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ON A FORMAL DIFFERENCE BETWEEN THE INDIVIDUAL

AND STATISTICAL INTERPRETATION OF QUANTUM THEORY
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A discussion is given of a recently formulated function which exhibits a jump
for the end points of a closed interval in case of the individual interpretation
of quantum measurements of the first kind and stays continuous on the whole
interval for their statistical interpretation.

Recently I formulated [1] a function which differentiate quantum events which occur
with probability equal to unity from the ones which factually occur. The result served
me to establish [2] a formal difference between the individual (Copenhagen [3, p. 440],
orthodox [4]) and statistical [5] interpretation of quantum theory within its formalism

taking the function to represent von Neumann’s property [6]. This formal difference
between the two interpretations is not measurable but nevertheless provides a theoretical
distinction between them. Since such a difference was taken to be “highly significant for
the interpretation of quantum theory”[4] and at the same time criticized [4] I considered
it helpful to discuss it in some details and the latter is the purpose of this letter.

The only way in which quantum theory — without regard to the collapse postulate
— connects the “elements of the physical reality” (i.e. what we observe) with their
“counterparts in the theory”[7] is by means of the Born formula which gives us the
probability that the outcome of an experiment will confirm an observable or a property
of an ensemble of systems. [6, p. 439]
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In case of discrete observables we are able to prepare a property and we can,
by an appropriate detection (determination, measurement), verify the property with
certainty — i.e. with probability one / equal to unity [7, p. 777, 7th line from below],
[6, p. 250, 439], i.e. almost certainly, almost sure or “except on a null–event” [8, p. 20].
This means that for repeatable measurements we only know that a property will be
verified with certainty (with probability one) — that is on ensemble. Whether the
property will be verified on each so prepared individual system we can only guess. For,
there is no “counterpart in the theory” of an individual detection even if it is carried
out “with certainty”: The Born probabilistic formula — which is the only link between
the theory and measurements — refers only to ensembles. However, as shown below, we
can consistently postulate whether a measurement of the first order verifies a prepared
repeatable property on each system or not.

The approach I took is resting on combining the Malus angle expressed by probabil-
ity with that expressed by relative frequency. For connecting probability 0 < p < 1 with
the corresponding relative frequency I used the strong law of large numbers for the infi-
nite number of Bernoulli trials which – being independent and exchangeable – perfectly
represent quantum measurements on individual quantum systems. These properties of
the individual quantum measurements I used to reduce their repeatability to successive
measurements (as noticed in [4]) but that has no influence on the whole argumentation
which rests exclusively on the fact that finitely many experiments out of infinitely many
of them may be assumed to fail and to nevertheless build up to probability one.

The argument supporting the statistical interpretation is that probability one of
e.g. electrons passing perfectly aligned Stern–Gerlach devices does imply that the rela-
tive frequency N+/N of the number N+ of detections of the prepared property (e.g. spin–

up) on the systems among the total number N of the prepared systems approaches
probability p = 〈N+/N 〉 = 1 almost certainly:

P ( lim
N→∞

N+

N
=1) = 1, (1)

but does not imply that N+ analytically equals N , i.e. it does not necessarily follows
that the analytical equation N+ = N should be satisfied.

We therefore must postulate what we want: either N+ = N and (1) or N+ 6= N and

(1). (Since already the central limit theorem itself, which served us to infer (1), holds
only on the open interval 0 < p < 1, it would be inconsistent to try to prove one or the
other possibility and I therefore cannot agree with Home and Whitaker when they say:
“Even though the intrinsic probability of an event may be unity, [Pavičić] attempts to
show that the relative frequency of occurence cannot be.”[4])

Of course, the possibility N+ 6= N doesn’t seem very plausible by itself and we
therefore used the Malus law to construct the function which reflects the two possibilities
and proved a theorem which directly supports another difference between the probability
and frequency treatment of individual quantum measurements.

