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A CLASS OF NONABELIAN NONMETACYCLIC FINITE 2-GROUPS

Vladimir Ćepulić and Olga S. Pyliavska

1. INTRODUCTION AND PRELIMINARIES

The aim of this article is to prove the following

THEOREM. Let G be a nonabelian non-metacyclic finite 2-group with all

proper sugroups being abelian or metacyclic and possessing at least one

nonabelian and at least one nonmetacyclic proper subgroup. Then G is iso-

morphic to some of the groups:

G = 〈a, b, c | a2µ
= b2ν

= c2 = 1, ab = a1+2µ−1
, ac = a, bc = b〉 = 〈a, b〉 × 〈c〉,

µ ≥ 2, ν ≥ 1,

that is, G is the direct product of a metacyclic minimal nonabelian group

〈a, b〉, distinct from Q8, and the cyclic group 〈c〉 of order 2.

Using this Theorem and two previously known results:

Theorem 1 (Miller-Moreno,[2]) A minimal nonabelian finite 2-group is

isomorphic to some of the groups:

(a) G = 〈a, b | a2µ
= b2ν

= 1, ab = a1+2µ−1〉, µ ≥ 2, ν ≥ 1

(b) G = 〈a, b, c | a2µ
= b2ν

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉,
µ, ν ≥ 1, µ + ν > 2

(c) G ∼= Q8

Theorem 2 (Blackburn,see Janko[1]Th. 7.1)) A minimal nonmetacyclic

finite 2-group is isomorphic to some of the groups:

(a) G = 〈a, b, c | a4 = b4 = 1, c2 = a2b2, ab = a, ac = a3, bc = a2b3〉,
a special group of order 32,

(b) G ∼= Q8 × Z2

(c) G ∼= Q8 ∗ Z4, the central product of Q8 and Z4

(d) G ∼= E8

we get the following classification of the considered groups:
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Theorem 3 Let G be a nonabelian nonmetacyclic finite 2-group with all

proper subgroups being abelian or metacyclic. Then G is isomorphic to some

of the groups:

(a) G = 〈a, b, c | a2µ
= b2ν

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉,
µ, ν ≥ 1, µ + ν > 2

(b) G = 〈a, b, c | a2µ
= b2ν

= c2 = 1, ab = a1+2µ−1
, ac = a, bc = b〉,

µ ≥ 2, ν ≥ 1

(c) G = 〈a, b, c | a4 = b4 = 1, c2 = a2b2, ab = a, ac = a3, bc = a2b3〉
(d) G ∼= Q8 × Z2

(e) G ∼= Q8 ∗ Z4, the central product of Q8 and Z4.

Proof: If all proper subgroups of G are abelian, then G is a nonmetacyclic

minimal nonabelian group from the list in Theorem 1, which gives the case

(a). If all proper subgroups of G are metacyclic, then G is a nonabelian group

from the list in Theorem 2, which gives the cases (c),(d),(e). Otherwise,

there must be in G some nonabelian metacyclic proper subgroup and some

nonmetacyclic abelian proper subgroup, and applying our Theorem, we get

the case (b).

2.PROOF OF THE THEOREM

Let A be an abelian maximal subgroup of G, which is not metacyclic

and M a metacyclic maximal subgroup of G, which is not abelian. Denote

T = A ∩M . The group T is both metacyclic and abelian.

We prove our Theorem in several steps:

(i) M = 〈a, b | a2µ
= 1, b2ν

= a2ρ
, ab = as〉, µ ≥ 2, ν ≥ 1,

1 ≤ ρ ≤ µ, s > 1, 2 - s :

Being metacyclic, M is of the form M = 〈a, b | am = 1, bn = ar, ab = as〉.
As M is a 2-group, obviously m = 2µ, n = 2ν , r = r′ · 2ρ with 2 - r′ and

2 - s. Replacing a by ar′ we have b2ν
= a2ρ

, the other relations remaining

unchanged. As M is not abelian and 〈a〉CM , it is µ ≥ 2, ν ≥ 1, ρ ≥ 1 and

s > 1. ¤

3



(ii) d(A) = 3, d(T ) = 2 and A = T × 〈c〉 for some involution c ∈ A− T .

