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Abstract

A loophole–free Bell experiment requiring detection efficiency as low as 67% is

proposed. The experiment uses different frequency photon interference of the

fourth order at an asymmetrical beam splitter and a resulting non–maximal

entanglement.
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No Bell experiment carried out so far could conclusively disprove hidden–variable theories

without additional assumptions. [1] Cascade photon pair experiments have to rely on the

no enhancement assumption (made by Clauser and Horne [2,3]: a subset of a total set of

events gives the same statistics as the set itself ) because the directions of photons in the

process (which is a three–body decay) are uncontrollable. The fourth order interference,

on the other hand, provides directional photon correlation [4–11] but it was believed that

one has to discard 50% of counts which correspond to photons emerging from the same

sides of a beam splitter. We have recently shown that this is not the case for a polarization

experiment which would use birefringent polarizers but also that such an experiment at a

single beam splitter would require 85.8% overall efficiency, i.e., in effect, over 92% detector

efficiency which is still not available. [10] Therefore we devised a preselection set-up which

permits lowering of the required efficiency down to 67% in the ideal limit. [10] The latter

experiment reveals the nonlocality as a property of selection but for its primary purpose

of enabling a conclusive Bell experiment a simplified version would be welcome and this is

what we aim at in this paper. Kwiat et al . [7] also aimed at 67% efficiency by means of

three type–II crystals that down–convert onto a beam splitter but they failed to recognize

(as shown in Ref. [10]) that with the attenuation of one of the incident beams (as required

in the proposal) photons start to emerge from the same sides of the second beam splitter as

opposed to the symmetrical case.

In this paper we use a nonclassical property of the fourth–order interference of photons

of different colours (obtained by Larchuk et al . [12] and by Ou and Mandel [13]) in order to

devise an experiment which would close the last two loopholes in the Bell theorem proof: the

no enhancement one and the insufficient detection efficiency one. The proposal is physically

simpler and apparently easier to carry out than the previous two proposals put forward by

Kwiat et al . [7] and Pavičić [5,8].

In the experiment we make use of spin (polarization) interference of polarized photons at

a low–reflectivity beam splitter a theory of which we recently elaborated in Ref. [6]. What

gave us the clue is Eberhard’s lowering of efficiency to 67% for a non–maximal entangle-
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ment. [14] We achieved a non–maximal entanglement by means of r < 1 ratio function of

transmission coefficients of an asymmetrical beam splitter and not by attenuating one of the

incident beams. We make use neither of Eberhard’s special form of the Bell inequality nor

of his special condition (“choose the efficiency first”) imposed on optimization procedure for

finding the angles which violate the inequality. Both of them are thus—as a by–product of

our result—shown as unnecessary. On the other hand, in Ref. [10] we have explicitly shown

that the Eberhard’s form of the Bell inequality gives exactly the same results as its usual

form.

A schematic representation of the experiment is shown in Fig. 1. A subpicosecond

laser beam of frequency ω0 pumps up a nonlinear crystal NL of type I at a repetition

rate of 100 MHz (corresponding to nanoseconds time windows, i.e., computer gates) and

down–converts into pairs of signal and idler photons of frequencies ω1 and ω2, respectively,

which satisfy the following energy and momentum conservation conditions: ω0 = ω1 + ω2

and k0 = k1 + k2. [15] By means of two pairs of asymmetrically positioned pinholes—as

shown in Fig. 1—we select sidebands containing idler and signal photons of frequencies

ω1 and ω2 = ω0 − ω1. Down–converted pairs coming out from the crystals do not have

definite phases [16] with respect to each other and consequently interference of the second

order does not occur. Signal and idler photons from each pair are parallelly polarized and

isolated they would not emerge from a beam splitter entangled [6]. However, if the pairs

are prepared in superposition so that effectively only two photons appear from the crystal—

from which pair we of course cannot know—they emerge non–maximally entangled from

an asymmetrical beam splitter if the pairs are perpendicularly polarized to each other by a

900 polarization rotator. [4] Thanks to the ultrashort pumping beam which by appropriate

lowering in intensity ensure an average appearance of one down–converted pair of photons

at a time, we are able to effectively control coincidences each of which occurs as a property

of down–conversion within a few fs, i.e, well within our time windows of 10 ns. On the other

hand, the intensity corresponds to the coherence time of two pairs. In other words, two

pairs of signals and idlers appear in superposition in the sense that we never now which one
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of the two appeared while the probability of having four photons as a result of one pumping

is practically equal to zero.