As for the theorem we proved that

lim
N→∞

P (
N+

N
=p) = 0, 0 < p < 1 (2)
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which expresses randomness of individual results as clustering only around p (almost

never strictly at p). (As I learned recently, a related result was achieved by M. Mugur–
Schächter [9] in a different informational content.) Thus it does not take two theories
[3, p. 441] for a distinction between probabilities and frequences. It suffices to ascribe
frequencies to individual systems and related probabilities to their ensembles in order
to obtain the difference expressed by Eq. (2).

As for the function which reflects the two above stated possibilities I will just
briefly sketch it here. The reader can find all the relevant theorems and proofs in [1],
a generalization to spin–s case in [2], and a discussion with possible implications on
the algebraical structure underlying quantum theory in [10]. The function refers to the
quantum Malus law and reads:

G(p)
def
= L−1 lim

N→∞

[

|α
(N+

N

)

− α(p)|N1/2
]

where α is the angle at which the detection device (a Stern–Gerlach device for spin–s
particles, an analyzer for photons) is deflected with regard to the preparation device
(another Stern–Gerlach device, polarizer) and where L is a bounded random (stochas-
tic) variable: 0 < L < ∞. The function is well defined and continuous (or piecewise
continuous) on the open interval (0,1). In general it does not correspond to an operator
but it does represent a property in the sense of von Neumann [6]. For electrons, e.g., it
is equal [1]:

G(p) = H(p)
def
= H[p(α)] =

sin α

sin α

Turning our attention to the probability equal to one we see [1] from the definition
of H(p) that H is not defined for the probability equal to one: H(1) = 0

0
. However,

its limit exists and equals 1. Thus a continuous extension H̃ of H to [0,1] exists and is
given by H̃(p) = 1 for p ∈ (0, 1) and H̃(1) = 1.

We now assume (completely agreeing with [4] that one cannot prove this but that
is exactly the point of postulating one or the other possibility) that L is bounded and
positive not only for 0 < p < 1 but for 0 ≤ p ≤ 1 as well. L is a stochastic, random
variable defined so as to match random oscillation of the angle α expressed by means
of frequency as opposed to one expressed by means of probability on the basis of the
theorems proved in Refs. [1] and [2] for the open interval (0,1) (or its subsections).
Dr. Whitaker, in a discussion which we led a year ago in Cesena, put forward a possibility
that L can in principle become infinite for p = 1. For p=1 and N+=N this is possible
but the result remains the same: See the interpretative difference of point 3 below (in
parentheses). For p=1 and N+ 6=N (see points 1 & 2 below) one cannot accept such a
possibility for the following reasons.

L is defined as L = lim
N→∞

|χ(N)| where χ(N) matches stochastical fluctuation of

N+/N so as to make it equal to p+χ(N)∆p where ∆p is the standard deviation from p

of the Bernoulli distribution and therefore ∆p =
√

p(1−p)
N

. [1,2] For p=1 we obviously

cannot use χ(N)∆p for measuring difference between p and N+/N because in this case
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M. Pavičić, ON A FORMAL DIFFERENCE BETWEEN THE INDIVIDUAL AND STATISTICAL INTERPRETATION

we strictly have ∆p=0 independently of how large N is. However, we can reelaborate
the whole problem from the “inverted” side using the Bayes (beta) distribution which
is such a binomial distribution whose variable is not p as with the Bernoulli distribution
but N+/N . [1] (For N approaching infinity, i.e. for the limit case, switching from one
distribution to the other does not cause any problem.)

The mean value of the Bernoulli distribution lies at p and the maximum value
approaches it as N approaches infinity. The mean value of the Bayes distribution, on
the other hand, lies at N+/N . The standard deviation for the Bayes distribution is ∆f =
√

N+

N2 (1 − N+

N
) and we can reinterpret χ(N) so as to make p equal to N+/N +χ(N)∆f .

In this case p=1 does not cause a problem for L because then ∆f must not be strictly
zero (but only in the limit) in order not to make strictly N+/N = p = 1. Hence L < ∞
since χ(N) must stay finite in the limit in the same way in which it must stay such in
Eq. (13) in [1] or in Eq. (6) in [2] . However, we again have to stress that one can prove

the central limit theorem only for the open interval 0 < p < 1.

