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1. INTRODUCTION

Quantum logic is in the literature considered to be a logic, a partially ordered set, a
lattice, a probabilistic structure, a modal structure,... All these structures share one
thing: the Hilbert space is their common model. Therefore they are not really varieties
of a basic Hilbertian structure but only different techniques available in approaching
quantum measurements.

The quantum structures differ significantly from the classical ones and therefore
it has repeatedly been questioned whether we can smoothly apply logical, probabilis-
tic, lattice and modal technique to quantum measurements. For, in quantum logic the
distributivity, modularity, the object language Modus Ponens, and other classical “ob-
jectives” are lost, in quantum probability theory the Kolmogorovian axioms do not hold,
etc., etc. The attempt to overcome the differences by declearing logics and probability
theories empirical did not help much since that “move” could not make standard logical
or probability methods any more applicable to quantum logic or to quantum probabil-
ity theory. In fact, over the past 20 years we have been piling up more and more
unanswered questions and apparently only answering these questions can help us to
decide whether we can effectively use logical, modal, or lattice technique in elaborating
quantum measurements.

Some of the questions are:

— Is there a unique object language operation which can take over the role of the
unique classical operation of implication (conditional, set–theoretic inclusion)?

— Is the usual irreflexive and symmetric orthogonality relation appropriate for set–
theoretic representation of quantum theoretic measurements? Can such an orthog-
onality relation provide a relation of accessibility within the modal and Kripkean
approach to quantum logic?

— Does quantum logic have the finite model property?

— Is quantum logic decidable?

In this paper we answer most of the questions and obtain a novel representation of
quantum logic and quantum measurements.

Essentially, one of the obtained results makes the ordering within quantum sets
irrelevant and substitutes the identity for the ordering relation. This renders the usual
techniques of logic as a deductive inferential theory inappropriate and ascribes quantum
deductive logic a particular equational meaning. The result is obtained in Sec. 3.
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Another result, enables a representation of quantum logic by means of an intransi-
tive and symmetric YES–NO relation (instead of the projectors–stemmed irreflexive and
symmetric orthogonality relation) and proves quantum logic decidable as well as pos-
sessing the finite model property. This makes the usual modal, Kripkean, and imbedding
approaches inapplicable since an intransitive relation does not correspond to any modal
formula in the coresponding systems. In a word, the following opinion by Goldblatt
turns out to be fully justified: “It is perhaps the first example of a natural and signifi-
cant logic that leaves the usual methods defeated.”1 The representation is presented in
Sec. 4.

In Sec. 5 we provided a physical interpretation of the YES–NO representation based
on the statistics of measurements.
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2. LATTICE VS. LOGICAL APPROACH TO QUANTUM THEORY

Before we dwell, in the next section, on the new results enabled by a departure from
the usual techniques we shall first present here some previous recent results that stress
particular points at which we have to start the departure and which are mostly concerned
with the following two aspects of lattices and logics.

Lattices were formulated in order to describe the set theoretical aspects of a theory
of partially ordered sets with a supremum and infimum but so as to keep to the methods
of the universal algebras. This was achieved by representing the supremum and infimum
with the help of the object language operations of conjunction and disjunction. Partial
ordering is then also representable by means of such operations.

Logics, on the other hand, serves us to make empirical claims by means of set–
theoretical predicates, to conclude from one statement (proposition) to another (i.e. to
infer one from another) in a deductive way and to model the obtained structure by
lattices as their algebraical models (using classes of equivalence). Logics also rely on
the operations of conjunction and disjunction and in particular on the operation of im-
plication (conditional), however, not to “algebraize” the logic but to facilitate deduction
and inference. The latter possibility stems from the fact that in classical logic a unique
operation of implication coresponds to the relation of implication (ordering relation).
Therefore, to invoke an operation of implication is often considered unavoidable for a
proper characterisation of any deductive theory. The modal semantics of the classical
logic is but a further characterization of relations between classical “logico–empirical”
deductive propositions.

Thus, these “techniques” (lattice and logical methods) are perfectly suited for a
description of the classical phase space. But when we try to apply them to the Hilbert
space we soon realize that we have to twist the techniques significantly if we want to
force them to give us results.

Quantum theory, to start with, generates five different conditionals (in the ortho-
modular lattice and logic) which reduce to the classical conditional when the proposi-
tions are commensurable.

We have shown elsewhere2 that the orthomodularity boils down to the equivalence
of all 5 mentioned conditionals with the lattice theoretical conditional (the relation of
implication) and we also formulated3,4 unified quantum logic which gives a common
and unique axiomatization for all possible conditionals.

Orthomodularity is thus reduced to a connection between object language impli-
cation and the model language ordering relation. The unified quantum logic then rep-
resents this connection as a connection between the two kinds of truths: the truth of
a valuation and the object language defined truth. (Cf. R4 – rule of inference from
reference 4.)

Let us introduce unified quantum logic in some details.
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Its propositions are based on elementary propositions p0, p1, p2, ... and the following
connectives: ¬ (negation), → (implication), and ∨ (disjunction).

The set of propositions Q◦ is defined formally as follows:
pj is a proposition for j = 0, 1, 2, ...
¬A is a proposition iff A is a proposition.
A→ B is a proposition iff A and B are propositions.
A ∨ B is a proposition iff A and B are propositions.

The conjuction is introduced by the following definition: A ∧B def
= ¬(¬A ∨ ¬B).

Our metalanguage consists of axiom schemata from the object language as ele-
mentary metapropositions and of compound metapropositions built up by means of the
following metaconnectives: ∼ (not), & (and), ∨ (or ), ⇒ (if..., then), and ⇔ (iff), with
the usual classical meaning.

The bi–implication is defined as: A↔ B
def
= (A→ B) ∧ (B → A).

We define unified quantum logic UQL as the axiom system given below. The
sign ` may be interpreted as “it is asserted in UQL.” Connective ¬ binds stronger
and → weaker than ∨ and ∧, and we shall occasionally omit brackets under the usual
convention. To avoid a clumsy statement of the rule of substitution, we use axiom
schemata instead of axioms and from now on whenever we mention axioms we mean
axiom schemata.

Axiom Schemata.

A1. ` A→ A

A2. ` A→ ¬¬A
A3. ` ¬¬A→ A

A4. ` A→ A ∨ B
A5. ` B → A ∨B
A6. ` B → A ∨ ¬A

Rules of Inference.

