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Within the framework of a mathematically well defined coupled-channel T-matrix model we have
improved the existing multi-channel pole-extraction procedure based on the numerical analytic con-
tinuation of the channel propagator, and for the first time we present the full set of pole parameters
for already published amplitudes. Standard single-channel pole-extraction method (speed plot) was
then applied to those amplitudes, and resulting sets of T-matrix poles were inspected. The anomaly
has been established that in some partial waves the pole values extracted using the standard single-
channel methods differ not only from the values obtained using the analytic continuation method,
but also change from one reaction to another. Inspired by this peculiarity, we have developed a
new single-channel pole-extraction method based solely on the assumption of the partial-wave ana-
lyticity. Since the standard pole-extraction procedures turn out to be the lowest-order term of the
proposed method, the anomalies are understood and resolved.

PACS numbers: 11.55.-m, 11.55.Fv, 14.20.Gk, 25.40.Ny.

I. INTRODUCTION

The determination of the scattering matrix (S-matrix)
is considered to be the major objective of both scattering
theory and energy-dependent analysis of scattering data.
The collection of S-matrix poles in the “unphysical” Rie-
mann sheet is related to resonance mass spectrum [1, 2]
so obtaining them is the crucial goal of any partial-wave
analysis. There is, however, a long lasting (and yet un-
resolved) controversy on the resonances’ physical prop-
erties. It is not clear whether physical mass and decay
width of a resonance are given by the “conventional” res-
onance parameters like Breit-Wigner mass and the decay
width, or by resonance pole parameters—real part and
—2x imaginary part of pole [3, 4]. In the case of baryon
resonances, the compromise is achieved in a way that
conventional, as well as pole parameters are collected in
the Review of Particle Physics (RPP) [5].

In this paper, we present two methods for obtaining
the resonance pole parameters from energy-dependent
partial waves. The first method, built into the Carnegie-
Mellon-Berkeley (CMB) formalism [6], is based on per-
forming the analytic continuation of a channel prop-
agator. Instead of using the tabulated values of the
two-variable dispersion relations as it has been done in
Ref. [7], we have improved the method by using the an-
alytic continuation in a Pietarinen expansion form [8].
Using this method we have extracted a set of pole pa-
rameters for the partial-wave amplitudes of Ref. [7], and
we show them here for the first time.

As a self-consistency test, we have applied the stan-
dard speed plot technique (single-channel) to amplitudes
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of Ref. [7] which describe various different-channel reac-
tions, and surprisingly obtained the values which differed
from those obtained when using the inherent analytic
continuation method. In addition, the obtained param-
eters were not identical for different channel processes.
This anomalous behavior challenged common sense, and
the conclusion was drawn that either our partial-wave
analysis or the applied pole extraction methods were
incorrect. The single-channel extraction methods were
carefully examined, and those methods were determined
to be at fault. This effort resulted in a new model-
independent extraction method free from this anomaly.

We devise a new single-channel method: the T-matrix
regularization procedure. The new procedure is based on
eliminating the simple pole, and expanding the obtained
regularized function at the pole energy in a Taylor se-
ries over the values on the real axis. The main quality
of this method is that it is not restricted to CMB for-
malism, and all of the required information needed to
use the proposed method lie on the real (physical) axis
of the complex-energy plane—exactly where experiments
provide data. When the new method is applied to the
test amplitudes of Ref. [7], the discrepancies have disap-
peared, and the set of poles obtained with the analytic-
continuation method is reproduced. Therefore we rec-
ommend this method over the usual model-independent
methods for obtaining resonance pole parameters.

To our satisfaction and surprise the standard speed
plot technique turned out to be just the lowest order
approximation of the regularization method, so the root
of the anomaly was found.

In addition, we calculated elastic pole residues, and the
obtained values were in quite good agreement with oth-
ers published in the RPP [5]. Since there are no “RPP
estimates” for elastic residues yet, this result gives a con-
venient tool for creating them finally.



There is a number of alternative ways how the pole pa-
rameters are presently extracted from the partial-wave
amplitudes. Since we are focusing our interest on the
quality of single-channel methods, speed plot in partic-
ular, we shall mention them only to acknowledge their
existence.

