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1. INTRODUCTION AND PRELIMINARIES

The aim of this article is to prove the following
THEOREM. Let G be a nonabelian non-metacyclic finite 2-group with all
proper sugroups being abelian or metacyclic and possessing at least one
nonabelian and at least one nonmetacyclic proper subgroup. Then G is iso-
morphic to some of the groups:
G=(abc|a? =b =2 =1,a> =al*?7" a¢=0a,b° =b) = (a,b) x (c),
=2, v=>1,
that is, G is the direct product of a metacyclic minimal nonabelian group
(a,b), distinct from Qg, and the cyclic group (c) of order 2.

Using this Theorem and two previously known results:

Theorem 1 (Miller-Moreno,[2]) A minimal nonabelian finite 2-group is
isomorphic to some of the groups:

(a) G=(a,b|a? = =1,ab =a*?""), p>2 v>1

(b) G = {(a,b,c|a® =b* =c?=1,c=[a,b],[a,c] = [b,c] = 1),

wrv>1, p+v>2

(c) G =Qs

Theorem 2 (Blackburn,see Janko[1]Th. 7.1)) A minimal nonmetacyclic
finite 2-group is isomorphic to some of the groups:

(a) G ={a,bc|a*=b*=1, ¢ =a?? a® =a, a¢ = a3, b° = a?b?),

a special group of order 32,

(b)) G= Qg x Z

(¢c) G = Qs * Zy, the central product of Qs and Z,

(d) G = Es

we get the following classification of the considered groups:



Theorem 3 Let G be a nonabelian nonmetacyclic finite 2-group with all
proper subgroups being abelian or metacyclic. Then G is isomorphic to some
of the groups:

(a) G = {a,b,c|a® =" =c®=1,c=[a,b],[a,c] = [b,c] = 1),

wrv>1 p+v>2

(b) G={a,bc|a? =b =2=1,a"=a""?"" 0 =0a,b° =),

=2, v>1

(c) G ={a,b,c|a*=0b*=1,c =a%? a’ = a,a® = a>,b° = a?b3)

(d) G = Qs x Zy

(e) G = Qg * Zy, the central product of Qs and Zy.

Proof: 1If all proper subgroups of G are abelian, then G is a nonmetacyclic
minimal nonabelian group from the list in Theorem 1, which gives the case
(a). If all proper subgroups of G are metacyclic, then G is a nonabelian group
from the list in Theorem 2, which gives the cases (c),(d),(e). Otherwise,
there must be in G some nonabelian metacyclic proper subgroup and some
nonmetacyclic abelian proper subgroup, and applying our Theorem, we get
the case (b).

2.PROOF OF THE THEOREM

Let A be an abelian maximal subgroup of G, which is not metacyclic
and M a metacyclic maximal subgroup of GG, which is not abelian. Denote
T =AN M. The group T is both metacyclic and abelian.

We prove our Theorem in several steps:

(i) M ={a,b|a® =1, ¥ =a*, a®=0a*), p>2, v>1,
1<p<up,s>1,2¢s:

Being metacyclic, M is of the form M = (a,b|a™ = 1, b" = a", a® = a*).
As M is a 2-group, obviously m = 2#, n = 2" r =’ -2° with 2 { v/ and
2 1 s. Replacing a by a” we have b2” = a?’, the other relations remaining
unchanged. As M is not abelian and (a) <M, itisp>2, v > 1, p > 1 and
s>1.0



(i1) d(A) =3, d(T) =2 and A =T x (c) for some involution c € A—T.

There are exactly three involutions in T':
= AN M is metacyclic and abelian. Therefore d(7T) < 2. Since

A= (T,c) for any c€ A—T, and A is not metacyclic, we have d(A) > 3
and d(A) < d(T) + 1. It follows d(T) = 2, d(A) = 3, and so ;(T) =
E4, Q1(A) = Eg. Thus there are exactly 3 involutions in 7" and there is some
involution ¢ € ©1(A)—Q1(T") C A—T. Now, obviously, A = (T, ¢) = T x (c).
O