R1. ` A→ B & ` B → C ⇒ ` A→ C

R2. ` A→ B ⇒ ` ¬B → ¬A
R3. ` A→ C & ` B → C ⇒ ` A ∨B → C

R4. ` (B ∨ ¬B) → (A→ B) ⇔ ` A→ B

The operation of implication A→ B is one of the following:

A→1 B
def
= ¬A ∨ (A ∧ B) (Mittelstaedt)

A→2 B
def
= B ∨ (¬A ∧ ¬B) (Dishkant)

A→3 B
def
= (¬A ∧ ¬B) ∨ (¬A ∧B) ∨

(

(¬A ∨ B) ∧ A
)

(Kalmbach)
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A→4 B
def
= (A ∧ B) ∨ (¬A ∧B) ∨

(

(¬A ∨ B) ∧ ¬B
)

(non–tollens)

A→5 B
def
= (A ∧ B) ∨ (¬A ∧B) ∨ (¬A ∧ ¬B) (relevance)

UQL without the rule R4 is orthologic, also called minimal quantum logic.

To prove that UQL is really quantum logic we have to prove that UQL has
an orthomodular lattice as a model. By the orthomodular lattice we mean algebra
L =< L◦,⊥ ,∪,∩ > such that the following conditions are satisfied for any a, b, c ∈ L◦:

L1. a ∪ b = b ∪ a
L2. (a ∪ b) ∪ c = a ∪ (b ∪ a)
L3. a⊥⊥ = a

L4. a ∪ (b ∪ b⊥) = b ∪ b⊥

L5. a ∪ (a ∩ b) = a

L6. a ∩ b = (a⊥ ∪ b⊥)⊥

L7. a ⊃i b = c ∪ c⊥ =⇒ a ≤ b (i = 1,..., 5)

where a ≤ b
def
= a∪ b = b and a ⊃i b (i = 1,..., 5) is defined in a way which is completely

analogous to the afore–given one in the logic. From now on we shall use the following

denotation: a∪ a⊥ def
= 1 and a∩ a⊥ def

= 0. Of course, L is also orthocomplemented since
lattices with unique orthocomplements and orthomodular lattices coincide.5

Algebra < L◦,⊥ ,∪,∩ > in which the conditions L1–L6 are satisfied is an ortholat-
tice.

Algebra < L◦,⊥ ,∪,∩ > in which L1–L6 hold and L7 is satisfied by a ⊃ b
def
= a⊥ ∪ b

is a distributive lattice with 1 and 0 (Boolean algebra).

That L is really an orthomodular lattice, i.e. that L7 can be used instead of the
usual orthomodular law a ∪ b =

(

(a ∪ b) ∩ b⊥) ∪ b, we proved in references 2 and 3.

To prove that the lattice is a model for the unified quantum logic we introduce the
following definitions.

Definition 2.1. We call L = < L, h > a model of the set Q◦ if L is an orthomodular
lattice and if h: UQL 7→ L is a morphism in L preserving the operations ¬, ∨, and →
while turning them into ⊥, ∪, and ⊃i (i = 1,..., 5), and satisfying h(A) = 1 for any
A ∈ Q◦ for which `A holds.

Definition 2.2. We call a proposition A ∈ Q◦ true in the the model L if for any
morphism h: UQL 7→L, h(A)=1 holds.

We prove the soundness of UQL for valid formulas from L by means of the following
theorem.
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Soundness theorem 2.1. `A only if A is true in any orthomodular model of UQL.

Proof. By analogy with the binary formulation of quantum logic,2,6 it is obvious that
A1–A6 hold true in any L, and that the statement is preserved by applications of R1–R3.
Verification of R4 is also straightforward and we omit it.

Some further theorems and formulas for subsequent usage one can find in references
3 and 4, as well as the proofs of the following theorems.

Theorem 2.2. Let UQLi denotes UQL with → = →i, i = 1,..., 5. Then in any UQLi
we can infer A1–A6 and R1–R4 for any →j , j = 1,..., 5.

Theorem 2.3. UQL with A→ B = A ⇀ B
def
= ¬A ∨B is classical logic.

To prove the completeness of UQL for the class of valid formulas of L, we first
define relation ≡ and prove some related lemmas.

Definition 2.3. A ≡ B
def
= ` A↔ B.

where ` A↔ B means ` A→ B & ` B → A.

Lemma 2.1. The relation ≡ is a congruence relation on the algebra of propositions
A =< Q◦,¬,∨,→>.

Lemma 2.2. The Lindenbaum–Tarski algebra A/≡ is an orthomodular lattice, i. e.,
the conditions defining the lattice are true for ¬/≡, ∨/≡, and → /≡ turning into
⊥, ∪, and ⊃i by means of natural isomorphism k :A 7→A/≡ which is induced by the
congruence relation ≡ and which satisfies k(¬A) = [k(A)]⊥, k(A ∨ B) = k(A) ∪ k(B),
and k(A→ B) = k(A) ⊃i k(B).

Completeness theorem 2.4. If A is true in any model of UQL, then ` A.

Proof. The proof is an obvious modification of the analogous proof from reference 3
and we omit it.

Taken together, UQL is a proper quantum–logical deductive system so far as its
algebraic semantics is concerned.

However, although UQL provides the same axiomatic frame for all five implications
it nevertheless splits into five different logics as follows from the following theorem.

Theorem 2.5. Any orthomodular lattice in which a ⊃i b = a ⊃j b (i, j = 1,..., 5, i 6= j)
is distributive.

Proof. The proof can be easily carried out for all cases by means of the commensurability
condition: a ∩ (a⊥ ∪ b) ≤ b,2 which is, in effect, Foulis’ condition

(

(iii) of Lemma 2 of

reference 7
)

for Sasaki’s permutability . Therefore, we shall only examplify it for i = 1
and j = 2.
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We start with a⊥ ∪ (a∩ b) = b∪ (a⊥ ∩ b⊥). Using lattice analogues to A1, R1, and
R2 we obtain: b⊥ ∩ (a ∪ b) ≤ a which boils down to the commensurability of a and b.
Since this holds for any a, b ∈ L◦ we obtain the distributivity.

In a similar way we proceed for any i, j = 1,..., 5, i 6= j.

Corrolary 2.1. For commensurable elements a ⊃i b = a ⊃ b = a⊥ ∪ b, i = 1,..., 5.

