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Relevant 
oherent states for quantum des
ription of adiabati
 polaronsO. S. Bari²i¢Institute of Physi
s, Bijeni£ka 
. 46, HR-10000 Zagreb, CroatiaA new numeri
al method is proposed for determining the low-frequen
y dynami
s of the 
harge
arrier 
oupled to the deformable quantum latti
e. As an example, the polaron band stru
tureis 
al
ulated for the one-dimensional Holstein model. The adiabati
 limit on the latti
e, whi
h
annot be rea
hed by other approa
hes, is investigated. In parti
ular, an a

urate des
ription isobtained of the 
rossover between quantum small adiabati
 polarons, pinned by the latti
e, andlarge adiabati
 polarons, moving along the 
ontinuum as 
lassi
al parti
les. It is shown how theadiabati
 
ontributions to the polaron dispersion, involving spatial 
orrelations over multiple latti
esites, 
an be treated easily in terms of 
oherent states.The motion of 
harge 
arriers, 
oupled to the phonon �eld on a latti
e, has been an obje
t of intensive investigationsfor many years. In this 
ontext, di�erent types of quasi-parti
les are studied, su
h as polarons, bipolarons, topologi
alsolitons, to name a few. In parti
ular, polarons were �rst introdu
ed as states of broken translational symmetry,des
ribing a lo
alized ele
tron trapped by the self-indu
ed, stati
 latti
e deformation1. By taking the latti
e kineti
energy into a

ount, the translational symmetry is restored: the deformation moves along the latti
e followed almostinstantaneously (adiabati
ally) by the ele
tron, provided that it is fast enough. For large adiabati
 polarons, whi
hbehave as free parti
les, the e�e
tive mass 
an be obtained in the 
ontinuous approximation, treating the latti
e
lassi
ally2. In the opposite (small polaron) limit, the polaron is strongly pinned by the dis
reteness of the latti
e.For this latter 
ase it is well-known that the quantum treatment is ne
essary to des
ribe the dispersion properly3.Although the translationally invariant diagrammati
 perturbation theory4 or similar methods provide in prin
iple theunifying approa
h to the 
rossover between large and small (adiabati
) polarons, the 
orresponding 
al
ulations areintri
ate and have not yet been 
arried out.This long-standing problem 
an be simply solved by the relevant 
oherent states method (RCSM) developed here.As an illustrative example, the RCSM is applied to the 1D Holstein polaron, involving an ele
tron 
oupled lo
ally tothe latti
e displa
ement. The Holstein Hamiltonian is given by3
Ĥ = −t

∑

n

c†n(cn+1 + cn−1) + ω0

∑

n

b†nbn − g
∑

n

c†ncn(b†n + bn) , (1)with c†j (cj) and b†j (bj) the 
reation (annihilation) operators for the ele
tron and phonon at the site j, respe
tively.
t is the nearest-neighbor ele
tron hopping integral, ω0 is the energy of the dispersionless opti
al phonon bran
h,and g is the ele
tron-phonon 
oupling 
onstant. There have been extensive studies5 of the polaron states for theHamiltonian (1). A

urate results were obtained for values of the adiabati
 ratio t/ω0

<∼ 5, whi
h are far too smallto address the formation of the large adiabati
 polaron. On the other hand, the RCSM does not su�er from su
hrestri
tion. With modest 
omputational e�ort, it 
an be applied for any value of t/ω0, in
luding the t/ω0 ≫ 1 limit.In this way, the 
rossover between small and large adiabati
 polarons 
an be investigated.The RCSM is basi
ally a variational pro
edure performed in two steps. In the �rst one, a �nite set of lo
alizedpolaron wave fun
tions |ϕs
j〉 is sele
ted, 
apable of des
ribing the polaron adiabati
 motion within the unit 
ellsurrounding the site j. For the site j, the lo
alized polaron wave fun
tion is expressed as their linear 
ombination