(iii) Denote N = (a) << M. Then either

1) N<T and T = (a,b?), v >2, or

2) N £ T and, without loss, T = (a?,b):
If N ={a) <T,thenb¢ T,but b> € T, as M/T = Z,. Thus {a,b?) < T and
|M : (a,b%)| =2=|M :T|. It follows T = (a,b?). If N £ T, then M = NT
and NT/N = M/N 2T/NNT = Zy.. Hencefrom |[N: NNT|=|M :T| =
2, NNT = (a?) and there exists b’ € T — (N NT) such that b2 € NNT and
Y2 ¢ NNT. Now T = (NNT,¥) = (a2, ') and M = (a,V). Replacing b
by b’ we get M = (a,b), T = {(a?,b). O

(iv) ®(M) = U1 (M) = {a?,b%) is abelian:

We know that ®(M) = U1(M) for 2-groups and M/®(M) = E, since
M is metacyclic. As (a?,b?) < U1(M), and |M : {a?,b%)| = 4, it follows
O(M) = (a®,b?). Also ®(M) < T, because T is maximal in M, and so
®(M) is abelian. O

In the following, we consider the involutions in 7. In N = (a) there
is only one involution 7 = a?"'. If o is another involution in T, then

N (T) = (o, 7).

V) Ifv >2, p>2, then W (T) = (0,7), where 0 = a2 02" and 7 =
a? ", and thus Q,(T) < (a2,b?) = ®(M). Besides, Q1(A) = (o,7,¢) = Fy :

Here 0 € T — {(a), and 02 = (a2 02" )2 = a 20 = a2a® = 1.
So o and o7 are both involutions in 7' — (a). Since A =T X (c), obviously
Q1(A) = Q(T) x {¢) = {o,T,¢). O



(Vi) If v > 2, p>2, then G = M x {(c) and M is minimal nonabelian:

By (ii) and (iii) we have [T,c] = 1 and either 1) T = (a,b?) or 2) T =
(a%,b). Thus a = a in case 1) and b° = b in case 2). Among the generators
a,b of M denote the one belonging to T" by x, and the one outside of T" by y.
Thus 2¢ = . Itis y ¢ T, but 2 € T and we have (y?)¢ = y2, yc2 =yl =y.
Since G/T = E4 and G/T = (Ty,T¢c), it is y¢ = ty, for some t € T. Hence
v =)=ty =ty = bty =y, (YR =ty =ty -ty = Pt =
ttYy? = y2. It follows that t?> = 1 and t¥ = ¢, thus ¢ is some involution in T
and [y, t] = 1.

We assert that ®(G) = ®(M) = (a?,b?). As G = (M, c), the elements
of G are of the form g = z%y® or g = z%yPc. If g = 2295 € (a,b) =
M, then g% € ®(M) = (a%,b?). If g = 2%9Y%c, then ¢ = (z*9y%c)? =

oyl (2°)*(y°)P = xyP - 1-2%(ty)P = 2¥yP2x*tPyS = (2*9%)% - 18, because
of [x,t] = [y,t] = 1. Since (z*y”)? € ®(M) and t € (o, 7) C ®(M), it follows
g*> € ®(M) in any case. Therefore U1(G) = ®(G) < ®(M) < ®(G), and so
B(G) = (M) = (a2, 7).
Now G = (®(G),a,b,c) = (z,y,¢). The subgroup M; = (®(G),y,c) =
(®P(M),y,c) is a maximal subgroup of G containing (o, 7, ¢) = Eg. Thus M;
is not metacyclic. So it must be abelian, and y° = y. Since also ¢ = x, we
have [a,c] = [b,c] =1, and so G = M X (c).

For each maximal subgroup T of M, we have T} > ®(M) > (o, 7). The
group 17 x (c) is maximal in G and contains (o, 7,c) = Eg. By the above
argument 77 x (c) is also abelian, and so is T}. It follows that all proper
subgroups of M are abelian and so M is minimal nonabelian metacyclic

group. [
Now we consider the remaining cases, when v =1 or p = 1.

(vii) Both cases v =1, or p =1 reduce to the case v =1, that is
M= {a,b|a® =1, b>=0d*", a® =a®), 21s:
If v =1, then M is as stated above and it is a metacyclic group with a

cyclic maximal subgroup (a).