Since we can not deal with five logics at once, e.g. already the propositional ortho–
Arguesian law8 forces us to make up our mind as to which conditional we should keep
to, we shall now dwell to some new results which open a new approach to quantum logic
or even more likely the other way round.
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3. ALGEBRAIC AXIOMATIZATION OF UNIFIED QUANTUM LOGIC

In the previous section we have shown how both quantum and classical logics are char-
acterized by ascribing at the same time the logical and the object language (¬A ∨ A)
truth to the operation of implication within orthologic. The particular feature of clas-
sical logic (as opposed to quantum logic) which is “responsible” for the success of its
methods is that the ascription for the classical implication is unique. Equivalently, both
orthomodular and distributive lattices are characterized by determining, in an ortho-
lattice, the ordering relation with the help of the object language implications being
equal to one. And again the particular feature of the Boolean algebra is that such a
determination is unique as opposed to orthomodular lattice.

Our idea then was that for orthomodular logic the ordering is not at all so im-
portant. The idea proved right through the following theorems which put equation in
place of ordering equation (relation of implication) and identity (bi–implication, bicon-
ditional) in place of operation of implication (conditional).

Definition 3.1. We call the expression (a ⊃i b) ∩ (b ⊃i a) (i = 1,..., 5) identity and
denote it by a ≡ b. The two elements a, b satisfying a ≡ b = 1 we call identical.

Definition 3.2. We call the expression (a ⊃ b) ∩ (b ⊃ a) (i = 1,..., 5) classical identity

and denote it by a≡0b. The two elements a, b satisfying a≡0b = 1 we call classically

identical.

Lemma 3.1. In any orthomodular lattice: a ≡ b = (a ∩ b) ∪ (a⊥ ∩ b⊥).

Proof. We omit the easy proof. To our knowledge the lemma was first mentioned by
Hardegree.9

Lemma 3.2. In any ortholattice: a≡0b = (a⊥ ∪ b) ∩ (a ∪ b⊥).

Proof. Obvious by definition.

The main theorem of this section is the following one. It characterizes orthomodular
lattice by means of the operation of identity and the lattice theoretical equation instead
of the operation of implication and the lattice theoretical ordering.

Theorem 3.1. An ortholattice in which any two identical elements are equal, i.e. in
which L7′. a ≡ b = 1 =⇒ a = b holds, is an orthomodular lattice and vice versa.

Proof. The vice versa part follows directly from L7 and Def. 1 since right to left
meta–equivalence holds in any ortholattice. So we have to prove the orthomodularity
condition by means of L1–L6 and L7′. Let us take the following well–known form2 of
the orthomodularity:

a ≤ b & b⊥ ∪ a = 1 =⇒ b ≤ a
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The first premise can be written as a∪ b = b and as a∩ b = a. The former equation can
be, by using the lattice analogue for R2, written as b⊥ = a⊥ ∩ b⊥. Introducing these b⊥

and a into the second premise the latter reads: (a⊥ ∩ b⊥) ∪ (a ⊥ b) = 1. Now L7′ gives
a = b which is, in effect, the wanted conclusion.

This extraordinary feature of orthomodular lattices and therefore of quantum logic
characterizes them in a similar way in which the ordering relation vs. the operation
of implication characterizes distributive lattices. In other words, the identity which
makes two elements both identical and equal in an ortholattice thus making the lattice
orthomodular is unique. We could prove this directly but it is much nicer to prove
instead, that the classical identity which makes any two elements of an ortholattice both
classically identical and equal does not turn the lattice into a distributive one but makes
it a lattice which is between being genuinely orthomodular and distributive. (That, by
doing so, we at the same time prove the wanted uniqueness of the identity stems from the
fact the there are only five implications in an orthomodular lattice which reduce to the
classical one for commensurable elements. To our knowledge Hardegree was first who
observed9 that Kotas’ theorem10 on the existence of exactly five (plus classical itself)
such implications in any modular lattice is valid for orthomodular lattices as well.11

It should be noticed at this point that in an ortholattice a ⊃i b = 1 & b ⊃i a = 1,
(i = 1,..., 5), is equivalent to (a ⊃i b) ∩ (b ⊃i a) = 1 (i = 1,..., 5).)

Theorem 3.2. An ortholattice in which any two classically identical elements are equal,
i.e. in which L7′′. a≡0b = 1 ⇐⇒ a = b holds, is a non–genuine orthomodular lattice
which is not distributive.

Proof. We shall first prove that L7′′ implies L7′.
Using a ∪ (b ∩ c) ≤ (a ∪ b) ∩ (a ∪ c), which holds in any ortholattice we easily

obtain that (a∩ b)∪ (a⊥ ∩ b⊥) = 1 implies
(

(a⊥ ∩ b⊥)∪ a
)

∩
(

(a⊥ ∩ b⊥)∪ b
)

= 1. Using
a∪(b∩c) ≤ (a∪b)∩(a∪c) again for each conjunct of the latter equation we easily obtain
that it implies (a∪b⊥)∩ (b∪a⊥) = 1. Now L7′′ gives a = b. Thus (a⊥∩b⊥)∪ (a∩b) = 1
implies a = b. Hence L7′.

Therefore, a lattice in which L1–L6 and L7′′ are satisfied is orthomodular. However,
it is not a genuinely orthomodular since L7′′ violates most orthomodular lattices from
MacLaren’s L10 till Chinese lantern MO2.

However, such a lattice is not distributive because the distributivity would im-
ply, by L7′′ and Theorem 2.3, the validity of the following theorem in classical logic:
`

(

(A ∧ B) ⇀ (C ∧D)
)

⇀ (A ⇀ C). Since this is obviously not a theorem in classical
logic we obtain the claim.

The previous theorems enable us to axiomatize unified quantum logic in a com-
pletely algebraical way, thus practically identifying quantum logic and its algebraical
model — the orthomodular lattice. From this marriage orthomodular lattice gains the
ease of infering formulas and availability of different logical semantics as e.g. proba-
bilistic semantics, thus becoming an algebraico–deductive system. Quantum logic, on
the other hand, gains a new representation by means of equational algebraical set–
theoretical properties thus becoming a decidable system with the finite model property.
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More details on all these aspects will be presented in the next section. Here we shall
only present the axiomatization itself. The axiomatization is not intended to provide a
vehicle for proving the the old things in a new garment but simply a novel fact on ortho-
modular structures and quantum logic and a source for further new results. Therefore
we shall next prove its soundness and completeness but we will not burden the reader
with the unfamiliar axioms when proving other resluts in the next section.