|ϕj〉 =
∑

s as|ϕs
j〉, with variational 
oe�
ients as. In the se
ond step, the translational invarian
e of the problem isrestored by writing the polaron wave fun
tion in the translationally invariant form,

|ΨK〉 = 1/
√

N
∑

j

eiKj
∑

s

as|ϕs
j〉 =

∑

s

as|Ψs
K〉 , (2)with K the polaron momentum. The set of wave fun
tions |Ψs

K〉 is linearly independent provided that |ϕs
j〉 6= |ϕs′

j′ 〉for all j 6= j′ and s 6= s′. The minimization of the variational energy with respe
t to the 
omplex 
oe�
ients a∗
s yieldsthe generalized eigenvalue problem,

∑

s′

〈Ψs
K |Ĥ |Ψs′

K〉 as′ =
∑

s′

〈Ψs
K |Ψs′

K〉 as′ , (3)the solutions of whi
h are the lowest and ex
ited polaron states for a given momentum K.

http://arXiv.org/abs/cond-mat/0609289v2


2For a given set of parameters the RCSM trial wave fun
tion (2) is 
hosen a

ording to the properties of the e�e
tivepotential that 
hara
terizes the adiabati
 dynami
s of the polaron. This makes the RCSM essentially di�erent fromthe other variational approa
hes in the literature. Ea
h lo
alized polaron wave fun
tion |ϕs
j〉 in eq. (2) is formed as aprodu
t of the ele
tron and the latti
e part,

|ϕs
j〉 =

[

∑

n

ηn(~xs) c†j+n

]

Ŝj(~x
s + i~ps) |0〉 . (4)The wave fun
tion (4) is parameterized by the N -dimensional 
omplex ve
tor ~xs + i~ps = {xs

n, ps
n}, where N is thenumber of latti
e sites (N → ∞). The latti
e part in eq. (4) is given in terms of the 
oherent states, i.e., of thedispla
ed harmoni
 os
illators,

Ŝj(~x
s + i~ps)|0〉 ≡

∏

n

exp
[

(xs
n + ips

n)(b†j+n − bj+n)
]

|0〉 .Here, the ve
tor 
omponent xs
n de�nes the mean latti
e displa
ement at the site j + n, whereas ps

n de�nes the meanlatti
e momentum. In eq. (4), the ele
tron state ηn(~xs) is given by the ele
tron ground state 
orresponding to themean latti
e deformation ~xs. In this respe
t, the method of 
al
ulating ηn(~xs) in eq. (4) follows the same steps as theadiabati
 approximation6. In parti
ular, the ele
tron wave fun
tion is obtained as the ground state ν = 0 solution ofthe equation
ε(ν)(~xs) η(ν)

n = −t
(

η
(ν)
n+1 + η

(ν)
n−1

)

− 2g xs
n η(ν)

n . (5)With ηn ≡ η
(0)
n in eq. (4), ∑

n |ηn|2 = 1, the expe
tation value of the Hamiltonian (1) is obtained for the lo
alizedpolaron wave fun
tion (4) as
〈ϕs

j |Ĥ |ϕs
j〉 = ω0|~ps|2 + ω0|~xs|2 + ε(~xs) , (6)where ε(~xs) ≡ ε(0)(~xs) is the ele
tron ground state energy of eq. (5). The last two terms in eq. (6) de�ne the adiabati
potential UAD(~x), i.e., the potential energy of the latti
e in the adiabati
 approximation. This simple relation betweenthe wave fun
tion (4) and the adiabati
 potential provides a well-
ontrolled and e�
ient way of treating the adiabati

orrelations.Although ~xs 
an represent any latti
e deformation in eq. (4), it is important to realize that the set of wave fun
tions

|ϕs
j〉 in eq. (2) is meant to 
apture the polaron dynami
s around the site j, whereas the delo
alization of the polaronover the entire latti
e is a

ounted for by the translationally invariant form of the trial wave fun
tion (2). Furthermore,it should be stressed that the trial wave fun
tion (2) in
ludes nonadiabati
 pro
esses as well. Namely, ea
h lo
alizedpolaron wave fun
tion |ϕs

