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Abstract

Spin interferometry of the 4th order for independent polarized as well as

unpolarized photons arriving simultaneously at a beam splitter and exhibiting

spin correlation while leaving it, is formulated and discussed in the quantum

approach. Beam splitter is recognized as a source of genuine singlet photon

states. Also, typical nonclassical beating between photons taking part in the

interference of the 4th order is given a polarization dependent explanation.
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I. INTRODUCTION

Quite a number of papers were recently engaged in the nonclassical 4th order interference

of independent sources [1–18]. It proved to be a powerful tool for checking on possible new

quantum principles and features as well as on the nonstandard interpretations of quantum

phenomena. E.g., Dirac’s principle each photon interferes only with itself seems to be valid

only for the standard interference of the 2nd order while for the nonclassical interference of

the 4th order it should read: each pair of photons interferes only with itself [3,6]. As for

the nonstandard interpretations, the nonclassical interference of the 4th order, in particular

with the down–converted beams, was recently used for disproving both local and nonlocal

hidden–variable theories. Ou and Mandel [1,7,9] have elaborated and carried out a new

type of the Bell–like experiments against local hidden–variable theories which was then

extended by Yurke and Stoler [12] to three independent sources, by Żukowski, Zeillinger,

Horne, and Ekert [13] to independent correlated pairs in the configuration space, and by

Pavičić and Summhammer [14,15] to independent correlated pairs in the spin space. On the

other hand Wang, Zou, and Mandel [17] carried out an experiment to test de Broglie–Bohm

pilot (guiding, “ghost”) waves (without the latter being physically blocked) according to a

set–up proposed by the Selleri–Croca school and obtained a negative result.

The afore mentioned extention in the spin space brought us to a new phenomenon —

spin correlated interferometry — which asks for an independent elaboration. So, in this

paper we elaborate the spin correlated interferometry of the 4th order for two polarized as

well as unpolarized photons arriving simultaneously at a beam splitter and in a forthcoming

paper [16] the spin correlated interferometry for the independent pairs of spin (polariza-

tion) correlated photons. We call the phenomena spin correlated interferometry because it

turns out that two photons which simulataneously leave a beam splitter, always leave it

correlated in spin no matter how they were prepared, i.e., no matter whether they were

previously polarized or not. The interferometry is based on an experiment we put forward

in Refs. [14,15] which is a realization of the 4th order interference of randomly prepared
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independent photons correlated in polarization and coming from independent sources.

Of the two experiments we consider in this paper, the first one puts together two polarized

photons, makes them interact on a beam splitter, and allows us inferring the dependence of

the typical nonclassical 4th order beating on the mutual polarization of the incoming photons

when no polarization is measured as well as inferring modulated polarization (spin) corre-

lations when it is measured. The second experiment puts together two unpolarized photons

coming out from two simultaneous but independent cascade processes of two simulataneously

excited independent atoms, makes them interact on a beam splitter, and then allows us in-

ferring polarization (spin) correlations by simultaneous measurement of the polarizations of

the photons. Thus we recognize beam splitter as a device for detection and preparation of

spin correlation between incoming and/or outgoing photons as well as a source of genuinely

unpolarized photons. This in turn allows us to substitute two additional beam splitters for

the above cascade sources.

On the other hand, the present elaboration of the 4th order interference on a beam

splitter in the spin space attempts to fill a gap in the literature. For, while the interference

of the 4th order in the configuration space has been elaborated in detail in the literature

[1,3,4,10,11], the interference lacks a detailed elaboration and apparently a proper under-

standing in the spin space. One of the rare partial elaborations was provided by Ou, Hong,

and Mandel for a special case of orthogonally polarized photons [19]. They clearly recognized

that orthogonally polarized photons incoming to a symmetrically positioned beam splitter

produce a singlet–like state at a beam splitter [1,7,9,19] and that parallelly polarized pho-

tons incoming to a symmetrically positioned beam splitter never appear on its opposite sides

[20] but it does not seem to have been recognized that the polarization of incoming photons

actually does not have any effect on the correlation in polarization of the outgoing photons

and that it only affects the intensity of the outgoing photons. That was also apparently the

reason for not realizing that a beam splitter produces not a singlet–like state but a genuine

singlet state and not only for polarized but for unpolarized incident photons as well.

