetic
and real-world images. We have shown that in synthetic images composed of localized
periodic components, noise is significantly reduced by using the proposed adaptive
wavelet filter banks.

7.2 Future Research

The adaptation of the filter bank results in the p parameters which are different across
scales and positions of the analyzed images. In Section 3.4.2, we have shown that if
the same value of the parameter p is set in all decomposition levels, then for some
range of values of p the limit wavelet and scale functions are regular. However, no
explicit expression for the allowed range of p parameters’ values was obtained. The
impact of the choice of p parameters, which are different across scales and positions,
on the regularity of the underlying wavelet functions should be studied in details as
an important part of any future research built on the work presented in this thesis.

Our proposed adaptive wavelet filter banks are well suited for representing local-
ized periodical components of the image. However, since the adaptive filter banks are
based on the filters of fixed support, the edge localization is not very efficient. It would
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be interesting to explore how other adaptive structures, that change filters of different
supports based on the ICI algorithm, perform. For example, the de Boor-Ron algo-
rithm could be used to build Neville filters of different asymmetrical supports. In this
way, the prediction across edges, which happens with the fixed support filters, would
be avoided.
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Appendix: Confidence Intervals

In order to give a brief insight into the meaning of the confidence interval [Ross 87] let
us consider an estimate x̂ of a parameter x. The estimate is unbiased, i.e.

E(x̂) = x. (7.1)

 ˆ1.96
x

σ  ˆ1.96
x

σ

1̂x ˆ( )E x x= 2x̂ x̂

(a) There is a 95% probability that the estimate x̂ is contained within the interval
〈x̂1, x̂2〉 = 〈x − 1.96σx̂, x + 1.96σx̂〉...

1̂x ˆ( )E x x= 2x̂x̂ x̂

 ˆ1.96
x

σ  ˆ1.96
x

σ

(b) ...which further means that for a single estimated value x̂ there is 95% proba-
bility that the true value x is contained within the interval 〈x̂− 1.96σx̂, x̂ + 1.96σx̂〉.
Hence, the interval 〈x̂ − 1.96σx̂, x̂ + 1.96σx̂〉 is called a 95% confidence interval.

Figure 7.1: Confidence interval for a normal probability distribution of the estimate x̂.
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For example, if the distribution of x̂ is normal as shown in Figure 7.1(a) then it holds
that

P (x− 1.96σx̂ < x̂ < x+ 1.96σx̂) = 0.95 (7.2)

which means that there is a 95% probability that the estimate x̂ obtained in a single trial
will be inside the limits posed symmetrically around the true value x. From equation
7.2 it follows that

P (x̂− 1.96σx̂ < x < x̂+ 1.96σx̂) = 0.95 (7.3)

which gives a different perspective to the same estimation problem. It defines a confi-
dence interval of estimating x shown in Figure 7.1(b). The equation states that there is
a 95% probability that the parameter x that is being estimated will be inside an interval
defined with confidence limits

x̂± 1.96σx̂. (7.4)

Asymmetric distribution

In general, the distribution of an estimate can be asymmetrical as shown in Figure
7.2(a) so the p% confidence interval shown in Figure 7.2(b) is not symmetrical any more.

From
P (x− ∆x̂1 < x̂ < x+ ∆x̂2) = p (7.5)

it follows that
P (x̂− ∆x̂2 < x < x̂+ ∆x̂1) = p (7.6)

so the confidence interval is obtained as

〈x̂− ∆x̂2, x̂+ ∆x̂1〉 (7.7)

Note the change of positions of ∆x̂1 and ∆x̂2 from equation 7.5 to 7.6.
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(a) There is a 95% probability that the estimate x̂ is contained within the interval
〈x̂1, x̂2〉 = 〈x − ∆x̂1, x + ∆x̂2〉...
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(b) ...which further means that for a single estimated value x̂ there is 95% probabil-
ity that the true value x is contained within the interval 〈x̂−∆x̂2, x̂+∆x̂1〉. Hence,
the interval 〈x̂ − ∆x̂2, x̂ + ∆x̂1〉 is called a 95% confidence interval.

Figure 7.2: Confidence interval for an asymmetrical probability distribution of the es-
timate x̂.
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Abstract

In this thesis, we propose the novel adaptive wavelet filter bank structures that are
used to obtain efficient representations of the analyzed images.

We present the lifting scheme structures for building adaptive wavelet decompo-
sitions based on the nonseparable quincunx sampling scheme. The resulting wavelet
decompositions are adaptive to the local properties of the analyzed image. Despite the
introduced adaptation, a desired number of vanishing moments is still retained.

The proposed adaptation is performed in order to minimize the energy of detail
coefficients on a neighborhood of each pixel of the analyzed image. The appropriate
neighborhood is determined for each pixel separately by using the intersection of con-
fidence intervals (ICI) rule. The application of the ICI rule improves the estimation of
the filter bank parameters and makes it more robust to noise.

The image denoising results are presented for both synthetic and real-world im-
ages. It is shown that the adaptive wavelet decompositions outperform the existing
fixed decompositions in terms of denoising quality of images that contain periodic
components, and in general they give more compact image representations.

Keywords: wavelet transforms, adaptive filters, second generation wavelets, adap-
tive lifting scheme, quincunx sampling, interpolating filters, intersection of confidence
intervals, image denoising.
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Sažetak

U ovoj disertaciji predlažemo nove adaptivne valićne filtarske strukture koje se koriste
za dobivanje efikasnih reprezentacija analiziranih slika.

U radu prikazujemo filtarske slogove temeljene na shemi podizanja za konstrukciju
adaptivnih valićnih razlaganja zasnovanih na neseparabilnom quincunx uzorkovanju.
Rezultirajuća valićna razlaganja su prilagod̄ena lokalnim svojstvima analizirane slike.
Unatoč uvedenoj adaptaciji, zadržan je željeni broj nul-momenata pripadajućih val-
ićnih funkcija.

Adaptacija se vrši sa ciljem minimizacije koeficijenata detalja na okolini svakog
slikovnog elementa. Odabir odgovarajuće okoline za svaki slikovni element vrši se ko-
rištenjem metode presjecišta invervala pouzdanosti. Primjena dotične metode poboljšava
adaptaciju parametara filtarskog sloga i čini je robusnijom na šum.

Rezultati uklanjanja šuma iz slike prikazani su za primjere sintetičkih kao i realnih
slika. Pokazano je da dobivena adaptivna valićna razlaganja nadmašuju postojeća fik-
sna razlaganja s obzirom na kvalitetu uklanjanja šuma iz slika koje sadrže periodičke
komponente, te općenito daju kompaktniji zapis slike.

Ključne riječi: valićne transformacije, adaptivni filtri, valići druge generacije, adap-
tivna shema podizanja, quincunx uzorkovanje, interpolacijski filtri, presjecište inter-
vala pouzdanosti, uklanjanje šuma iz slike.
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