Other encountered procedures are the N/D method
and Flatté’s method.

The N/D method is a technique in which the disper-
sion relations are used to construct the amplitudes in the
physical region using the knowledge of the left-hand cut
singularities. The idea is to represent the partial-wave
amplitude as a ratio of two functions, the numerator is
represented with a function N(s) which is analytic in the
s-plane on the left-hand cut only, and D(s) which is ana-
lytic on the right-hand cut only. The poles of the scatter-
ing amplitude are identified with the zeroes of the D(s),
and the problem of extra zeroes is often difficult to solve.
The method has been introduced a long time ago by [10],
and since then it has been mostly used in meson physics,
typically for cases when the knowledge about the left-
hand cut is available [11, 12].

Flatté’s method, introduced in 1976 [13], is based on
recognizing the fact that the partial-wave T-matrix ex-
periences the presence of new channel openings, and
the effect is taken into account effectively, by modify-
ing the traditional Breit-Wigner form which is represent-
ing the resonant structure with additional, energy depen-
dent terms for the resonance width. The amplitude poles
are extracted as the singularities of the modified Breit-
Wigner function. The possible issue with Flatte’s method
is that it assumes that the partial-wave amplitude can
be represented locally with a Breit-Wigner function, and
that is only an assumption.

We start our paper with a brief summary of the
CMB formalism. After that, we present the improve-
ment of the analytic-continuation method, demonstrate
the anomaly, introduce the regularization procedure,
and finally demonstrate the disappearance of the single-
channel speed plot technique anomaly. The last section
is devoted to the results and conclusions.

II. THE CORE OF CMB MODEL

Our current partial-wave analysis [7] is based on the
CMB approach [6]. The most prominent property of this
approach is analyticity of partial waves with respect to
Mandelstam s variable. In every discussion of partial-
wave poles, analyticity plays a crucial role since poles
are situated in a complex plane, away from physical re-
gion. Any knowledge about the nature of partial-wave
singularities would be impossible to gain if partial waves
were not analytic functions. The ability to calculate pole
positions is not just a benefit of the CMB model’s analyt-
icity but also a necessity for the resonance extraction. In
this approach, the resonance itself is considered to exist
if there is an associated partial-wave pole in the “unphys-

ical” sheet.

The central role of the CMB analysis belongs to the
unitary-normalized partial-wave T-matrix T(z) [6, 7, 14].
It is a matrix in channel indices, and generic com-
plex variable z from now on denotes Mandelstam s.
The connection between S- and T-matrix is given by
S(z) =I+2iT(z) where I is the unit matrix. Two
main ingredients of the model are channel propagator
®(z) - the diagonal matrix in channel indices which takes
care of channel related singularities, and bare resonant
propagator Go(z) - the diagonal matrix in resonant in-
dices incorporating real first-order poles related to res-
onances (and background). Background contribution is
given by two sub-threshold poles (another pole may be
placed further above considered energy region). Dressed
channel propagator G(z) is given by the resolvent (Bethe-
Salpeter) equation G~'(2) = Gy ' (2) — 2(z), where self-
energy term X(z) is built from the channel propagator as
~ - ®(z) -4T. The parameter matrix ~ is a non-square
matrix obtained from the least-square fit to experimental
or partial-wave data. In addition to v parameter matri-
ces, the values of the bare propagator real poles are con-
currently acquired from the same fit. The partial-wave
data are fitted by the unitary-normalized partial-wave
T-matrix given by relation

T(z) = VIm®(z) - 7" - G(2) -y -

The channel propagator matrix ®(z) is assembled from
channel propagator functions ¢(z). The dominant sin-
gularity in the resonant region, apart from resonances
themselves, is the physical (channel opening) branching
point xg. In the CMB approach, contributions from other
singularities (left-hand cut, nucleon pole etc.) are given
partly by the design of the channel propagator imaginary
part, while the rest is taken care of by the background.