We define algebraic unified quantum logic AUQL as the axiom system given below.

Axiom Schemata.

AL1. ` A ∨B ↔ B ∨ A
AL2. ` A↔ A ∧ (A ∨ B)

AL3. ` A↔ A ∧ (A ∨ ¬B)

AL4. ` (A ∨ B) ∨ C ↔ ¬
(

(¬C ∧ ¬B) ∧ ¬A
)

Rule of Inference.

RL1. ` (B ∨ ¬B) ↔ (A↔ B) =⇒ ` A↔ B

where the bi–implication is defined as: A↔ B
def
= (¬A ∧ ¬B) ∨ (A ∧ B).

Definition 3.3. We call L = < L, h > a model of the set Q◦ (of propositions from
AUQL) if L is an orthomodular lattice and if h: AUQL 7→L is a morphism in L preserving
the operations ¬, ∨, and ↔ while turning them into ⊥, ∪, and ≡, and satisfying h(A) = 1
for any A ∈ Q◦ for which `A holds.

Definition 3.4. We call a proposition A ∈ Q◦ true in the the model L if for any
morphism h: AUQL 7→L, h(A) = 1 holds.

Soundness theorem 3.3. `A only if A is true in any orthomodular model of AUQL.

Proof. Sobociński’s postulate–system for ortholattices, which we actually translated
into the logic, would make our proofs of AL1–AL4 redundant. So, we omit them. The
proof of RL1 is with the help of Theorem 1 straightforward and we omit it as well.

Lemma 3.3. The Lindenbaum–Tarski algebra A/↔ is an orthomodular lattice with
the natural isomorphism k:A 7→A/↔ which is induced by the congruence relation ↔
and which satisfies k(¬A) = [k(A)]⊥, k(A∨B) = k(A)∪k(B), and k(A↔ B) = k(A) ≡
k(B).

Completeness theorem 3.4. If A is true in any model of AUQL, then ` A.

Proof. The proof is straightforward and we omit it.
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Remark. As we already stressed above the algebraic unified quantum logic AUQL is
not intended to substitute the usual axiomatization but only to provide a distinguishing
characterization of quantum logic by means of a unique operation — bi–implication
— which directly stems from the operations of implication whose classical form —
classical implication — in turn serves for a unique characterization of classical logic.
This new characterization will in the next section generate some further novel results
but in approaching them we shall retain the whole usual logical machinery, in particular
Ackermann’s binary formulation which Kotas applied to modular and Goldblatt to
orthomodular logic, then MacLaren’s set–theoretic characterization and Goldblatt’s set–
theoretic semantics, etc. The reason for that is twofold. First, the main appeal of
the mentioned structures lies in the ease of the deriving new formulas, checking on
decidability, etc., and this ease is based on particular properties of the underlying
orthostructure on which orthomodularity or distributivity can be built. Eg., A2, A3,
A6, and R2 express orthocomplementarity of an orthostructure and we know that i)
a uniquely orthocomplemented ortholattice is an orthomodular lattice,5,12 and ii) a
uniquely complemented ortholattice is a Boolean algebra.12,13 (Said Greechie on the
recent biannual meeting of the International Quantum Structures Association: “I’ve
learned recently that in dealing with quantum structures we should always start from
ortho–algebras.”) Secondly, we simply could not stand the idea of forcing the reader —
and ourselves — through another new axiomatization and formalism.
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4. YES–NO REPRESENTATION OF QUANTUM LOGIC

Comparing the representations by means of the operations of implication and bi–
implication presented in Sections 2 and 3, respectively, we can easily come to a conjecture
that other ordering–like quantum logic concepts can be redefined along a similar line
eventually bringing us to a new modelling and proper semantics of quantum logic.

The first concept we should check on is of course the orthogonality . We say that
elements a and b of an ortholattice are orthogonal and we write a⊥b iff a ≤ b⊥. This
definition which we can read off from the algebra of projectors from the Hilbert space is
perfectly suited for a representation of orthologic and ortholattices proper.1,14−16 For,
we can rather straightforwardly impose particular conditions on the orthogonality which
give us the soundness as well as the completeness of the representation, the orthoframe,
the canonical model, the finite model property and the decidability.

Not so when we add the orthomodularity condition to orthologic (ortholattices),
i.e. when we deal with quantum logic (the orthomodular lattices). It is then possible to
represent the logic by means of conditions imposed on the frame but not by means of the
conditions of the first order imposed on the above orthogonality (which appears as the
relation of accessibility in the Kripkean, i.e. modal approach) as proved by Goldblatt.1

Thus it is still not known whether there is a class of orthoframes which determines the
logic.1,6,17

However, we can approach the whole problem from the “equational side” picking
up another relation which is not orthogonal but, let us say, orthogonal–like relation.

The guideline for the new orthogonal–like relation is the equation a = b⊥ instead
of the inequation a ≤ b⊥. The new relation does not follow the algebra of projectors
but the algebra of YES–NO linear subspaces and their orthocomplements. It is given in a
set–theoretic way and it is weaker than (i.e. it follows from) MacLaren’s orthogonality.18

We shall call it the YES–NO relation since it perfectly corresponds to YES–NO quantum
experiments.

Let us start establishing our representation (semantics) by introducing the YES–NO

quantum frame and the YES–NO relation for the algebraic unified quantum logic.

Definition 4.1. F =< X,	 > is a YES–NO quantum frame iff X is a non–empty set,
the carrier set of F , and 	 is a YES–NO relation, i.e. 	 ⊆ X × X is symmetric and
intransitive.

Of course, the relation is also irreflexive since irreflexivity follows from intransitivity.