There are exactly three involutions in T :

T = A ∩ M is metacyclic and abelian. Therefore d(T ) ≤ 2. Since

A = 〈T, c〉 for any c ∈ A − T , and A is not metacyclic, we have d(A) ≥ 3

and d(A) ≤ d(T ) + 1. It follows d(T ) = 2, d(A) = 3, and so Ω1(T ) ∼=
E4, Ω1(A) ∼= E8. Thus there are exactly 3 involutions in T and there is some

involution c ∈ Ω1(A)−Ω1(T ) ⊆ A−T . Now, obviously, A = 〈T, c〉 = T×〈c〉.
¤

(iii) Denote N = 〈a〉C M . Then either

1) N ≤ T and T = 〈a, b2〉, ν ≥ 2, or

2) N � T and, without loss, T = 〈a2, b〉:
If N = 〈a〉 ≤ T , then b /∈ T , but b2 ∈ T , as M/T ∼= Z2. Thus 〈a, b2〉 ≤ T and

|M : 〈a, b2〉| = 2 = |M : T |. It follows T = 〈a, b2〉. If N � T , then M = NT

and NT/N = M/N ∼= T/N ∩ T ∼= Z2ν . Hencefrom |N : N ∩ T | = |M : T | =
2, N ∩T = 〈a2〉 and there exists b′ ∈ T −(N ∩T ) such that b

′2ν ∈ N ∩T and

b′2ν−1
/∈ N ∩ T . Now T = 〈N ∩ T, b′〉 = 〈a2, b′〉 and M = 〈a, b′〉. Replacing b

by b′ we get M = 〈a, b〉, T = 〈a2, b〉. ¤
(iv) Φ(M) = f1(M) = 〈a2, b2〉 is abelian:

We know that Φ(M) = f1(M) for 2-groups and M/Φ(M) ∼= E4 since

M is metacyclic. As 〈a2, b2〉 ≤ f1(M), and |M : 〈a2, b2〉| = 4, it follows

Φ(M) = 〈a2, b2〉. Also Φ(M) ≤ T , because T is maximal in M , and so

Φ(M) is abelian. ¤

In the following, we consider the involutions in T . In N = 〈a〉 there

is only one involution τ = a2µ−1
. If σ is another involution in T , then

Ω1(T ) = 〈σ, τ〉.

(v) If ν ≥ 2, ρ ≥ 2, then Ω1(T ) = 〈σ, τ〉, where σ = a−2ρ−1
b2ν−1

and τ =

a2µ−1
, and thus Ω1(T ) ≤ 〈a2, b2〉 = Φ(M). Besides, Ω1(A) = 〈σ, τ, c〉 ∼= E8 :

Here σ ∈ T − 〈a〉, and σ2 = (a−2ρ−1
b2ν−1

)2 = a−2ρ
b2ν

= a−2ρ
a2ρ

= 1.

So σ and στ are both involutions in T − 〈a〉. Since A = T × 〈c〉, obviously

Ω1(A) = Ω1(T )× 〈c〉 = 〈σ, τ, c〉. ¤
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(vi) If ν ≥ 2, ρ ≥ 2, then G = M × 〈c〉 and M is minimal nonabelian:

By (ii) and (iii) we have [T, c] = 1 and either 1) T = 〈a, b2〉 or 2) T =

〈a2, b〉. Thus ac = a in case 1) and bc = b in case 2). Among the generators

a, b of M denote the one belonging to T by x, and the one outside of T by y.

Thus xc = x. It is y /∈ T , but y2 ∈ T and we have (y2)c = y2, yc2 = y1 = y.