Analyticity of the channel propagator function ¢(z) is
ensured by the once-subtracted dispersion relation

z — xo P/OO Im ¢(z') da’
o (

T x —z)(x —xp)’

Im ®(2). (1)

P(2) =

(2)

where P stands for Cauchy principal value. The phys-
ical (unitarity) branch cut is, thus, chosen to go from
the branching point x( to positive infinity. The variable
2’ is used in the integral rather than 2z’ to indicate the
integration path is on the real axis.

The form of the channel propagator imaginary part is
given as

[a())*

va{a+ o [q(x)]Q}gL’

where ¢(z) is the standard two-body center of mass mo-
mentum for a particular meson-baryon channel, ()1 and
Q5 are the CMB model parameters with values equal to
the 7 meson (or, in our case [7]), the channel meson mass.
L is the orbital angular momentum number of the given
partial wave.

Im ¢(z) = 3)



III. EXTRACTION METHOD ONE: ANALYTIC
CONTINUATION

From Eq. (3) it is evident that ¢(z) has a square-root
type singularity. Instead of calculating the dispersion
integral (2) for each point in complex plane, we decided
to use the expansion (similar to Pietarinen’s in Ref. [8])

N
$1(z) =Y _en (Zi(2)", (4)
n=0

where ¢, are coefficients of expansion. The new channel
dependent variable is given by its principal branch

7z = (5)

with the tuning parameter «. This function is fitted to a
dataset consisting of imaginary parts of ¢(x) from Eq. (3)
and real parts of ¢(x) calculated from dispersion relation
(2), both of them evaluated at real axis (hence z). The
general idea is that the ¢(z) inherits analytic structure
from Z(z). We obtained parameters o and coefficients
¢, for each channel, and for all analyzed partial waves.
The least-square fit is considered to be good if it meets
following conditions: (i) small number of coefficients ¢,
needed (7 or 8, at most), (ii) the function fitted to the
part of dataset, when extrapolated outside of the fitted
region is consistent with the rest of data, and (iii) fitting
just imaginary part of ¢(z) produces real part that is in
agreement with values obtained from (2).

The channel propagator given by expansion (4) is ob-
tained quite accurately and works very well in the reso-
nant region in the vicinity of physical axis.

Every channel opening is responsible for two Riemann
sheets: the first (physical) sheet with physical partial
waves, and the secondary (unphysical) sheet with reso-
nant poles. To get to the unphysical sheet it is enough
to use the second branch of Z(z)

Zn(z) = Zfiﬁ e (6)

Finally, it is evident from Eq. (1) that all poles of each
partial wave must by construction be the same in all
channels and, in fact, equal to the poles of the resolvent
G(z2).

In this paper, we use T-matrices obtained in our lat-
est published partial-wave analysis [7]. We collect all the
poles of G(z) obtained by analytic continuation method
as columns three and four in Table I. Since this method
gives poles of partial waves in Mandelstam s variable,
comparison to RPP estimates is made with the square
root of the Mandelstam pole (selecting branch with pos-
itive real part) denoted by .

IV. THE ANOMALY APPEARS

To make sure that the simple recipe given by Eq. (6)
provides us with the true pole parameters (i.e. that
we are searching for poles on the correct Riemann
sheet [2, 15, 16]), we compared the results obtained
by Eq. (6) with the values obtained by using the stan-
dard model-independent pole extraction method: single-
channel speed plot [3, 17, 18].

The speed-plot method relies on the following param-
eterization of the T-matrix amplitudes:

s(ro-1)

smooth background

r
w—=z
——

resonant part

T(z) =

where p and r are pole position and pole residue, and the
variable z stands for center-of-mass energy (1/s).

In the speed plot method, the resonance poles are in
principle extracted from Eq. (7) with the (erroneous) as-
sumption that the “speed” of the background can be com-
pletely neglected when compared to the “speed” of the
resonant part. In principle, if one plots modulus of the
“speed” of T (i.e. |dT(z)/dz|), the resonance produces
a peak in this speed plot. In practice, there are known
exceptions to that rule: the N(1535) state, for instance,
is actually hidden “under the cloak” of the nN channel
opening [3].