To be able to follow the main features of the experiments presented in Sec. II we develop
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the basic formalism in Sec. III and we shall calculate the setups in the plane–wave approach

in Sec. IV. In Sec. V we discuss the obtained interference patterns.

II. EXPERIMENTS

The essential part of both experiments — for polarized as well as for unpolarized photons

— is presented in Fig. 1 which is, in effect, a slightly modified figure from Ref. [21]. The

only difference for the two cases below are the sources.

A. Polarized photons

Two incoming independent photons in Fig. 1 are emerging as signal and idler photons

from a nonlinear crystal as in the experiment of Ou and Mandel [7] with the only difference

that the polarization rotator can be turned in any appropriate direction without affecting

the output correlation. Signal and idler photons of frequences ω1 and ω2 are produced in

the process of parametric down conversion of a laser beam (of the frequency ω0 = ω1 + ω2)

that interacts with the nonlinear crystal (e.g., LiIO3).

The two so obtained independent photons are then directed to a beam splitter from

opposite sides. Photons coming out from the beam splitter pass polarizers P1 and/or P2

and fall on detectors D1 and/or D2. In an actual setup a birefringent prisms should be used

for polarizers (allowing detection of polarization P and the perpendicular polarization P⊥)

so as to enable zero detections by appropriate D1⊥,D2⊥ detectors (not shown in Fig. 1).

Pulse pairs arriving within an appropriate time interval (typically 5 ns or shorter) are taken

as coincidence counts. The obtained coincidence counts are ascribed to the probability of

detecting two photons for possible settings of incoming and outgoing (polarizers P1 and P2)

polarizations.

Such a setup can however be objected that it fails to adequately record photons when

they both go to one arm and when their triggering of the detectors should be disabled. To

match this possibility we can use frequency filters (prisms) that would separate the photons
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emerging from the beam splitter according to their frequency and would direct them to two

birefringent polarizers Pω1
and Pω2

and through them to four detectors Dω1
,D⊥

ω1
,Dω2

,D⊥
ω2

in each arm. Simultaneous firing (i.e., within the shortest time feasible) of at least two

detectors in one arm then discards the corresponding recording in both arms from the set

of coincidence counts. In such a way we are able to preselect a genuine singlet state of the

photon pair emerging from different sides of the beam splitter (see Sec. IVA1). The setup

also enables an experimental verification of the behavior of photons when they both emerge

from the same side of a beam splitter presented in Sec. IVA2.

B. Unpolarized photons

Signal and idler down–converted photons emerging from independent nonlinear crystals

are parallelly polarized (±2◦ relative to the uv pump laser beam [7]). So, such sources cannot

be used to obtain unpolarized incoming photons but we have at least two available sources.

One is a cascade process, e.g., (J = 0) → (J = 1) → (J = 0). It can be triggered by a

simultaneous pumping of a split laser beam. Due to the random phases of photons emitted

from two distinct atoms we shall have no interference of the 2nd order at all. In previous

experiments where sources of unpolarized photons were needed, the sources were poorly

localized because a better localization was not necessary. E.g., in Aspect’s experiments [22]

the source atoms where located in a 60 × 60 µm region, i.e. within the laser beam waist

diameter of the focused pumping laser beam. Recently, however, trapping of single atoms

(as opposed to 3 × 1010 atoms/cm3 in Aspect’s experiment) down to 1 × 1 µm has been

achieved [23].

The other possible sources are two other beam splitters. For, as will see below, beam

splitters emit completely unpolarized photons in particular directions. Of course, the beam

splitters would be much easier to handle than cascade processes but we introduced the

cascade sources first because of the conceptual clarity they give to the proposal of the

experiment.

5



The rest of the experiment is the same as above for polarized photons.

III. FORMALISM

The state of polarized photons immediately after leaving the sources is described by the

product of two prepared linear–polarization states:

|Ψ〉 = (cos θ1′ |1x〉1 + sin θ1′ |1y〉1)

⊗ (cos θ2′ |1x〉2 + sin θ2′ |1y〉2) , (1)

where |1x〉 and |1y〉 denote the mutually orthogonal photon states. So, e.g., |1x〉1 means

the state of a photon leaving the upper source polarized in direction x. If the beam spliter

were removed it would cause a “click” at the detector D1 and no “click” at the detector

D1⊥ provided the birefringent polarizer P1 is oriented along x. Here D1⊥ means a detector

counting photons coming out at the other exit P⊥ (perpendicular polarization; not shown in

the Fig. 1) of the birefringent prism P1. Angles θ1′ ,θ2′ are the angles along which incident

photons are polarized with respect to a fixed direction.