Definition 4.2. Y is said to be a YES–NO subset iff

Y ⊆ Z ⊂ X =⇒ (∀x ∈ Z)(x ∈ Y ∨ x	 Y )

where x	 Y
def
= (∀y ∈ Y )(x	 y).
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In a pedestrian way we can say that any element of a proper subset of the carrier
set X is either belonging to a subset of that subset or to its relative complement. To
pick up a proper subset is important because a direct reference to X would bring us to
the Boolean algebra instead of orthomodular lattice. Thus we rely on the well–known
representation of orthomodular structures, by which they can be obtained by gluing
together the Boolean algebras, the representation “initiated” by Greechie19 and nicely
formulated by Dietz: “An ortholattice is orthomodular if and only if every its orthogonal
subset lies in a maximal Boolean subalgebra (a block) of the lattice.”20

Lemma 4.1. A YES–NO subset Y ⊆ Z ⊂ X is YES–NO closed (in Z ⊂ X). If we denote
Y 	 = {x : x	 y, y ∈ Y } then Y 		 = Y .

Proof. We have to prove:

(∀x ∈ Z ⊂ X)
[

(x ∈ Y ⊆ Z) ∨ (∃z ∈ Z)
(

(z 	 Y ) & ∼ (x	 z)
)]

.

If we assume x ∈ Y the expression is obviuosly true. Let us suppose x /∈ Y .
According to Def. 2 we have x 	 Y . Then for any z 	 Y we have got either z = x
and in this case the irreflexivity (deducible from the intransitivity) do the job or the
intransitivity for any y ∈ Y gives: x	 y & z 	 y =⇒∼ (x	 z).

Let us now prove Y 		 = Y . By definition, we have: Y 	 = {x : x	 y, y ∈ Y } and
Y 		 = (Y 	)	 = {z : z 	 x, x ∈ Y 	} = {z : z 	 x & x 	 y}. By intransitivity we get
Y 		 = {z :∼ z 	 y, y ∈ Y } and this is nothing but Y by Def. 2.

To prove the soundness of our representation we introduce a YES–NO model by the
following definition which is actually a modified Goldblatt’s definition6 for the ortho-
model reformulated for our YES–NO case. We do so in order to stress the parallelism
between the models: the orthogonal one and the YES–NO one.

Definition 4.3. M =< X,	, V > is a YES–NO quantum model on the YES–NO quan-
tum frame < X,	 > iff V is a function assigning to each propositinal variable pi a
YES–NO subset V (pi) ⊂ X. The truth of a wff A at x in M is defined recursively as
follows. (M : x |= A reads A holds at x in M.)

(1) x |= pi ⇐⇒ x ∈ V (pi)
(2) x |= A ∧ B ⇐⇒ x |= A & x |= B
(3) x |= ¬A ⇐⇒ (∀y)(y |= A =⇒ x	 y)

If we denote the set {x ∈ X : x |= A} by ‖A‖ (or ‖A‖M), the above reads:

(1′) ‖pi‖ = V (pi)
(2′) ‖A ∧ B‖ = ‖A‖⋂ ‖B‖
(3′) ‖¬A‖ = {x : x	 ‖A‖}.
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If Γ is a non–empty set of wffs, then Γ implies A at x in M, in symbols: M : x : Γ |= A,
iff (∃B ∈ Γ)(M : x |= B =⇒ M : x |= A). Γ M–implies A, M : Γ |= A, iff Γ implies
A at all x in M. If F is a YES–NO quantum frame, Γ F–implies A, F : Γ |= A, iff
M : Γ |= A for all models M on F . If C is a class of frames, Γ C–implies A, C : Γ |= A,
iff F : Γ |= A for all F ∈ C. If Γ = {A∨¬A} then we may simply write M |= A, F |= A,
etc., and speak of truth of A in M, F–validity of A, etc. A class C of YES–NO quantum
frames is said to determine quantum logic (AUQL or UQL) iff, for all A, B ∈ Q◦,
` A→ B iff C : A |= B.

Lemma 4.2. If M is a YES–NO model, then for any A set ‖A‖M is YES–NO closed.

Proof. For ‖pi‖ = V (pi), V (pi) is a YES–NO subset and the result holds by Lemma 1.

Provided that it holds for ‖A‖ and ‖B‖ it holds for ‖A ∧ B‖ as well because the
intersection of YES–NO subsets is obviously a YES–NO subset and therefore closed by
Lemma 1.

To achieve a general result by induction on the length of formulas the negation
remains to be considered. Let us suppose x /∈ ‖A‖. By Def. 2(3&3′) we then obtain
(∃y)

[

y |= A & ∼ (x 	 y)
]

. Now, if M : z |= ¬A we get y |= A =⇒ z 	 y and by
symmetry and the assumed existence of y |= A we get y 	 z. Thus (assuming y |= A)
we get y 	 ‖¬A‖ and ∼ (x	 y). So ‖¬A‖ is YES–NO closed.

Soundness theorem for YES–NO representation of quantum logic 4.1.

` Γ → A =⇒ C : Γ |= A

where C is the class of all YES–NO quantum frames.

Proof. Let us first prove the derivability of UQL axioms and rules of inference.

A1 x |= A =⇒ x |= A is a tautology.

A2 x |= A ∧ B ⇐⇒ (x |= A & x |= B) =⇒ x |= A

A3 x |= A ∧ B ⇐⇒ (x |= A & x |= B) =⇒ x |= B

A4 Let x |= A. Then, if y |= ¬A, by Def. 3.3, y 	 x, and by symmetry x 	 y so that
the same definition gives x |= ¬¬A.

A5 Let x |= ¬¬A. Then, y |= ¬A =⇒ x 	 y, i.e. y 	 ‖A‖ =⇒ x 	 y. Since by
Lemma 2 ‖A‖ is YES–NO closed, we have x ∈ ‖A‖, i.e., x |= A.

A6 x |= A ∧ ¬A ⇐⇒
[

(∀y)(y |= A =⇒ y 	 x) & x |= A
]

. Hence x 	 x which is
in contradiction with irreflexivity of 	. Thus (∀x)(∼ x |= A ∧ ¬A) and therefore
(∀B)(A ∧ ¬A |= B).

R1
[

(x |= A =⇒ x |= B) & (x |= B =⇒ x |= C)
]

=⇒ (x |= A =⇒ x |= C).

R2 Assuming x |= A =⇒ x |= B and x |= A =⇒ x |= C we obtain x |= A =⇒
(x |= B & x |= C), which gives x |= A =⇒ x |= B ∧ C.
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R3 Suppose C : A |= B, and also M : x |= ¬B. Then y |= A =⇒ x 	 y by Def. 2.
A |= B gives y |= A =⇒ y |= B. Thus y |= A =⇒ x	 y, i.e. x |= ¬A.