Using the speed plot technique we have extracted the
pole parameters from the coupled-channel amplitudes of
Ref. [7] for =N — 7N, nN — nN, and 7N — nN pro-
cesses. We summarized the results in Table II, and com-
pared them to the pole parameters of analytic contin-
uation method. To our surprise, in some partial waves
the obtained pole positions turned out to be different
for each process, and shifted with respect to the analytic
continuation method by a few tens of MeV. And that
is in obvious contradiction with the input, because the
pole positions are manifestly identical for all T-matrix
elements by the very construction. Therefore, something
was definitely wrong.

V. EXTRACTION METHOD TWO:
REGULARIZATION

To understand and explain the unacceptable, we
have thoroughly investigated the standard single-channel
speed plot technique, and realized that it is not an exact
method, but only an approximation to a more general
procedure. In following, we develop an exact method for
extracting the first-order pole from an arbitrary partial
wave starting only with a very general set of assumptions.
We call it the regularization method because its essence
lies in the removal of the singularity and subsequent anal-
ysis of the obtained function. Finally, we compare the re-
sults obtained using the regularization method to results
of speed plot technique, and analytic continuation.



TABLE I: The N* resonance pole parameters obtained by the continuation along with RPP [5] estimates. The N/E is written
if a resonance pole position does not have RPP estimate, while the N(??777) stands for resonances unnamed in the RPP.

REVIEW OF PARTICLE PHYSICS [5]

ANALYTIC CONT.

N* Loroy Re i —2Tm p Re i —2Tm p
(MeV) (MeV) (MeV) (MeV)
N(1535) S 1505(10) 170(80) 1517 190
N(1650) Siy 1660(20) 160(10) 1642 203
N (2090) Siy N/E N/E 1785 420
N(1440) P 1365(20) 210(50) 1359 162
N(1710) P 1720(50) 230(150) 1728 138
N(7777) Py N/E N/E 1708 174
N(2100) Py N/E N/E 2113 345
N(1720) P13 1700(50) 250(140) 1686 235
N(1520) Dus 1510(5) 115(5) 1505 123
N(1700) Dis 1680(50) 100(50) 1805 130
N (2080) Dus N/E N/E 1942 476
N(1675) Dis 1660(5) 140(15) 1657 134
N(2200) Dis N/E N/E 2133 437
N(1680) Fis 1670(5) 120(15) 1664 134
N (1990) Fir N/E N/E 1990 303
N(?777) Gir N/E N/E 1740 270
N (2190) Gir 2050(100) 450(100) 2060 393

Let there be an analytic function T'(z) of complex vari-
able z which has a first-order pole at some complex point
w. The function T'(z) can be any of the T-matrix el-
ements, and variable z can be either Mandelstam s or
center-of-mass energy /5. In order to achieve a full cor-
respondence with the speed plot technique, from now on
we are going to use the latter choice. Since all physical
processes occur for real energy values, we are allowed to
directly determine only T'(z) for x being a real number.
To be able to successfully continue T'(x) into complex
energy plane (to search for its poles), we should regu-
larize this function (i.e. remove the pole). In that case,
any simple expansion of the regularized function would
converge in the proximity of the removed pole.

The function T'(z) with a simple pole at p, is regular-
ized by multiplying it with a simple zero at pu:

f(z) = (b —=2)T(2). (8)
From this definition and Eq. (7), it is evident that the
value of f(u) is equal to the residue r of T'(z) at point .
As we have the access to the function values on real axis
only, the Taylor expansion of f is performed over some
real = to give the value (residue) in the pole p (where
background is highly suppressed)

/(@) "
fw) =Y == (n—2)"+Ry(@,p). (9
n=0
The expansion is explicitly written to the order N,
and the remainder is designated by Ry(z,u). Using
the mathematical induction one can show that the nth
derivative of f(x), given by Eq. (8), is

JP@) = (p—2) T (@) ~n T (). (10)

Insertion of this derivative into the Taylor expansion con-
veniently cancels all consecutive terms in the sum, except
the last one

T(N>(:c)

N1 = )N+ By (), (11)

f(n) =

where T(V)(z) is the Nth energy derivative of T-matrix
element. To simplify the notation, the pole can be writ-
ten as a general complex number y = a + ib. Once
the Taylor series converges the remainder Ry (x, 1) can
be disregarded, and the absolute value of both sides of
Eq. (11) is given as:

(N)

o = E iy
N!