For unpolarized photons the density matrix is proportional to the unit matrix and this

means that we only need products |1x〉1 |1x〉2, |1x〉1 |1y〉2, |1y〉1 |1y〉2, and |1y〉1 |1y〉2 to form

partial probabilities which then sum up to the total correlation probability as shown in

Sec. IV.

To describe the interaction of photons with the beam spliter, polarizers and detectors we

use the quantized electric field operators often employed in quantum optical analysis, e.g.,

by Paul [3], Mandel’s group [5,6,8], and Campos et al. [10]. Because we use independent

sources, resulting random constant phases will give no interference of the 2nd order so that

we dispense with them. As for polarization we introduce it by means of two orthogonal scalar

field components. Thus the scalar components of the stationary electric field operators read:

Êj(rj, t) =
1√
V

∑

{ωj}

l(ωj)â(ωj)ξ(ωj)e
ikj ·rj−iωjt , (2)
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where l(ω) = i
√

h̄ω
2ε◦

, k is the wave vector (k = ω/c), j = 1, 2 refer to a particular photon

in question, V is the quantization volume, {ω} is the frequency set with a bandwidth ∆ω,

â(ω) is the annihilation (lowering) operator at the angular frequency ω, and ξ(ω) is the

frequency density of the chosen form for the wave packet. In a subsequent paper [16] we use

the Gaussian wave packets and therefore we have

ξ(ω) = [2π(∆ω)]−1/4 exp

[

−
(

ω − ω◦

2∆ω

)2
]

. (3)

In this paper we consider only monochromatic waves, i.e., ∆ω = 0 and ξ(ω) = 1. So, we

deal here with plane waves represented by the following field operators:

Êj(rj, t) = â(ωj)e
ikj ·rj−iωjt . (4)

Of course, we tacitly assume that photons must arrive at the beam splitter practically

simultaneously, i.e. with appropriate short delays. In the plane wave approach we cannot

derive the conditions under which events gain a particular visibility but that does not affect

the reasoning here, since only the overall visibility is affected by greater delays. In Ref. [16]

we carry out the appropriate calculations in detail using Gaussian wave packets and we show

that the experiment is feasible.

The annihilation operators describe joint actions of polarizers, beam splitter, and de-

tectors. The operators act on the states as follows: â1x|1x〉1 = |0x〉1, â†1x|1x〉1 = |2x〉1,

â1x|0x〉1 = 0, etc.

The action of the beam splitter we describe by the input annihilation operators â1in and

â2in operators and the following output ones:

â1out= tâ1in + i râ2in ,

â2out= i râ1in + tâ2in , (5)

where t = |
√
T | and r = |

√
R|, where T and R denote transmittance and reflectance,

respectively.

To take the linear polarization along orthogonal directions into account we shall consider

two sets of operators, i.e., their matrices
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âx out = c âx in and ây out = c ây in . (6)

So, the action of the polarizers P1,P2 and detectors D1,D2 can be expressed as:

âi = âix out cos θi + âiy out sin θi , (7)

where i = 1, 2.

Projections corresponding to the other choices of polarizers and detectors we obtain by

using appropriate transformations instead of the ones given by Eqs. (9) and (10). E.g., we

obtain the action of the polarizer P2⊥ (orthogonal to P2; in the experiment P2 and P2⊥

make a birefringent prism) and the corresponding detector D2⊥ if we substitute

â2 = −â2x out sin θ2 + â2y out cos θ2 (8)

for Eq. (7).

Hence the appropriate outgoing electric field operators read

Ê1= (â1xtx cos θ1 + â1yty sin θ1) e
ik1·r1−iω1(t−τ1)

+i (â2xrx cos θ1 + â2yry sin θ1) e
ik̃2·r1−iω2(t−τ2) , (9)

Ê2= (â2xtx cos θ2 + â2yty sin θ2) e
ik2·r2−iω2(t−τ2)

+i (â1xrx cos θ2 + â1yry sin θ2) e
ik̃1·r2−iω1(t−τ1) , (10)

where τj is time delay after which the photon reaches detector D, ωj is the frequency of

photon j, and c is the velocity of light. The detectors and the crystal are assumed to be

positioned symmetrically with regard to the beam splitter so that two time delays suffice.