R4 We have to prove A ∧
(

¬A ∨ (A ∧B)
)

|= B. Let us start with A ∧B |= A which is
a tautology. Hence for any M we have ‖A ∧ B‖ = ‖A‖⋂ ‖B‖ ⊆ ‖A‖ by definition
of ‖A‖M. For y ∈ ‖A∧B‖, ‖A∧B‖ is YES–NO closed. On the other hand, for y /∈
‖A∧B‖ & y ∈ ‖A‖, according to Def. 2, there is at least one y such that y	‖A∧B‖
and by Lemma 1 ‖A∧B‖ is YES–NO closed. Now, if x |= A∧¬

(

A∧¬(A∧B)
)

, then

x ∈ ‖A‖ and (∀y)
[

∼ y ∈ ‖A‖ ∨ (∼ y 	 ‖A ∧B‖) ∨ x	 y
]

. The latter expression

boils down to
[

(∀y)(y ∈ ‖A‖)
]

=⇒
[

(∼ ∃y)
(

(y	‖A∧B‖) & ∼ x	y)
)]

. Thus for
all y ∈ ‖A‖ there is no one satisfying the second alternative of the YES–NO closure
condition and therefore the first one: x ∈ ‖A∧B‖. Thus x |= A∧B and hence the
orthomodularity.

The proof of the theorem follows by induction on UQL (AUQL) derivability.

Thus we obtained that quantum logic really does have a YES–NO representation,
i.e. a YES–NO model which is of our primary interest here. We are also able to prove
the opposite, i.e. that the structure of which the YES–NO representation is a model is
exactly quantum logic (UQL, AUQL), but for the proof we refer the reader to reference
21. This is mostly because the result is somewhat less interesting for possible physical
applications and for a reconstruction of the Hilbert space as we clarify below.

Completeness theorem for quantum logic 4.2.

C : Γ |= A =⇒ ` Γ → A

where C is the class of all YES–NO quantum frames.

The completeness is accompanied with the finite model property and decidability
of quantum logic (which are both — under particular restrictions — also proved in
reference 21).

Decidability boils down to the fact that there is an effective procedure to decide
on every non–thesis that it really is a non–thesis and this is very important for any
axiomatization because it decides on whether the axiomatization is effective in the
sense that it is recursive. The reason why the obtained decidability and the finite
model property of quantum logic are not so important for physical applications and the
Hilbert space in the present elaboration is the following. Our completeness proof —
as opposed to other completeness proofs (given for another representation — by means
of the orthogonality) by MacLaren,22 Goldblatt,6 Dishkant,23 Morgan,24 Iturrioz,25,26

Nishimura,15 . . .— does provide a proof of the finite model property and the decidability
but, on the other hand, they both turn out to be valid only for the finite case, i.e. for the
case when there are finitely many elementary propositions in the logic. However, a finite
propositional lattice (complete orthomodular one of the Jauch–Piron type, i.e. atomistic
with the covering property) does not have the Hilbert space as a model, i.e. cannot serve
for building up quantum mechanics on it.27 Thus we have to approach a possible physical
interpretation from another side and we will do so in the next section.
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5. YES–NO PHYSICAL INTERPRETATION OF QUANTUM LOGIC

As a pedestrian example of a physical interpretation of quantum logic we take the
simplest possible experimental situation of measuring spin–1 by a Stern–Gerlach device.
Within such an experiment, for example, by opening one channel and blocking the other
two on the device we test a proposition (A in the logic, i.e. a in the lattice) (e.g. ‘spin–
up’ ) while by blocking the one and opening the other two we test its orthocomplement
(¬A, a⊥). This is nicely presented and shown in Figs. 1 and 2 of Hultgren and Shimony’s
paper.28

That such an oversimplified experimental setup can at all be relevant for a
general physical interpretation stems from the nature of the interpretation and the
kind of meaning we ascribe to propositions.

The analysis of Hultgren and Shimony28 of the spin–1 case showed that in building
a complete Hilbert space edifice we cannot rely only on standard outcomes of the exper-
iments carried out on individual systems. For, we cannot measure all the states we can
describe with the help of the Hilbert space formalism by means of standard individual
YES–NO measurements, i.e. there are states which are not eigenstates of the observables
we measure. For example, if we decide to orient the measuring device in directions n

in order to measure the spin components of the spin operator s whose eigenvectors are
[1,0,0], [0,1,0], and [0,0,1], then the state [1/

√
6, 1/

√
3, 1/

√
2] can easily be shown not

to be an eigenstate of the measured operator n · s. (We cannot obtain it by applying
the rotation matrix on the eigenvectors.)

A possible remedy for such unrepresentable states (i.e. the states outside the logic or
lattice of standard propositions) seems to be the disputed Jauch’s infinite filter procedure
for introducing conjunctions (meets, intersections) which cannot be measured directly
(either within a single experiment or within a finite number of them) as new elements of
the logic (lattice) needed for modelling by the Hilbert space.28,29 In other words there
are infinitely many atoms of the lattice of the subspaces of the Hilbert space which do
not belong to the finite lattice of individual YES–NO spin–1 measurements but which can
be recovered by the Jauch’s procedure. This is not a problem for quantum logic if we
look at it as at a structure which corresponds to the Hilbert space because the structure
(complete uniquely orthocomplemented30 atomistic lattice satisfying the covering law)
demands by itself an infinite number of atoms.31 But if we looked at quantum logic as a
logic of YES–NO discrete measurements and try to recover the Hilbert space axioms by
empirically plausible assumptions then we would obviously try to avoid any infinitary 32

procedure which, as Jauch’s, in principle simply cannot be substituted by any arbitrary
long one.29 Can one offer anything as a substitute for the Jauch’s infinitary procedure?

The infinitary Jauch’s procedure serves us to obtain the complete Hilbertian struc-
ture which bare experimental propositions obtained from a standard experimental setup
simply cannot offer — as shown by Hultgren and Shimony.28 However, Swift and
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Wright33 have shown — answering to a challenge put forward by Hultgren and Shi-
mony — that we can extend the standard experimental setup for measuring spins so as
to make every Hermitian operator acting on the Hilbert space of spin–s particle measur-
able. In particular, they employed electric fields in place of magnetic ones thus making
electric k–poles (in spin–1 case: quadrupoles) distinguishable. As a result one can offer
a complete experimental setup for measuring every spin operator which is both finitary
and repeatable, i.e. applicable to individual systems and which offers a complete set of
elementary propositions. On the other hand, we can deal not with individual systems
but with ensembles and represent states of the disputed kind ([1/

√
6, 1/

√
3, 1/

√
2]) as

d’Espagnat’s mixtures of the second kind.34 These possibilities immediately address the
question of approaching preparation–detection YES–NO procedure. Are we to take the
individual or the ensemble approach?