j〉 in eq. (4) ful�lls the adiabati
 approximation only to the mean-�eld level. That is, in eq. (4)the lo
alized ele
tron wave fun
tion ηn(~xs) is determined through eq. (5) by the mean latti
e deformation ~xs. On theother hand, the latti
e quantum �u
tuations around ~xs asso
iated with 
oherent states, in eq. (4) are not followedadiabati
ally by the ele
tron. In parti
ular, one 
an easily verify that the RCSM reprodu
es the well-known smallnonadiabati
 polaron3. For λ = εp/t ≫ 1, the polaron latti
e deformation lo
alizes adiabati
ally to a single latti
esite, xs
n ≈ g/ω0 δn,0, where δn,0 is the Krone
ker delta. By 
onsidering solely this latti
e 
on�guration 
orrespondingto the minimum of the adiabati
 potential, eq. (5) gives η

(0)
n ≈ δn,0, whi
h yields, through eq. (2), the polaron wavefun
tion as

|ΨK〉 ≈ 1/
√

N
∑

j

eiKj c†j eg/ω0 (b†
j
−bj)|0〉 .The 
orresponding expe
tation value of the energy (3) is equal to the small nonadiabati
 polaron energy −εp −

εK e−εp/ω0 , with εK the free ele
tron energy. Su
h dispersion of the polaron is purely nonadiabati
: during thehopping to the nearest-neighbor sites the ele
tron and the latti
e deformation deta
h from ea
h other.When the adiabati
 
ontributions to the polaron dispersion, des
ribed by a joint motion of the ele
tron and thelatti
e deformation, are dominant the situation is fundamentally di�erent. In parti
ular, the adiabati
 motion of thepolaron between latti
e sites is 
hara
terized by two types of stationary points of UAD(~x), the minima ~xM and the



3saddle points with the lowest energy ~xPN (i.e., two types of latti
e deformations). The �rst 
orrespond to polarons
entered at the latti
e site, whereas the se
ond 
orrespond to polarons 
entered half-way between the latti
e sites.Their di�eren
e in energy de�nes the Peierls-Nabarro (PN) barrier ∆PN ,
∆PN = UAD(~xPN ) − UAD(~xM ) ,whi
h is the minimal energy barrier that must to be over
ome in order to move the polaron 
lassi
ally and adiabati
allyfrom one latti
e site to another.The adiabati
 motion of the large polaron within one unit 
ell involves 
hanges of the latti
e deformation over manylatti
e sites. This di�
ulty of dealing with a large number of latti
e 
oordinates 
an be avoided by introdu
ing asmaller set of new 
oordinates that are most relevant for the polaron dispersion. One of the possible solution is towork with the moving set of 
oordinates ξ and Qα(ξ), where ξ is the 
entroid 
oordinate determining the position ofthe polaron along the minimal energy path of its motion, while Qα(ξ) are the 
oordinates of the normal modes α thatare moving with the polaron9,10. The e�
ien
y of this approa
h is derived from the fa
t that the e�e
tive 
ouplingof ξ with Qα(ξ) is signi�
ant only for a few modes α.While in the RCSM 
ontext, the moving set of 
oordinates 
an be used quite generally for various ele
tron-phononmodels. An alternative 
hoi
e of 
oordinates is 
onsidered here for the Holstein model, based on the spe
i�
 propertiesof the adiabati
 potential. The homogenous latti
e deformation in eq. (1) 
ouples only to the total ele
tron density.Consequently, the harmoni
 dynami
s of the homogenous q = 0 latti
e mode 
an be separated out, and one hasto 
onsider expli
itly only the latti
e deformations satisfying the sum rule ∑

n xn = g/ω0
7. For these physi
allyinteresting deformations ~x = g/ω0 x̂, where x̂ denotes the N -dimensional unit ve
tor, it follows from eq. (5) that