IV. DETECTION PROBABILITIES

A. Polarized photons

1. Each photon in one arm

The joint interaction of both photons with the beam splitter, polarizers P1,P2, and

detectors D1,D2 is given by the following projection of our wave function onto the Fock
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vacuum space

Ê1Ê2|Ψ〉 =
[

(t2xε12 − r2
xε̃12) cos θ1′ cos θ2′ cos θ1 cos θ2

+(txtyε12 sin θ1 cos θ2 − rxryε̃12 cos θ1 sin θ2) sin θ1′ cos θ2′

+(txtyε12 cos θ1 sin θ2 − rxryε̃12 sin θ1 cos θ2) cos θ1′ sin θ2′

+(t2yε12 − r2
y ε̃12) sin θ1′ sin θ2′ sin θ1 sin θ2

]

ε|0〉 , (11)

where ε = exp
{

−i [ω1 (t− τ1) + ω2 (t− τ2)]
}

, ε12 = exp[i (k1 · r1 + k2 · r2)], and ε̃12 =

exp
[

i
(

k̃1 · r2 + k̃2 · r1

)]

.

The corresponding probability of detecting the photons by detectors D1,D2 is thus

P (θ1′ , θ2′ , θ1, θ2) = 〈Ê†
2Ê

†
1Ê1Ê2〉 = A2 +B2 − 2AB cosφ , (12)

where

A = t2xcos θ1′ cos θ2′ cos θ1 cos θ2 + t2y sin θ1′ sin θ2′ sin θ1 sin θ2

+txty (cos θ1′ sin θ2′ cos θ1 sin θ2 + sin θ1′ cos θ2′ sin θ1 cos θ2) , (13)

B = r2
xcos θ1′ cos θ2′ cos θ1 cos θ2 + r2

y sin θ1′ sin θ2′ sin θ1 sin θ2

+rxry (cos θ1′ sin θ2′ sin θ1 cos θ2 + sin θ1′ cos θ2′ cos θ1 sin θ2) , (14)

φ = (k̃2 − k1) · r1 + (k̃1 − k2) · r2 = 2π(z2 − z1)/L , (15)

where L is the spacing of the intereference fringes [1]. φ can be changed by moving the

detectors transversely to the incident beams.

To make the formula more transparent, without loss of generality, in the following we

shall consider 50:50 beam splitter: tx = ty = rx = ry = 2−1/2 and three characteristic

locations of the detectors so as to have cos φ = −1, 0, 1

Let us first consider the case φ = 0 for which the above probability reads

P (θ1′, θ2′ , θ1, θ2) = (A− B)2

=
1

4
sin2(θ1′ − θ2′) sin2(θ1 − θ2) . (16)
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We see that the probability unexpectedly factorizes left–right and not up–down as one would

be tempted to conjecture from the initial up–down independence expressed by the product

of the “upper” and “lower” function in Eq. (1).

On the other hand, the incoming polarizations influence the coincidence counting even

when we remove the polarizers P1 and P2. Then, provided the right photons arrive at the

beam splitter within a sufficiently short time and are separately detected by D1 and D2, we

obtain

P (θ1′, θ2′ ,∞,∞) =
1

2
sin2(θ1′ − θ2′) . (17)

This equation clarifies the minimum of the coincidence rates obtained for the z1 =

z2 positions of detectors in Refs. [24–27]. We just have to recall again that signal and

idler down–converted photons emerging from independent nonlinear crystals used in these

experiments are parallelly polarized [7]. Conversely, by inserting θ2′ = θ1′ + π/2 in Eq. (16)

we obtain exactly what — for φ = 0 — Ou, Hong, and Mandel obtained in Ref. [9] and

what Ou and Mandel should have obtained also in Refs. [1] and [7]. [28]

For φ = π our probability reads

P (θ1′ , θ2′ , θ1, θ2) = (A+B)2 (18)