If we adopt the individual approach, then we bring the old Bohr’s “completeness
solution” to the stage. That is, given the whole experimental arrangement we can
always make an individual system determined by a discrete observable repeatable. But
in that case we cannot apply the usual policy of standard quantum logicians and claim
with them that the system itself is determined by its preparation, i.e. that it possesses
a corresponding property which we unambiguously recover by a detection procedure.
For, only by reffering to the whole experimental procedure — preparation as well as
detection — can we say that a system itself “possesses” a projection–0 of spin–1 property
when prepared by a magnetic field as opposed to an electric field. The system prepared
one way or the other will pass the middle channel of a detecting device no matter
whether that channel used a magnetic or an electric field to detect the state.33 Since the
electrical field is capable of disgusing quadrupole moment while the magnetic field can
detect only dipole moments, the probability one (p = 1) of passing a particular filter,
i.e. the repeatability, therefore has not got a sense without a reference to the whole
preparation–detection procedure and the whole experimental setup: without knowing
the orthocomplemention we cannot say to which set the measured observable belongs.

If we adopt the ensemble approach, we can apply the statistical approach to the
definition of our propositions within the logic we use. In the above example, all chan-
nels taken into account within a long run unambiguously decide between dipols and
quadrupoles, provided that the ensemble is prepared in a “clean” way and not as a
mixture. If it is prepared as a mixture, it will also be unambiguously detected as such.

One can show that the statistical approach is not weaker then the individual ap-
proach but is rival with it.21,35−38 This is not in any contradiction with the usual
approach to quantum logic since a proposition can be as legally verifiable on a single
repeatable individual system as well as on a beam coming out of a repeatable exper-
imental arrangement: we just have to postulate whether “it is” one way or the other.
Since that is often misunderstood39 in the literature we shall provide some details here.

Let us take repeatability as “measure” of individual as opposed to statistical inter-
pretation.

In order to verify whether an individual observed sytem is in the state
[1/

√
6, 1/

√
3, 1/

√
2] or in a completely unprepared state [1

√
3, 1

√
3, 1

√
3] we have to

measure not only its beam but also the beams of its orthocomplement, i.e. both
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statistical “properties” in the long run. No such mixture property can be encoded
into an individual spin–1 particle. Thus we cannot speak of the repeatability of such
systems. On the other hand, continuous observables40 and discrete observables which do
not commute with conserved quantities41 are both known not to satisfy the repeatability
hypothesis. So, for such observables no property can be prepared with certainty.

Apparently, these unrepeatable systems behave differently than the ones charac-
terized by discrete observables.

But there is a way to treat all the observables, continuous as well as discrete, in
a common way. Of course, we cannot make mixtures repeatable but we can exclude
the repeatability for individual events — leaving only the statistical repeatability which
turns into the approximate repeatability for continuous observables. In other words we
can exclude the individual repeatability even for the discrete observables which undergo
measurements of the first kind. In doing so we start with links between propositions
and data.

The only way in which quantum theory connects the “elements of the physical
reality” (i.e. what we observe) with their “counterparts in the theory”42 is by means of
the Born formula which gives us the probability that the outcome of an experiment will
confirm an observable or a property of an ensemble of systems.43 Strictly speaking, what
we measure is the mean value of an operator, the scalar product, not the operator, not
the state, not the wave function. When we say that a measurements yields the eigenvalue
a or the state |ψa > this is “slang.” We can measure neither A, nor |ψa >, nor a. What

a measurement of the pure state |ψa > yileds is <ψa|A|ψa>
<ψa|ψa>

which is then equal to a.

In other words, in case of discrete observables we say that we are able to prepare
a property whenever by an appropriate detection (determination, measurement), we
can verify the property with certainty — i.e. with probability one / equal to unity,43,44

i.e. almost certainly, almost sure45 or “except on a null–event.”46 This means that for
repeatable measurements we only know that a property will be verified with certainty
(with probability one) — that is on ensemble. Whether the property will be verified on
each so prepared individual system we can only guess. For, there is no “counterpart in
the theory” of an individual detection even if it is carried out “with certainty”: The Born
probabilistic formula — which is the only link between the theory and measurements
— refers only to ensembles. However, as shown below, we can consistently postulate
whether a measurement of the first order is verifying a prepared repeatable property on
each system or not.

The approach we take is resting on combining the Malus angle (between the prepar-
ing and the detecting Stern–Gerlach devices) expressed by probability with that ex-
pressed by relative frequency. To connect probability 0 < p < 1 with the corresponding
relative frequency we used the strong law of large numbers for the infinite number of
Bernoulli trials which – being independent and exchangeable – perfectly represent quan-
tum measurements on individual quantum systems. These properties of the individual
quantum measurements we used to reduce their repeatability to successive measure-
ments but that has no influence on the whole argumentation which rests exclusively on
the fact that finitely many experiments out of infinitely many of them may be assumed
to fail and to nevertheless build up to probability one.
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The argument supporting the statistical interpretation is that probability one of
e.g. electrons passing perfectly aligned Stern–Gerlach devices does imply that the rela-
tive frequencyN+/N of the numberN+ of detections of the prepared property (e.g. spin–
up) on the systems among the total number N of the prepared systems approaches
probability p = 〈N+/N 〉 = 1 almost certainly:

P ( lim
N→∞

N+

N
=1) = 1, (1)

but does not imply that N+ analytically equals N , i.e. it does not necessarily follows
that the analytical equation N+ = N should be satisfied.

We therefore must postulate what we want: either N+ = N and (1) or N+ 6= N
and (1). We have to stress here that since already the central limit theorem itself, which
served us to infer (1), holds only on the open interval 0 < p < 1, it would be inconsistent
to try to prove one or the other posssibility.

Of course, the possibility N+ 6= N doesn’t seem very plausible by itself and we
therefore used the Malus law to construct the function which reflects the two possibilities
and proved a theorem which directly supports another difference between the probability
and frequency treatment of individual quantum measurements.