UAD(~x) exhibits a simple s
aling behavior, to our knowledge not noted before,
UAD(~x) = ω0|~x|2 + ε(~x) = εp UAD(x̂, λ) , (7)with εp = g2/ω0 and λ = εp/t determining respe
tively the amplitude and the shape of the adiabati
 potential. Oneimmediately re
ognizes that λ governs the unit ve
tors 
orresponding to stationary points, given by ~∇UAD(~x) = 0 ⇒

xn = g/ω0 |ηn|2. These points 
an be found8 from the dis
rete nonlinear S
hrödinger equation (5). Furthermore,
λ governs the harmoni
 adiabati
 dynami
s around the minima of UAD(~x). The expansion of UAD(~x) in powers ofdispla
ements ~δ from the equilibrium deformation ~xM , ~δ = ~x − ~xM , is given by

UAD(~x) = UAD(~xM ) + ω0

∑

n,m

Πn,m δnδm + UAH
AD .The se
ond term determines the harmoni
 �u
tuations, while the adiabati
 anharmoni
 dynami
s is des
ribed by thehigher order 
ontributions UAH

AD . The Hessian matrix Πn,m depends on λ, and it 
an be expressed by means of theele
tron basis (5) 
orresponding to ~xM
6,10,

Πn,m = δn,m − 4 εp η(0)
n η(0)

m

∑

ν 6=0

η
(ν)
n η

(ν)
m

ε(ν) − ε(0)
,with δn,m the Krone
ker delta. Up to the se
ond order in ~δ, the latti
e vibrations de
ouple in terms of normal modes

α, whi
h are 
hara
terized by normal 
oordinates δα and eigenenergies ωα. Noti
e that both, the unit displa
ement
δ̂α along the normal 
oordinate δα and the ratio ωα/ω0, with ω0 the bare phonon energy, are determined by λ.As shown here, the use of normal 
oordinates δα provides a simple and e�
ient way of keeping tra
k of thelatti
e 
on�gurations that are relevant for the motion of the Holstein polaron asso
iated with one unit 
ell. Namely,by 
onsidering the displa
ement from the equilibrium 
on�guration to the nearest saddle point in terms of normal
oordinates,

~δPN = ~xPN − ~xM ∼ g/ω0

∑

α

cos γα δ̂α ,one �nds that ~δPN lies almost entirely in the plane of the two lowest normal modes. That is, for all values of parameter
λ, whi
h determine the arguments γα, one obtains cos2 γP + cos2 γB > 0.99. Here, P (pinning) and B (breather) are
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δB

δP

M

ML ML

PN PN

Figure 1: The adiabati
 potential for the small polaron 
ase (λ = 2), as a fun
tion of 
oordinates δP and δB , belonging to thepinning and breather normal modes. The absolute minimum, the two saddle points and the two lo
al minima are denoted by
M , PN , and ML, respe
tively.used to denote the two lowest, odd and even, normal modes. A better insight into the properties of the adiabati
potential 
an be obtained from �g. 1, whi
h shows the adiabati
 potential for λ = 2 as a fun
tion of displa
ementsalong the normal 
oordinates δP and δB. The absolute minimum of the adiabati
 potential is at the origin, while thesaddle points PN 
orrespond to the top of the PN barrier. It is satisfa
tory that the two lo
al minima ML are given bylatti
e 
on�gurations whi
h are 
lose to the equilibrium deformation of the polaron 
entered at the nearest-neighborsites.The above �ndings related to the properties of the adiabati
 potential imply that in order to des
ribe the adiabati
polaron motion properly it is su�
ient to take into a

ount the adiabati
 
orrelations related to the pinning andbreather modes in eq. (4). Su
h a pro
edure breaks the translational symmetry of the adiabati
 potential (7),

UAD(~x) → U(~xM ) + U(δP , δB) + ω0

∑

α6=P,B

δ2
α . (8)