To keep the form as simple as possible, Eq. (12) is raised
to the power of 2/(N +1). After simple rearrangement of
terms, in which we have collected the information on the
T-matrix values on the right-hand side, and the informa-
tion on the pole position and residuum on the left-hand
side, the elemental second-order polynomial emerges:

(a—a)?+0* _ | (V) 5 13)
1 () O]

This equation enables us to directly extract the pole po-
sition (@ = Re p, b = Im p) and the absolute value
of the function residue |f(u)| from the T-matrix values
at the real axis, namely from the quantities directly at-
tainable from the energy-dependent partial-wave analysis
and evaluated at factual energy points x.



TABLE II: The N™ resonance pole parameters obtained by the analytic continuation method and speed plot in various channels.

The N(7777) stands for resonances unnamed in the RPP.

CONTINUATION METHOD

SPEED PLOT METHOD

7N ELASTIC nN — nN N — nN
N* Loras Rep —2Imp Rep —2Imp Rep —2Imp Rep —2Imp
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

N(1535) S11 1517 190 1506 83 1531 388 - -
N(1650) S11 1642 203 1657 183 1601 208 1632 179
N (2090) Si1 1785 420 1764 133 - - 1917 423
N (1440) P11 1359 162 1355 154 st st st st
N(1710) P 1728 138 1722 121 1733 154 1679 151
N(7777) Pu 1708 174 - - - - - -
N (2100) P11 2113 345 2131 394 2122 357 2116 360
N(1720) Pis 1686 235 1706 219 1617 289 1641 252
N(1520) Di3 1505 123 1505 129 1527 129 - -
N (1700) Dis 1805 130 1953 290 1809 129 - -
N (2080) Dis 1942 476 1960 270 - - - -
N(1675) Dis 1657 134 1657 136 1651 149 1620 108
N (2200) Dis 2133 439 2134 375 2141 422 2130 401
N (1680) Fis 1664 134 1665 135 1665 131 - -
N (1990) Fi7 1990 303 1992 236 1979 362 - -
N(?7777) Gir 1740 270 1740 278 1774 148 - -
N (2190) Gir 2060 393 2051 333 1970 256 - -

“sub-threshold

What we actually do is the following: we first find the
N-th derivative of the T-matrix, and then we calculate
the right-hand side of Eq. (13). Observe that the ex-
act knowledge of the right-hand side of Eq. (13) in only
three points uniquely determines the pole parameters.
The problem is that we must make a choice which par-
ticular three points to select. If points are too far from
each other, there can be other singularities that would
influence their values. On the other hand, if they are
too close, numerical problems might occure. There are
basically two ways out: either i) to take various three-
point sets, evaluate the right-hand side of Eq. (13), solve
the equation for pole parameters, and make a statistical
analysis of obtained results; or ii) to fit the right-hand
side of Eq. (13) with the three parameter parabolic func-
tion. We have chosen the latter option, since it is more
straightforward, and obtained fitting parameters.

Up to now, we have only shown how to obtain value
of the residuum. The full residuum in accordance with
Ref. [5] is given as

Irl = 1f(w)], tan6 = Im f(u) /Re f(p).  (14)

Observe:

The standard speed plot method turns out to be the
“regularization” method in the first-order approxima-
tion! (To get the speed plot, one should reduce the ex-
pansion given by Eq. (9) to N =1 term.)

As a concluding remark, let us say that we did not
have to make any assumptions on the functional form of
the T-matrix under consideration, like it was the case

with N/D method. In N/D method, the T-matrix is
assumed to be of Breit-Wigner form in a wider energy
range around the singularity, and only the total width
is corrected with the energy dependent function in order
to account for the proximity of inelastic channel open-
ings. In the “regularization” method we have not as-
sumed any functional form of the T-matrix whatsoever,
but have only eliminated the simple pole by multiplying
the analyzed function with the simple zero (u — 2).