Since G/T ∼= E4 and G/T = 〈Ty, Tc〉, it is yc = ty, for some t ∈ T . Hence

yc2 = (yc)c = (ty)c = tc · ty = t · ty = y, (y2)c = yc · yc = ty · ty = ty2ty =

ttyy2 = y2. It follows that t2 = 1 and ty = t, thus t is some involution in T

and [y, t] = 1.

We assert that Φ(G) = Φ(M) = 〈a2, b2〉. As G = 〈M, c〉, the elements

of G are of the form g = xαyβ or g = xαyβc. If g = xαyβ ∈ 〈a, b〉 =

M , then g2 ∈ Φ(M) = 〈a2, b2〉. If g = xαyβc, then g2 = (xαyβc)2 =

xαyβc2(xc)α(yc)β = xαyβ · 1 · xα(ty)β = xαyβxαtβyβ = (xαyβ)2 · tβ, because

of [x, t] = [y, t] = 1. Since (xαyβ)2 ∈ Φ(M) and t ∈ 〈σ, τ〉 ⊆ Φ(M), it follows

g2 ∈ Φ(M) in any case. Therefore f1(G) = Φ(G) ≤ Φ(M) ≤ Φ(G), and so

Φ(G) = Φ(M) = 〈a2, b2〉.
Now G = 〈Φ(G), a, b, c〉 = 〈x, y, c〉. The subgroup M1 = 〈Φ(G), y, c〉 =

〈Φ(M), y, c〉 is a maximal subgroup of G containing 〈σ, τ, c〉 ∼= E8. Thus M1

is not metacyclic. So it must be abelian, and yc = y. Since also xc = x, we

have [a, c] = [b, c] = 1, and so G = M × 〈c〉.
For each maximal subgroup T1 of M , we have T1 ≥ Φ(M) ≥ 〈σ, τ〉. The

group T1 × 〈c〉 is maximal in G and contains 〈σ, τ, c〉 ∼= E8. By the above

argument T1 × 〈c〉 is also abelian, and so is T1. It follows that all proper

subgroups of M are abelian and so M is minimal nonabelian metacyclic

group. ¤

Now we consider the remaining cases, when ν = 1 or ρ = 1.

(vii) Both cases ν = 1, or ρ = 1 reduce to the case ν = 1, that is

M = 〈a, b | a2µ
= 1, b2 = a2ρ

, ab = as〉, 2 - s :

If ν = 1, then M is as stated above and it is a metacyclic group with a

cyclic maximal subgroup 〈a〉.
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If ρ = 1, then M = 〈a, b | a2µ
= 1, b2ν

= a2, ab = as〉. Now, |b2ν | =

|a2| = 2µ−1, and so |b| = 2ν+µ−1. As |M | = 2µ+ν , it now follows that〈b〉 is a

cyclic maximal subgroup of M . Interchanging the notation for a and b, we

get again the same relations for M as in the assertion. ¤
(viii) In any case, G = 〈c〉 ×M and M is minimal nonabelian:

We continue considering the remaining case ν = 1. Since T = A ∩
M, d(T ) = 2, therefore T 6= 〈a〉. From |M : T | = 2 and |M : 〈a〉| = 2,

it follows T ∩ 〈a〉 = 〈a2〉. Since 〈σ, τ〉 ≤ T and σ /∈ 〈a〉, it is M = 〈a, σ〉,
and we can replace b by σ. Now, b = σ ∈ T, b2 = σ2 = 1 and T = 〈a2, b〉,
M = 〈a, b | a2µ

= b2 = 1, ab = as〉.
It is (a2)b = a2 = (ab)2 = a2sand thus 2µ|2(s−1). It follows that s = 1+2µ−1

and so ab = a2µ−1 · a = τa. Similarly as in (vi), we have ac = ta, for some

t ∈ T , and from ac2 = a1 = a and (a2)c = a2 we conclude again that t2 = 1

and ta = t. Therefore t ∈ 〈σ, τ〉. Because of τa = τ, σa = ba 6= b = σ, it

must be t ∈ 〈τ〉, that is

G = 〈a, b, c | a2µ
= b2 = c2 = 1, ab = τa, ac = τηa, bc = b〉, η ∈ {0, 1}.