Upon emerging from the crystal we direct the photon pairs to a low–reflectivity beam

splitter, with unequal transmission and reflection coefficients in particular directions, from

its opposite sides. Photons coming out from the beam splitter pass through the Wollaston

prisms P1,P2 (which are at the same time birefringent polarizers and frequency selectors)

to detectors D1ω1
, D1⊥ω1

, D1ω2
, D1⊥ω2

, D2ω1
, D2⊥ω1

, D2ω2
, D2⊥ω2

. We record the intensity (not

amplitude) correlation (beating) between photons of frequencies ω1 and ω2 which do not

overlap [13] in the following way. Firing of three or all four counters discard the corresponding

data because they do not belong to our set of pair events. We also discard data upon firing of

two detectors on the same side (e.g., D1ω1
, D1ω2

) because such data correspond to emerging

of both photons from the same side of the beam splitter and therefore do not belong to our

entangled state.

Since, ideally, no photon escapes a detection — thus satisfying Santos’ [1] demand —

the probability of coincidental firing of either D1ω1
and D2ω2

or D1ω2
and D2ω1

, given by

Eq. (6), is then approximated by the following ratio between the numbers of coincidence

counts:

f(θ1, θ2) =
n[(D1ω1

∩ D2ω2
) ∪ (D1ω2

∩ D2ω1
)]

n(D1ω1
∪ D1⊥ω1

∪ D1ω2
∪ D1⊥ω2

∪ D2ω1
∪ D2⊥ω1

∪ D2ω2
∪ D2⊥ω2

)
. (1)

where θ1 and θ2 are the orientation angles of polarizers P1 and P2, respectively.

The state of our two photons incoming to the beam splitter is in the ideal case of

monochromatic photons described by: |Ψ〉 = 1√
2
(|1x〉1|1x〉2 + |1y〉1|1y〉2), where |1x〉 and

|1y〉 denote the mutually orthogonal photon states in the sense that if the beam splitter were

removed a response to an incoming photon in state |1x〉 would be a “click” at the detector D1

and no “click” at the detector D1⊥ provided the birefringent polarizer P1 is oriented along

x. We shall use the second quantization formalism following closely the results obtained in

Pavičić [6,8] where we described the action of the beam splitters, polarizers, and detectors

on photons by means of outgoing electric field operators which acted on |Ψ〉 reducing it to
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a Fock vacuum state. We find that photons always emerge from the opposite sides of the

beam splitter and never from the same sides of it. The photons emerge in a non–maximal

singlet state.

To describe such an action of the polarizers and detectors (D1ω1
and D2ω2

) we start with

the following electric field operators (cf. Eqs. (7–10) of [6])

Ê1 = (â1xtx cos θ1 + â1yty sin θ1) e−iω1(t−τ1) + i (â2xrx cos θ1 + â2yry sin θ1) e−iω1(t−τ1+δτ) , (2)

Ê2 = (â2xtx cos θ2 + â2yty sin θ2) e−iω2(t−τ1) + i (â1xrx cos θ2 + â1yry sin θ2) e−iω2(t−τ1−δτ) , (3)

where the annihilation operators â describe the action of detectors and on the photon states

they act as follows: â1x|1x〉1 = |0x〉1, â†
1x|0x〉1 = |1x〉1, â1x|0x〉1 = 0, etc., where δτ

corresponds to possible small displacements ±cδτ of the beam splitter BS towards D1 or

D2 detectors, and where τ1 is the propagation time between the beam splitter and detectors

(equal paths between the middle of the crystal and the beam splitter for all photons are

assumed so as to assure overlapping of photons at the beam splitter).

In a realistic experiment photons however cannot be taken as monochromatic and, fol-

lowing Hong et al . [16], Larchuk et al . [12], and Pavičić and Summhammer [5], we assume

them Gaussian–distributed around ω1 and ω2:

|Ψ〉 =
1√
2

∫ ∞

0

∫ ∞

0
ζ(ω1, ω2)(|1x〉ω1

|1x〉ω2
+ |1y〉ω1

|1y〉ω2
)dω1dω2 , (4)

where ζ(ω1, ω2) is a weight function peaked at ω1 and ω2 with rms widths σ. In order to

take into account frequency responses by the polarizers which we also assume to be Gaussian

shaped we make a Fourier decomposition of the electric field operators (2) and (3). We finally

time–integrate the mean value of the electric field operators and obtain the probability of

joint two–photon detection by detectors D1ω1
and D2ω2

together with D1ω2
and D2ω1

:

P (θ1, θ2) = 〈Ψ|Ê†
2Ê

†
1Ê1Ê2|Ψ〉 = η2 {A2 + B2 − 2ABe−σ2(δτ)2/2 cos[(ω1 − ω2)δτ ]} (5)

where A = 1√
2
(t2x cos θ1 cos θ2 +t2y sin θ1 sin θ2), B = 1√

2
(r2

x cos θ1 cos θ2 +r2
y sin θ1 sin θ2), and η

is an overall detection efficiency—constant characteristic of detectors and polarizers—which
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for the experiments carried out so far was at most 0.8. [13] (Since efficiencies of detectors and

prisms for different frequencies do not differ much, we assume that all η’s are the same and

therefore we put η2 in Eq.(5) instead of η1η2, following Clauser and Shimony. [3]) Assuming

positioning of BS so as to have δτ = 0, the probability reads

P (θ1, θ2) = η2s2(cos θ1 cos θ2 + r sin θ1 sin θ2)
2 , (6)

where s = (t2x−r2
x)/

√
2 and r = (t2y −r2

y)/(t2x−r2
x). In the following, we shall limit the values

of r to the interval [0,1] because possible negative values of r do not change the obtained

results.