Thus we are left with the following three possibilities for G (which hold for an
arbitrary spin s too [2]).

1. G(p) is continuous at 1. A necessary and sufficient condition for this is G(1) =
limp→1 G(p). In this case we cannot strictly have N+=N since then G(1) = 0 6=
limp→1 G(p) obtains a contradiction.

2. G(1) is undefined. In this case we also cannot have N+=N since the latter equation
makes G(1) defined, i.e. equal to zero.

3. G(1) = 0. In this case we must have N+=N . And vice versa: if the latter equation
holds we get G(1) = 0.

Hence, under the given assumptions a measurement of a discrete observable can be
considered repeatable with respect to individual measured systems if and only if G(p)
exhibits a jump–discontinuity for p=1 in the sense of point 3 above.

The interpretative differences between the points are as follows.

1 & 2 admit only the statistical interpretation of the quantum formalism and banish
the repeatable measurements on individual systems from quantum mechanics
altogether. Of course, the repeatability in the statistical sense remains un-
touched. Possibility 1 seems to be more plausible than possibility 2 because
the assumed continuity of G makes it approach its classical value for large
spins.[2] Notably, for a classical probability we have limp→1 Gcl(p) = 0 and for
“large spins” we get lims→∞ limp→1 G(p) = 0.

3 admits the individual interpretation of quantum formalism and assumes that
the repeatability in the statistical sense implies the repeatability in the in-
dividual sense. By adopting this interpretation we cannot but assume that
nature differentiate open intervals from closed ones, i.e. distinguishes between
two infinitely close points. (The same conclusion about nature we would have
to draw if we assumed a sudden jump in definition of the random function L
leaving G(1) undefined.)
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At the first sight the statistical interpretation, i.e. points 1 and 2 and their implicit
appeal to L, seems hard to support since this apparently invokes a demand for a Gaus-
sian distribution of N+/N to be centered at 0 or 1 which would clearly be impossible.
However, we should bear in mind that the Gaussian distribution of N+/N , which is exact
when N tends to infinity, is but an approximation of the proper binomial distribution
of N+/N for only arbitrary large N ’s. Furthermore, this approximation is less appro-
priate, the closer the corresponding probability p is to zero or to one. And the binomial
distribution is not symmetric as the Gaussian one but skewed to the left and right on
the right and left half of (0,1) interval, respectively. Namely, it is easy to calculate that
the skewness, defined as s3 :=

〈

(N+/N −p)3
〉

/(∆p)3, is given by s3 = (q−p)(pqN)−1/2.
Therefore, since p, being the mean of N+/N , cannot tend to 0 faster than 1/N and can-
not tend to 1 faster than (N − 1)/N (see the argument concernig the beta distribution
in the Discussion of [1]), the distribution of N+/N is skewed more to the left so as to
obey s3 > −1 or to the right so as to obey s3 < +1, the closer p is to 1 or 0, respectively.
Taking into account that for N approaching infinity an exact approximation of binomial
distribution holds only on the open interval 0 < p < 1, the distribution of N+/N for
p=0= lim

N→∞

[N+(0, N)/N ] and for p=1= lim
N→∞

[N+(1, N)/N ] could on no better ground

be assumed symmetric than asymmetric. Besides, as I stressed above we can reelaborate
the whole approach so as to use Bayes (beta) distribution instead of the Bernoulli one
and then we do not face such a problem since the Bayes distribution has its mean value
at N+/N .