VI. RESULTS

Using the speed plot technique we have extracted
pole parameters from the coupled-channel amplitudes of
Ref. [7]. The obtained pole positions were different for
each process, and shifted with respect to analytic contin-
uation method by a few tens of MeVs. We claim that this
is unacceptable and demands to be understood, so we re-
peat a similar analysis using the regularization method
instead.

Despite being mathematically straightforward, the ap-
plication of the regularization method requires additional
explanation when using Eq. (13). Namely, we have to an-
swer the two major questions: i) when to stop the Tay-
lor series expansion in Eq. (9) (to determine N), and ii)
which energy interval of input data—given by the right-
hand side of Eq. (13)—to fit.

The answer is simple for the ideal case when we have
no additional poles and no channel openings. However,



TABLE III: The comparison of N* resonance pole parameters obtained by the analytic continuation method, and the Regular-
ization method for 7N, nN — nN, and 7N — nN processes. Numbers in subscript are the expansion order required to obtain

convergent result.

ANALYTIC CONTIN.

REGULARIZATION METHOD

m™N — N N — nN nN — nN
N* Loray Rep —2Imp Rep —2Imp Rep —2Imp Rep —2Imp

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
N (1535) S11 1517 190 15227y 1467 - - - -
N(1650) Si1 1517 203 16477 2037y 1645(10) 21110 - -
N (2090) S11 1785 420 - - - - - -
N(1440) P11 1359 162 1354(8) 162s) st st st st
N(1710) P11 1728 138 17295, 150 s) 17335) 133(5) 17287 1427
N(?7777) Pu 1708 174 - - - - - -
N(2100) P 2113 345 21206 347 6) 2120(6) 347 6) 21206 347 6)
N (1720) Pis 1686 235 16915 235(5) 16915 2345) 16915 235(5)
N (1520) Dis 1505 123 1506 4) 124 4) - - - -
N (1700) Dis 1805 130 1806 5) 1325 1806 4) 1304) - -
N (2080) Dis 1942 476 - - - - - -
N(1675) Dis 1657 134 1658 5) 1385) 16573, 1373, 1658 5) 1385)
N (2200) Dis 2133 439 2145 4396) 21444 435 4) 2144 ) 438 6)
N (1680) Fis 1664 134 1666 4) 1364) 16653, 136s) - -
N (1990) Fi7 1990 303 20167y 3187y 20156y 322(6) - -
N(7777) Gir 1740 270 17496 280(6) 17486) 281 ) - -
N (2190) Gir 2060 393 20685 389(5) - - - -

“sub-threshold

Almost ideal case:

e achannel opening One channel, one resonance

~-a resonance pole

convergence segment

fit(x) is r.h.s.
of Eg. (13)

fitting region
[

fit(x)

disturbance
region

Ly

FIG. 1: A very simplified example: one resonance and one
channel opening.

convergence region

=

in the real world we are faced with the situation where
we have more then one resonance per partial wave and
numerous inelastic channel openings. That makes the life
complicated, and we have to invent the criteria.

Let us illustrate how the method works in principle.

Fig. 1. shows a very simplified example: we analyze
the case with one resonance and one channel opening.
The channel opening determines (restricts) the radius of
convergence of the Taylor expansion, so the input data,

i.e. the right-hand side of Eq. (13), have to be restricted
to the convergence segment. In practice we do the fol-
lowing: we construct the r.h.s. of Eq. (13) for N = 1,
select by “naked eye” a parabola-looking data set. Then
we fit the Lh.s. to the data in order to extract the set
of pole parameters a, b and |f(p)]. We perform a series
of fits, starting with N = 1, increasing the number of
terms in Taylor expansion Eq. (9) in each step, and wait
until the resulting parameter set value stabilizes. Once
the stability is achieved, we declare that we have found
the pole.

In reality, we have applied the identical procedure, but
choosing the correct parabola-looking subset of data was
the main source of indetermination.