As for the theorem we proved that

lim
N→∞

P (
N+

N
=p) = 0, 0 < p < 1 (2)

which expresses randomness of individual results as clustering only around p (almost
never strictly at p).

As for the function which reflects the two above stated possibilities we will just
briefly sketch it here. The reader can find all the relevant theorems and proofs in refer-
ence 35, a generalization to spin–s case in reference 37, and a discussion with possible
implications on the algebraical structure underlying quantum theory in references 4 and
35. The function refers to the quantum Malus law and reads:

G(p)
def
= L−1 lim

N→∞

[

|α
(N+

N

)

− α(p)|N1/2
]

where α is the angle at which the detection device (a Stern–Gerlach device for spin–s
particles, an analyzer for photons) is deflected with regard to the preparation device
(another Stern–Gerlach device, polarizer) and where L is a bounded random (stochastic)
variable: 0 < L < ∞. The function is well defined and continuous (or piecewise
continuous) on the open interval (0,1). In general it does not correspond to an operator
but it does represent a property in the sense of von Neumann.43 For electrons and for
projection–0 of spin–1, it is equal to:35

G(p) = H(p)
def
= H[p(α)] =

sinα

sinα
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Turning our attention to the probability equal to one we see35 from the definition
of H(p) that H is not defined for the probability equal to one: H(1) = 0

0
. However,

its limit exists and equals 1. Thus a continuous extension H̃ of H to [0,1] exists and is
given by H̃(p) = 1 for p ∈ (0, 1) and H̃(1) = 1.

We now assume that L is bounded and positive not only for 0 < p < 1 but for
0 ≤ p ≤ 1 as well.

Thus we are left with the following three possibilities (which hold for an arbitrary
spin s too37).

1. G(p) is continuous at 1. A necessary and sufficient condition for this is G(1) =
limp→1G(p). In this case we cannot strictly have N+=N since then G(1) = 0 6=
limp→1G(p) obtains a contradiction.

2. G(1) is undefined. In this case we also cannot have N+=N since the latter equation
makes G(1) defined, i.e. equal to zero.

3. G(1) = 0. In this case we must have N+=N . And vice versa: if the latter equation
holds we get G(1) = 0.

Hence, under the given assumptions a measurement of a discrete observable can be
considered repeatable with respect to individual measured systems if and only if G(p)
exhibits a jump–discontinuity for p=1 in the sense of point 3 above.

The interpretative differences between the points are as follows.

1 & 2 admit only the statistical interpretation of the quantum formalism and banish
the repeatable measurements on individual systems from quantum mechanics
altogether. Of course, the repeatability in the statistical sense remains un-
touched. Possibility 1 seems to be more plausible than possibility 2 because
the assumed continuity of G makes it approach its classical value for large
spins.37 Notably, for a classical probability we have limp→1Gcl(p) = 0 and for
“large spins” we get lims→∞ limp→1G(p) = 0.

3 admits the individual interpretation of quantum formalism and assumes that
the repeatability in the statistical sense implies the repeatability in the in-
dividual sense. By adopting this interpretation we cannot but assume that
nature differentiate open intervals from closed ones, i.e. distinguishes between
two infinitely close points. (The same conclusion about nature we would have
to draw if we assumed a sudden jump in definition of the random function L
leaving G(1) undefined.)

The main consequence of so formally different descriptions of quantum systems is
therefore that the interpretations become rivals to each other. And the old problem as
to whether an individual quantum system can be considered completely described by
the standard formalism or not is given a new aspect: We are forced to make up our
mind: either to consider the standard formalism a complete description of an individual
quantum system or to understand it as a completely statistical theory.

By keeping to the latter possibility we introduce all the logico–algebraic proposi-
tions of the structure (logic, lattice,. . .) underlying the Hilbertian theory of quantum
measurements directly as d’Espagnat’s mixtures of the second kind — which cannot be
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verified on individual systems but can on the appropriate ensemble — and thus we avoid
the afore–mentioned infinitary procedure which actually boils down to postulating what
we lack to reach the Hilbertian structure.47

We have to stress here that by avoiding Jauch’s infinitary procedure we did not
get rid of any postulation. We only substituted the statistical interpretation postulate
for the individual interpretation postulate and the Jauch’s infinitary postulate. We
did so because we feel that the former postulation is physically more plausible since
it fits better into the quantum logic approach and resolves the paradoxes of Hultgren
and Shimony48 by generating all the propositions according to a feasible experimental
receipt.
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6. CONCLUSIONS

We have thus shown that the logico–algebraic structure underlying quantum measure-
ments and having the Hilbert space as its model can be based on the statistics of the
measurements. The propositions in such logic/lattice are formed with the help of en-
sembles, by means of d’Espagnat’s mixtures of the second kind, which correspond to a
complete experimental setup for measuring every spin operator. The YES–NO setup is
thus interpreted as the one which determine both a proposition and its orthocomplement
in the long run.

Quantum logic, whose propositions can therefore be generated by the YES–NO sta-
tistical measurements is then shown to reflect the nature of the measurement so as to
allow modelling by an ortholattice in which a unique operation of bi–implication cor-
responds to equality. In other words, the ordering relation turns out to be inessential
for orthomodular lattices — quite the other way round then with distributive lattices,
the result provided in Se. 3. We could even say that quantum structures are based on
equal classes of equivalence while classical structures are based on ordered classes of
equivalence.

Such an approach gave us a clue to a representation of quantum logic as well as
of orthomodular lattices by means of the YES–NO relation which we provided in Sec. 4.
At the same time this embodies a proper semantics for quantum logic which is a rather
long wanted result for the finite case since the decidability which the result enables
establishes a direct computational approach to quantum measurements, although it is
not of particular significance for the Hilbertian modelling.

The fact that orthomodular lattices are characterized by the operation of bi–
implication might be significant for a complete axiomatization of quantum set theory
because it doesn’t seem accidental that Takeuti49 simply dropped the extensionality ax-
iom out of his formulation of quantum set theory — the extensionality axiom demands
a proper operation of implication.

On the other hand, the fact that orthomodular lattices are essentially not charac-
terized by the operation of implication, i.e., that they are essentially non–ordered might
be significant for possible formulation of the Hilbert space over the non–archimedean,
i.e. non–ordered Keller fields.50
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(Hölder–Pichler–Tempsky, Wien, 1983), p. 99.
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