If η = 0, then obviously G = M × 〈c〉, where

M = 〈a, b | a2µ
= b2 = 1, ab = a1+2µ−1〉.

Otherwise, if η = 1, replacing c by c′ = bc = σc, we have c′2 = (σc)2 =

1, ac′ = abc = (τa)c = τ · τa = a, and again G = M × 〈c〉. The maximal

subgroups of M are 〈Φ(M), a〉 = 〈a〉, 〈Φ(M), σ〉 = 〈a2, σ〉 and 〈Φ(M), aσ〉 =

〈a2, aσ〉, all of them being abelian. Thus M is minimal nonabelian group.

¤
(ix) G is isomorphic to some of the groups:

G = 〈a, b, c | a2µ
= b2ν

= c2 = 1, ab = a1+2µ−1
, ac = a, bc = b〉,

µ ≥ 2, ν ≥ 1.

This follows immediately by (vi),(viii) and Theorem 1, as the groups from

Theorem 1(b) are not metacyclic, and Q8×Z2 is minimal nonmetacyclic. ¤
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(x) All groups listed in the Theorem have the stated property:

It remains to show that every maximal subgroup of such a group G is abelian

or metacyclic. We know that M is minimal nonabelian and M/Φ(M) ∼= E4.

Thus Φ(M) is intersection of abelian maximal subgroups and so lies in Z(M)

and Z(M) = Φ(M). Since G = M × 〈c〉, obviously Φ(M) = Ω1(M) =

Ω1(G) = Φ(G) and Z(G) = Z(M)× 〈c〉 = Φ(G)× 〈c〉.
The Frattini factor group G/Φ(G) = 〈a, b, c〉 ∼= E8 has 7 maximal subgroups:

H1 = 〈a, b〉, H2 = 〈a, c〉, H3 = 〈b, c〉, H4 = 〈ab, c〉, H5 = 〈a, bc〉,
H6 = 〈ac, b〉, and H7 = 〈ac, bc〉. They are in the one to one correspondence

with maximal subgroups of G, according the correspondence law:

Hi = 〈x, y〉 ↔ Hi = 〈x, y,Φ(G)〉.
We see that:

H1 = 〈a, b,Φ(G)〉 = 〈a, b, Φ(M)〉 = M is metacyclic, nonabelian

H2 = 〈a, c, Φ(G)〉, H3 = 〈b, c,Φ(G)〉 and H4 = 〈ab, c,Φ(G)〉 are all abelian,

because they are cyclic extensions of Z(G) = Φ(G)× 〈c〉.
The groups H3 and H4 are moreover nonmetacyclic in both cases ν ≥ 2

and ν = 1, while H2 is metacyclic in the latter case, as for ν = 1 the group

Φ(G) = 〈a2〉.
Since c ∈ Z(G) and c2 = 1, it is (ac)2 = a2, (bc)2 = b2, |ac| = |a|, |bc| =

|b| and [a, bc] = [ac, b] = [ac, bc] = [a, b] = a2µ−1
= (ac)2

µ−1
. Therefore:

H5 = 〈a, bc,Φ(G)〉 = 〈a, bc | a2µ
= (bc)2

ν
= 1, [a, bc] = a2µ−1〉 ∼= H1

H6 = 〈ac, b,Φ(G)〉 = 〈ac, b | (ac)2
µ

= b2ν
= 1, [ac, b] = (ac)2

µ−1〉 ∼= H1

H7 = 〈ac, bc,Φ(G)〉 = 〈ac, bc | (ac)2
µ

= (bc)2
ν

= 1, [ac, bc] = (ac)2
µ−1〉 ∼=

H1,

and H5,H6,H7 are all metacyclic nonabelian. ¤

Our Theorem is proved.
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