U(δP , δB), shown in �g. 1, des
ribes the part of the adiabati
 potential UAD(~x) that is relevant for the polaron motionwithin one unit 
ell. The adiabati
 
orrelations related to higher normal modes, α 6= P, B, whi
h weakly a�e
t thepolaron dispersion properties, are not of signi�
ant physi
al interest here. These nearly harmoni
 
orrelations resultin the softening of the higher modes. If not ignored, this softening would be manifested by a set of eigenenergies ωαthat repla
e ω0 in the third term of eq. (8), ωα
<∼ ω0.In the present 
ase, having identi�ed the two essential 
oordinates for the adiabati
 motion of the Holstein polaronwithin one unit 
ell, δP and δB, it is straightforward to pro
eed with the RCSM. One 
onsiders a set of wave fun
tions(4) given by 
omplex amplitudes ~xs + i~ps 
orresponding to the points on the grid lying in the plane of the two lowestnormal modes,

~xs = ~xM + n ∆x δ̂P + m ∆x δ̂B , ~ps = n′ ∆p δ̂P + m′ ∆p δ̂B , (9)with n, m, n′, m′, integers, and ∆x, ∆p, grid spa
ings. The �nite set of states (4), important for the low-frequen
ydynami
s, 
an be 
hosen by 
onsidering only su
h ~xs and ~ps for whi
h the energy (6) is below a 
ertain value. Forthe polaron ground state, this value should be at least of the order of a few ω0, or of the order of the PN barrier ifthis barrier is large11. The grid spa
ing ∆x in eq. (9), as it 
an be seen from eqs. (2) and (4), de�nes the numberof di�erent ele
tron wave fun
tions ηn involved in 
al
ulations. The adiabati
 
orrelations are des
ribed with bettera

ura
y as this number is in
reased by de
reasing ∆x. However, when ∆x is too small, ∆x ≪ 1, some fun
tions(4) are nearly identi
al, and eq. (3) 
annot be solved numeri
ally. Nevertheless, satisfa
tory results are obtained for
∆x, ∆p ∼ 1 already.In order to 
he
k the validity of the RCSM, a 
omparison with the results of the previously developed12 exa
ttranslational method (ETM) is performed. For t/ω0

<∼ 5 the ETM provides the polaron band stru
ture below thephonon threshold with great a

ura
y7,13. This makes it parti
ularly suitable for the analysis of the RCSM, whi
h
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Figure 2: Panel a): the polaron band stru
ture below the phonon threshold for t = 5 resolved by the ETM (solid 
urves) andthe RCSM (dashed 
urves). Panel b): ETM vs. RCSM polaron e�e
tive mass mel/m
(i)
pol for the two lowest i = 0, 1 bands(t = 5). Panel 
): the polaron band stru
ture for t = 250 in the 
rossover regime by means of 22 states with di�erent momentafor ea
h band, K = 0, π, n × 0.15, n ≤ 20. ω0 is used as the unit of energy.exhibits the ex
ited polaron bands as well. Figure 2a shows the lowest i = 0 and the two i = 1, 2 ex
ited bandsrelated to the pinning and the breather mode in terms of the band boundaries 
orresponding to K = 0 and K = πpolaron states. All the 
urves are given with respe
t to the ETM ground state energy. The solid 
urves are the ETM,whereas the dashed are the RCSM results. The 
hoi
e of parameters in �g. 2a 
orresponds to the 
rossover regimebetween free and pinned polaron states. As dis
ussed in detail in ref.13, for g/ω0 ≈ 3.2 there is a strong hybridizationof the i = 1 and i = 2 ex
ited bands. Su
h behavior may be explained from eq. (8) and �g. 1: the two lowest normalmodes are e�e
tively 
oupled by the polaron motion. The ETM bands shown in �g. 2a are reprodu
ed very a

uratelyby the RCSM. The di�eren
es be
ome pronoun
ed only 
lose to the phonon threshold E