=
1

4
[cos(θ1′−θ2) cos(θ2′−θ1)+cos(θ1′−θ1) cos(θ2′−θ2)]2,

while for φ = π/2 it becomes

P (θ1′ , θ2′ , θ1, θ2) =
1

4
[cos2(θ1′ − θ2) cos2(θ2′ − θ1)

+ cos2(θ1′ − θ1) cos2(θ2′ − θ2)] . (19)

The probability shows that, for φ = π, by removing the polarizers we lose the spin correlation

completely and the coincidence counting remains unchanged no matter how we turn the

polarization planes of the incoming photons. This is just opposite to φ = 0 above where

because of Eq. (17) we could not have a coincidence for parallel incident polarizations. The

latter means that we obtain the typical non–classical 100% (ideally) coincidence rate [24–26]
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as opposed to the classical treatment (maximum 50%), i.e., that both photons go into only

one of the arms. Let us therefore have a closer look at the case of two photons in a particular

arm.

2. Both photons in one arm

In order to treat both photons going into one arm properly (i.e., so as to make all the

probabilities add up to one) we have to switch to the experimental setup described in the last

paragraph of Sec. IIA and employ four detectors in each arm: D2ω1
–D2⊥ω2

and D1ω1
–D1⊥ω2

in the upper and lower arm, respectively. Let us do that for the upper arm. Instead of Ê1

from Eq. (9) we must use

Ê ′
2= (â2xtx cos θ1 + â2yty sin θ1) e

ik′

2
·r′

2
−iω2(t−τ2)

+i (â1xrx cos θ1 + â1yry sin θ1) e
ik̃

′

1·r
′

2
−iω1(t−τ1) (20)

so as to obtain the following analogue of Eq. (11)

Ê ′
2Ê2|Ψ〉 =

[

txrx(η2′ + η2) cos θ1′ cos θ2′ cos θ1 cos θ2

+txry(η2′ cos θ1 sin θ2 + η2 sin θ1 cos θ2) sin θ1′ cos θ2′

+tyrx(η2′ sin θ1 cos θ2 + η2 cos θ1 sin θ2) cos θ1′ sin θ2′

+tyry(η2′ + η2) sin θ1′ sin θ2′ sin θ1 sin θ2
]

ε|0〉 , (21)

where ε = exp
[

−i [ω1 (t− τ1) + ω2 (t− τ2)]
]

, η2′ = exp[i (k1 · r2 + k
′
2 · r′2)], and η2 =

exp
[

i
(

k̃2 · r2 + k̃
′
1 · r′2

)]

.

The corresponding probability of detecting the photons by detectors D2ω1
,D2ω2

is thus

P (θ1′, θ2′ , θ1 × θ2) =
1

2
〈Ê†

2Ê
′†
2 Ê

′
2Ê2〉 =

1

2
(C2 +D2 + 2CD cosψ) , (22)

where 1/2 matches the possibility of both photons taking the other arm and

C = txrxcos θ1′ cos θ2′ cos θ1 cos θ2 + tyry sin θ1′ sin θ2′ sin θ1 sin θ2

+txry sin θ1′ cos θ2′ sin θ1 cos θ2 + tyrx cos θ1′ sin θ2′ cos θ1 sin θ2 , (23)
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D = txrxcos θ1′ cos θ2′ cos θ1 cos θ2 + tyry sin θ1′ sin θ2′ sin θ1 sin θ2

+txry sin θ1′ cos θ2′ cos θ1 sin θ2 + tyrx cos θ1′ sin θ2′ sin θ1 cos θ2 , (24)

ψ = (k̃1 − k2) · r2 + (k′
2 − k̃

′
1) · r′2 = 2π(Z2 − Z ′

2)/L , (25)

where primes refer to the other photon of a different frequency and where the geometry of

the detectors is of course not any more the one shown in Fig. 1 but is, e.g., following the

Fig. 1 of Ref. [29]. An analogous probability we obtain for the lower arm.

For 50:50 beam splitter and ψ = 0 the probability reads

P (θ1′ , θ2′ , θ1 × θ2) (26)

=
1

8
[cos(θ1′−θ2) cos(θ2′−θ1)+cos(θ1′−θ1) cos(θ2′−θ2)]2.