On the other hand, the probability of joint detection of both photons on the same sides

of the beam splitter is (provided σ → 0):

P (θ1 × θ2) = η2(txrx cos θ1 cos θ2 + tyry sin θ1 sin θ2)
2{1 + cos[(ω1 − ω2)δτ ]} . (7)

We see that for cos[(ω1−ω2)δτ ] = −1 photons never emerge from the same side of the beam

splitter but for such a position of the beam splitter the probability (5) reduces—because of

t2x +r2
x = t2y +r2

y = 1—to: η2 cos2(θ1−θ2)/2 what requires 83% detection efficiency. Besides,

the assumption σ → 0 is not very realistic. It is interesting, however, that the obtained

maximal singlet state does not depend on the values of the transmission and reflection

coefficients of the beam splitter. In other words, for cos[(ω1−ω2)δτ ] = −1 the beam splitter

is “non–existing” while for cos[(ω1 − ω2)δτ ] = 1 it forces photons to behave completely

non–classically.

Let us now analyze the following Bell (Clauser–Horne) inequality:

f(θ1, θ2) − f(θ1, θ
′
2) + f(θ′1, θ

′
2) + f(θ′1, θ2) ≤ f(θ′1) + f(θ2) , (8)

where f(θ1, θ2) given by Eq. (1) approaches P (θ1, θ2) and f(θ′1) approaches P (θ′1) which is

given as

P (θ′1) = P (θ′1,∞) = η s2(cos θ′21 + r2 sin θ′21 ) , (9)
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where P (θ′1,∞) for η = 1 describes ideal coincidence detection with “removed” polarizer

P2 (= ordinary and extraordinary beam together). Thus f(θ′
1) approaches the probability

of one photon being detected by D1 and the other entering either D2 or D2⊥ but without

necessarily being detected by them due to their inefficiency. However, D1 (as well as D2) also

detects counts belonging to photons emerging from the same side of the beam splitter whose

counter–counts were not detected by the detectors from the corresponding side again due to

their inefficiency. The corresponding counts for both D1 and D2 can be obtained from Eq. (7)

as 2(1 − η)η(t2xr
2
x cos2 θ′1 + t2yr

2
y sin2 θ2)N , where N is given by the denominator of Eq. (1).

When we therefore subtract that many counts from the total number of singles counts

registered by the computer: n(D1ω1
∪ D2ω2

)/N we get f(θ′1) + f(θ2) which approximates

P (θ′1) + P (θ2) given by Eq. (9). Thus we obtain that Eq. (8) approaches the following

inequality:

B ≡ 1

ηs2
[P12(θ1, θ2) − P12(θ1, θ

′
2) + P12(θ

′
1, θ

′
2) + P12(θ

′
1, θ2) − P (θ′1) − P (θ2)] ≤ 0 . (10)

We achieve the greatest violation of the Bell inequality when we let r → 0. In order to

show this, let us look at Fig. 2 which shows Max[B](r, η) surface as obtained by a computer

program for appropriate optimal angles. The values above the B = 0 plane means violations

of the Bell inequality. For r = 1 we obtain Max[B] = 0 for η = 0.828427 in accordance with

the result of Garg and Mermin. [17] For r → 0 however, we obtain a violation of the Bell

inequality already for any efficiency greater then 67%. This is because of the special shape

of the Max[B] surface as shown in Fig. 3.
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FIGURES

FIG. 1. Outline of the experiment. Single and coincidence counts are collected simultaneously

by appropriate computer gates coupled with the laser beam timing. Wollaston prisms P1,P2 are

at the same time birefringent polarizers and frequency selectors. The angles between ordinary

(as well as extraordinary) beams of different colours (ω1 and ω2) are exaggerated so as to avoid

graphical presentation of additional prisms and wedge shaped mirrors which would conclusively

separate them. The pinholes determining the frequencies (ω1 and ω2) coming to the beam splitter

BS are positioned as far away from the crystal as possible. The setup is completely symmetrical

so that all paths from the middle of the crystal to the detectors have the same time–of–flight .

FIG. 2. The surface showing maximal violation of the Bell inequality for the optimal angles of

the polarizers. All the values above the B=0 plane violate it.

FIG. 3. The plot shows η’s as obtained for B = 0 from Eq. (10).
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Fig. 2
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Fig. 3
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