(i)
K ≈ ω0, where long-range
orrelations mediated by weakly 
orrelated phonon ex
itations be
ome important due to the existen
e of the 
ontinuumof states above ω0

13. Figure 2b shows the inverse e�e
tive mass of the polaron, mel/m
(i)
pol = ∂E

(i)
K /∂ǫK |K=0 for thesame parameters as in �g. 2a. One �nds that the agreement between the ETM (solid 
urves) and the RCSM (dashed
urves) is ex
ellent for the i = 0, 1 bands, even though mpol varies over four orders of magnitude.The polaron 
rossover from pinned to free polaron states, shown in �g. 2a for t/ω0 = 5, 
orresponds to an adiabati
-nonadiabati
 
rossover in the polaron dynami
s. Namely, all the ex
ited bands below the phonon threshold, relatedto the soft adiabati
 phonon modes, at the weak-
oupling side of �g. 2a shift towards the phonon threshold, indi
atingthat the adiabati
 
orrelations be
ome suppressed 
ompletely by the nonadiabati
 
ontributions13. On the 
ontrary,the polaron 
rossover shown in �g. 2
 for t/ω0 = 250 is governed entirely by the adiabati
 dynami
s. Figure 2
 showsthe lowest and the ex
ited bands 
orresponding to the pinning and breather modes, shifted by the RCSM ground stateenergy. Ea
h of the bands is given by the 22 states with di�erent momenta, K = 0, π, n × 0.15, n ≤ 20. On the leftside of �g. 2
 the polarons are free (large), i.e., the PN is negligible. The polaron dispersion is approximately givenby EK ∼ K2 for the whole energy range shown in �g. 2
. For g/ω0 ≈ 15 the energy of the K = 0 state involving theex
ited breather mode is very 
lose to the value derived in the 
ontinuous adiabati
 approximation (large adiabati
polarons), ωB/ω0 = 0.65. On the right side of �g. 2
 the spe
trum is 
hara
terized by a large PN barrier (smalladiabati
 polarons). That is, the bandwidths are exponentially small, while the position of the ex
ited bands aregiven by the multiples of the pinning and breather mode energies, mωP + m′ωB. The 
rossover between pinned andfree adiabati
 polarons takes pla
e in the 
entral part of �g. 2
, where strong hybridization between ex
ited bandso

urs due to the pinning e�e
ts.It is important to realize that the polarons at the left side of �g. 2
 are fundamentally di�erent from the polaronsat the left side of �g. 2a. While the latter are nonadiabati
 and 
hara
terized by strong quantum e�e
ts, the e�e
tivemass of the former is predi
ted 
orre
tly by the 
lassi
al soliton theory, i.e., as for the 
lassi
al latti
e deformationthat moves along the latti
e. The band stru
ture in �g. 2
, exhibiting many polaron bands, has never been obtainedbefore. It reveals how the dispersion of the adiabati
 polarons 
hanges its 
hara
ter from the quantum to the 
lassi
alone, as the PN barrier de
reases.In 
on
lusion, the newly proposed RCSM treats the low-frequen
y dynami
s of 
harge 
arriers whi
h intera
t withthe quantum latti
e. Its appli
ation to the 1D Holstein polaron problem provides the polaron band stru
ture in theadiabati
 limit t ≫ ω0, not rea
hable by any other available method. In parti
ular, the RCSM gives an a

uratedes
ription of the 
rossover between the small and large adiabati
 polarons, for whi
h the nature of the polarondispersion 
hanges from quantum to 
lassi
al one. For t ∼ ω0 the a

ura
y of the RCSM is veri�ed by 
omparisonto the pra
ti
ally exa
t ETM results. The only di�eren
es of note are found only for weak 
ouplings 
lose to thephonon threshold when the long-range nonadiabati
 
orrelations are important. As the weak-
oupling regime 
an be



6des
ribed by the perturbation theory (PT) or ETM for any t/ω0, one �nds that the RCSM together with the PT orETM provides a solution of the Holstein polaron problem for the entire parameter spa
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