The data set for the right-hand side of Eq. (13) was
produced from partial-wave amplitudes of Ref. [7]. For
all three processes, T(N)(z) was obtained by numerical
differentiation of energy-dependent partial waves. A 2
MeV step size yielded a stable solution. The succession
of fits was performed by increasing the number of Taylor
series terms, and the expansion is stopped when the ex-
tracted parameter set settles down. We usually needed
3-8 terms in order to achieve the reasonable convergence,
and the higher orders were needed only to confirm the
convergence.

The pole parameters attained in this way, with the sub-
script (V) denoting the number of required Taylor series
terms, are for all three calculated processes (in identical
form as in Table II) given in Table III.

The disagreement of the speed plot recipe (N = 1 reg-



f A bit more realistic illustration:

e clastic channel opening the N(1535) case

® continuum channel opening
eta N channel opening

+ N(1535) resonance pole

<+ N(1650) resonance pale

N(1535) convergence segment

o

disturbange
rﬁgIOHS

5 1.6 1.7 1.8

N(1535) convergence region o 1.4 1.°
+ '+ waew

FIG. 2: The illustration of regularization method in case of
N (1535) Si1 resonance.

TABLE IV: Residua and phases

REVIEW OF PARTICLE PHYSICS® [5] REGULARIZATION
METHOD
N* Loras |7] 0 |7 0
MeV) () (MeV) ()
N(1535) S 77 15 19 -146
N(1650)  Si1 56 -56 84 -58
N(2090)  Si1 40 0 - -
N(1440) Py, 43 -101 47 -95
N(1710) Py 11 -176 52 -156
N(?777)  Pu - - - -
N(2100) Py, 14 35 31 -59
N(1720) Pais 14 -124 19 -112
N(1520) D3 34 -8 36 -14
N(1700) Di3 6 0 7 -36
N(2080) D1 20 50 - -
N(1675) Dis 28 -25 25 -20
N(2200) Dis 20 -90 22 71
N(1680) Fis 40 -14 45 -26
N(1990) Fi7 9 -60 8 -25
N(?7?77) Gy - - 6 -86
N(2190) Gi7 46 -31 34 -30

%Since Review of Particle Physics does not provide estimates for
residua and phases, we averaged values that are presented there.

ularization method term) and the values obtained when
using the analytic continuation method is eliminated,
therefore we conclude that the simple recipe given by
the Eq. (6) indeed chooses the poles on the correct Rie-

mann sheet. The explanation of the motivating problem
(the anomaly that the speed plot technique gives different
results for different reactions) is as well obvious from Ta-
ble III: the final result is stable with respect to the choice
of different channel processes. The anomaly was obvi-
ously due to the fact that the speed plot technique is the
first-order approximation of the regularization method.
The full calculation (regularization method) gives the
same answers for all channels (provided that the result
can be obtained using this method).

Speed plot technique works fine for relatively isolated
poles. When a pole is surrounded by other poles and/or
inelastic channel openings, like it is the case for N(1535)
S11 resonance, the first approximation of the regulariza-
tion method (speed plot) is not sufficient, one has to take
higher derivatives into consideration. The problem is for
this notoriously problematic resonant state illustrated in
Fig. 2.

Residua and phases for all N* resonances are given in
Table IV.

VII. CONCLUSIONS

The improved analytic continuation method (Pietari-
nen expansion of the channel propagator), which has
been developed for the coupled-channel formalism, pro-
vides pole positions quickly and precisely while avoiding
problems with numerical principal value integration and
interpolation. The obtained pole positions are in accor-
dance with RPP values.

The developed regularization method represents an im-
provement of contemporary single-channel pole extrac-
tion methods. We demonstrate that it successfully finds
resonance pole parameters from an energy dependent T-
matrix in a model-independent way, i.e. without having
to assume a specific T-matrix functional form.

Furthermore, the regularization method can be gener-
ally applied to most analytic functions that have a simple
pole and values known on any line segment reasonably
close to the pole.

The single-channel speed plot recipe is only the first-
order term of the regularization method, and it should
be applied with special care.

The elastic pole residues are in accordance with those
given in RPP. Since there are still no residue estimates
in RPP, we strongly advocate making them for the future
editions.
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