If p =1, then M = (a,b | a® = 1,b* = a?,a® = a®). Now, |[b*'| =
la?| = 2#~1 and so |b] = 2T+ ~L As |M| = 2#17 | it now follows that(b) is a
cyclic maximal subgroup of M. Interchanging the notation for a and b, we
get again the same relations for M as in the assertion. [

(viii) In any case, G = (¢) x M and M is minimal nonabelian:

We continue considering the remaining case v = 1. Since T' = AN

M, d(T) = 2, therefore T # (a). From |M : T| = 2 and |M : (a)| = 2,
it follows T'N {a) = (a?). Since (o,7) < T and o ¢ (a), it is M = (a,0),
and we can replace b by 0. Now, b=0 € T, b> =02 =1 and T = (a?,b),
M= {a,b|a® =b>=1,a" = a°).
It is (a?)’ = a® = (a®)? = a?*and thus 2#|2(s—1). It follows that s = 1++2+~!
and so a® = ¢®" - a = 7a. Similarly as in (vi), we have a® = ta, for some
t €T, and from a® = a! = a and (a%)¢ = a? we conclude again that ¢ = 1
and t* = t. Therefore t € (0,7). Because of 7% = 7, 0% = b* £ b = 0, it
must be ¢t € (1), that is

G = {a,bc|a® =b>=c?=1,a>=1a,a® = 1"a,b° = b), n € {0,1}.

If n = 0, then obviously G = M x (c), where

M= {a,b|a? =b2=1, ab = al+2" "),

Otherwise, if n = 1, replacing ¢ by ¢ = bc = oc¢, we have ¢ = (0c)? =
1, a = gbc = (
subgroups of M are (®(M),a) = (a), (®(M),o) = (a?,0) and (®(M), ac) =
(a%,ac), all of them being abelian. Thus M is minimal nonabelian group.
U

Ta)¢ =7 -7Ta = a, and again G = M X (c). The maximal

(ix) G is isomorphic to some of the groups:
G={abc|a® =b"=c=1,a>= alt2"7 q¢ = a,b¢ =b),
nw>2 v>1.
This follows immediately by (vi),(viii) and Theorem 1, as the groups from

Theorem 1(b) are not metacyclic, and Qg X Z2 is minimal nonmetacyclic. [J



(x) All groups listed in the Theorem have the stated property:

It remains to show that every maximal subgroup of such a group G is abelian
or metacyclic. We know that M is minimal nonabelian and M/®(M) = Ey.
Thus ®(M) is intersection of abelian maximal subgroups and so lies in Z(M)
and Z(M) = ®(M). Since G = M X (c), obviously ®(M) = O (M) =
01 (G) = ®(G) and Z(G) = Z(M) x (¢) = ®(G) x (c).

The Frattini factor group G/®(G) = (a,b,¢) = Fg has 7 maximal subgroups:
Hy = (a,b), Hy = (a,¢), H3 = (b,¢), Hy = {(ab,¢), Hs = (a, bc),

Hg = (ac,b), and Hy = (ac,bc). They are in the one to one correspondence
with maximal subgroups of G, according the correspondence law:

T = (7.3) = Hi = (2,5, (G)).

We see that:

Hy = (a,b,®(G)) = {(a,b,®(M)) = M is metacyclic, nonabelian
Hy = (a,c,®(Q)), Hz = (b,c,®(G)) and Hy = (ab, c, ®(G)) are all abelian,
because they are cyclic extensions of Z(G) = ®(G) x (¢).

The groups H3 and H, are moreover nonmetacyclic in both cases v > 2
and v = 1, while Hs is metacyclic in the latter case, as for v = 1 the group
®(G) = (a?).

Since ¢ € Z(G) and ¢? = 1, it is (ac)? = a?, (bc)? = b2, |ac| = |al, \bc\ =
|b| and [a, be] = [ac, b] = [ac, be] = [a,b] = a®" = (ac)?"”

Hs = (a,be, ®(G)) = {a,be | a?" = (be)% =1, [a,bd = a2“‘1> ~

Hg = (ac,b,®(GQ)) = (ac,b | (ac)® =0*" =1, |

Hy; = {(ac,bc, ®(Q)) = (ac,be | (ac)?” = (be)* =1, [ac, bc] = (ac)?" ")
Hy,

and Hs, Hg, H7 are all metacyclic nonabelian. [

Our Theorem is proved.
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