To obtain the corresponding probability with the polarizers removed we have to add up

probabilities for all four possible outcomes from the birefringent P2 which we obtain by

using Eqs. (7), (8), and two other ones what for both arms amounts to

P (θ1′ , θ2′ ,∞×∞) =
1

2
[1 + cos2(θ1′ − θ2′)]. (27)

We see that this equation and Eq. (17) add up to one.

Another possible way of detecting both photons in one arm, although far less reliable,

is by means of non–coincidental recording of only one of detectors D1,D2 assuming the

recording be triggered by two simultaneously arriving photons. In this case we keep to the

setup described in the second paragraph of Sec. IIA and employ no additional detectors.

Then the probability of detecting both photons in the arm of, e.g., D2 we obtain similarly

to Eq. (12)

P (θ1′ , θ2′ , 2 × θ2) =
1

2
〈Ê†2

2 Ê
2
2〉

=
1

8
[cos2(θ1′ − θ2) cos2(θ2′ − θ2)](1 + cosψ) , (28)

where ψ is automatically zero because of the coincidental spatial recording of both photons.

Of course, we cannot add up this probability for the removed polarizers and the probability

(17) to 1 because the the corresponding counts are from two different spaces of events.
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B. Unpolarized photons

To obtain the general probability for unpolarized light, Ê1, Ê2 given by Eqs. (9) and

(10) should be applied to |1x〉1|1x〉2, |1x〉1|1y〉2, |1y〉1|1x〉2, and |1y〉1|1y〉2 so as to give four

probabilities which then sum up to the following correlation probability:

P (∞,∞, θ1, θ2)

=
1

4
(t2x cos2 θ1 + t2y sin2 θ1)(t

2
x cos2 θ2 + t2y sin2 θ2)

+
1

4
(r2

x cos2 θ1 + r2
y sin2 θ1)(r

2
x cos2 θ2 + r2

y sin2 θ2)

−1

2
(t2xr

2
x cos θ1 cos θ2 + t2yr

2
y sin θ1 sin θ2)

2 cosφ . (29)

For 50:50 beam splitter this probability reads

P (∞,∞, θ1, θ2) =
1

8
[1 − cosφ cos2(θ2 − θ1)] . (30)

Comparing this result with the classical formula obtained by Paul [30] for two amplitude–

stabilized beams of equal intensity which, apart from a normalization factor, reads

Pcl(θ1, θ2) = 3 + 2(1 − cosφ) cos2(θ2 − θ1) , (31)

we see that the quantum mechanical visibility reaches its maximum for φ = 0 while the

corresponding classical one cannot be equal to zero at all.

In the end, for unpolarized photons and for φ = 0 we obtain:

P (∞,∞, θ1, θ2) =
1

8
sin2(θ2 − θ1) . (32)

So, photons that arrive at the beam splitter unpolarized emerge from it perpendicularly

polarized whenever they appear at the opposite sides of the beam splitter. The overall

probability of their appearance on one side of the beam splitter is

P (∞,∞, θ1 × θ2) =
1

8
[1 + cos2(θ1 − θ2)]. (33)
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V. CONCLUSION

We have therefore shown that the 4th order interference interaction between beam split-

ter and two incoming photons imposes polarization correlation on the emerging photons no

matter whether they arrive at the beam splitter polarized or unpolarized. In particular we

have shown [Eqs. (30) and (32)] that for an appropriate position of the beam splitter incom-

ing unpolarized photons always emerge perpendicularly polarized in particular directions.

More specifically, they appear prepared in a genuine singlet state and enable conceiving a

novel experiment in which we can preselect spin correlated photons from completely unpo-

larized independent photons which nowhere interacted without in any way affecting them

[31].

When polarized photons arrive at a beam splitter and the 4th order interference takes

place, one can use the modulation of the polarizations in order to determine the coincidence

counting even when no outgoing polarization is being measured. In particular we have

shown [Eq. (17)] that in predetermined directions incoming parallelly polarized photons

never emerge on two different sides of the beam splitter. It is also interesting that the

probability of detecting both photons together on one side of the beam splitter (by one

detector) is structurally different from the the probability of finding them on both sides.

The former depends on the direction of leaving the beam splitter and allows a transmission

of the left–right information of the Bell type [Eq. (28)].
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FIGURES

FIG. 1. Outline of the experiment.
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