In order to show that the above differences obtained for the discrete observables
suffice for a conclusion on all observables and the interpretation of quantum theory in
general we turn to the problem of repeatability within the theory of measurement. It was
shown within the theory that both continuous observables [11] and discrete observables
which do not commute with conserved quantities [12] cannot strictly satisfy either the
repeatability hypothesis or the collapse postulate but at best only approximately. This
means that for such observables no property can be prepared with certainty and our
difference then enables us to postulate the exclusion (or not) of the repeatability for
individual events — the probabilistic repeatability of course remains intact — even
for the discrete observables which undergo measurements of the first kind. (In this
case Eq. (2) holds even for the probability one.) Quantum formalism thus allows and
supports Ozawa’s conjecture: “The nonexistence of repeatable measuring processes of
continuous observables suggests that we should investigate the approximately repeatable
measuring processes as models of measurements in quantum mechanics. Moreover, this
direction of investigation is appropriate not only for continuous observables [but also
for] discrete observables. . . The author belives that, in future investigation on really
existing approximately repeatable measurements, our framework of measuring processes
will provide a nice basis.”[11, p. 80] And the present elaboration shows that if such a
programme demanded a complete exclusion of probability equal to unity from the theory
of measurement that would not be in contradiction with real measurements of individual
events and their statistics but that would demand essential changes in definition of the
quantum probability function.

Let us therefore go back to the standard quantum formalism to see how far we can
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go with the discrete observables strictly within this formalism.

For discrete observables on which a measurement of the first kind was carried
out the collapse postulate reads: “The measurement transforms [the observed system]
from the state φ into one of the states φn, n = 1, 2, . . . the probabilities for which are
respectively p = |(φ, φn)2|, n = 1, 2, . . ..”[6, p. 439]

State in general as well as eigenstates (together with the corresponding eigenvalues)
in particular are only probabilistic concepts — probability amplitudes which in our
case have to give probability equal to unity — and that the “observed system” in
the afore–mentioned von Neumann’s definition of the collapse postulate is nothing else
but ensemble. Relative frequency is on the other hand a pure statistical concept. So
spin–up–prepared individual electrons all correspond to the spin–up–eigenvalue. We
can postulate that within an infinitely long run a finite number of electrons can “go

down” but this has nothing to do with the up–eigenstate and up–eigenvalue to which
all up–prepared electrons (i.e. the ensemble) belong.

Relative frequencies in general refer to ideal experiments carried out on individual
systems while probabilities refer either to the ensemble or to each individual system
belonging to the ensemble if we only postulate either one way or the other.

The old problem as to whether an individual quantum system can be considered
completely described by the standard formalism or not is thus given a new aspect: We
are forced to make up our mind: either to consider the standard formalism a complete
description of an individual quantum system or to understand it as a completely sta-
tistical theory. Completely statistical in the sense that Eq. (2) is always satisfied and
that probability equals the corresponding relative frequency only approximately. On
the other hand, a classical statistical theory based on classical mechanics — excluding
chaos — never satisfies Eq. (2) since its probabilities are basically geometrical. Such
an opposite behavior of quantum vs. classical probability stems from the kind of their
probability functions: quantum functions which are typically trigonometric polynoms
have real numbers as their values (as opposed to relative frequencies) while classical
functions which are typically geometric ratios have rational numbers as their values
(concordant with relative frequencies). The former is obviously a direct consequence
of the main feature of the individual quantum events that they form Bernoulli trials
i.e. that they are completely independent (in general we say the individual detections
are unpredictable).

What do we therefore achieve by adopting one or the other interpretation? The
individual interpretation means the completeness. “In that perfect world, nothing hap-
pens.”[13] The statistical interpretation, on the other hand, supports the view that
the logic underlying quantum formalism might be based on the statistics of individual
quantum measurements which might in turn be traced theoretically by investigating
possible extensions of algebraic quantum structures. If the tracing brought us to new
observables and a new theory, such a theory could not possibly turn quantum mechanics
“wrong” in the same way in which the theory of relativity did so with Newton’s me-
chanics but would simply have quantum mechanics as a restriction to standard quantum
observables. Thus quantum theory might be interpreted as a “randomizer” of some sub-
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quantum observables (cf. [13,14]) but, of course, it cannot be interpreted in such a way
by means of “preassigned values”[15] either on a factual [16] or on a counterfactual level
(the standard Bell’s result).

I would like to thank Prof. M. Mugur–Schächter for discussions and her kind hos-
pitality at the Laboratory of Quantum Mechanics of the University of Reims where this
work has been done. I acknowledge a support of the Ministry of Science of France and
the Ministry of Science of Croatia.
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