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Relevant oherent states for quantum desription of adiabati polaronsO. S. Bari²i¢Institute of Physis, Bijeni£ka . 46, HR-10000 Zagreb, CroatiaA new numerial method is proposed for determining the low-frequeny dynamis of the hargearrier oupled to the deformable quantum lattie. As an example, the polaron band strutureis alulated for the one-dimensional Holstein model. The adiabati limit on the lattie, whihannot be reahed by other approahes, is investigated. In partiular, an aurate desription isobtained of the rossover between quantum small adiabati polarons, pinned by the lattie, andlarge adiabati polarons, moving along the ontinuum as lassial partiles. It is shown how theadiabati ontributions to the polaron dispersion, involving spatial orrelations over multiple lattiesites, an be treated easily in terms of oherent states.The motion of harge arriers, oupled to the phonon �eld on a lattie, has been an objet of intensive investigationsfor many years. In this ontext, di�erent types of quasi-partiles are studied, suh as polarons, bipolarons, topologialsolitons, to name a few. In partiular, polarons were �rst introdued as states of broken translational symmetry,desribing a loalized eletron trapped by the self-indued, stati lattie deformation1. By taking the lattie kinetienergy into aount, the translational symmetry is restored: the deformation moves along the lattie followed almostinstantaneously (adiabatially) by the eletron, provided that it is fast enough. For large adiabati polarons, whihbehave as free partiles, the e�etive mass an be obtained in the ontinuous approximation, treating the lattielassially2. In the opposite (small polaron) limit, the polaron is strongly pinned by the disreteness of the lattie.For this latter ase it is well-known that the quantum treatment is neessary to desribe the dispersion properly3.Although the translationally invariant diagrammati perturbation theory4 or similar methods provide in priniple theunifying approah to the rossover between large and small (adiabati) polarons, the orresponding alulations areintriate and have not yet been arried out.This long-standing problem an be simply solved by the relevant oherent states method (RCSM) developed here.As an illustrative example, the RCSM is applied to the 1D Holstein polaron, involving an eletron oupled loally tothe lattie displaement. The Holstein Hamiltonian is given by3
Ĥ = −t

∑

n

c†n(cn+1 + cn−1) + ω0

∑

n

b†nbn − g
∑

n

c†ncn(b†n + bn) , (1)with c†j (cj) and b†j (bj) the reation (annihilation) operators for the eletron and phonon at the site j, respetively.
t is the nearest-neighbor eletron hopping integral, ω0 is the energy of the dispersionless optial phonon branh,and g is the eletron-phonon oupling onstant. There have been extensive studies5 of the polaron states for theHamiltonian (1). Aurate results were obtained for values of the adiabati ratio t/ω0

<∼ 5, whih are far too smallto address the formation of the large adiabati polaron. On the other hand, the RCSM does not su�er from suhrestrition. With modest omputational e�ort, it an be applied for any value of t/ω0, inluding the t/ω0 ≫ 1 limit.In this way, the rossover between small and large adiabati polarons an be investigated.The RCSM is basially a variational proedure performed in two steps. In the �rst one, a �nite set of loalizedpolaron wave funtions |ϕs
j〉 is seleted, apable of desribing the polaron adiabati motion within the unit ellsurrounding the site j. For the site j, the loalized polaron wave funtion is expressed as their linear ombination

|ϕj〉 =
∑

s as|ϕs
j〉, with variational oe�ients as. In the seond step, the translational invariane of the problem isrestored by writing the polaron wave funtion in the translationally invariant form,

|ΨK〉 = 1/
√

N
∑

j

eiKj
∑

s

as|ϕs
j〉 =

∑

s

as|Ψs
K〉 , (2)with K the polaron momentum. The set of wave funtions |Ψs

K〉 is linearly independent provided that |ϕs
j〉 6= |ϕs′

j′ 〉for all j 6= j′ and s 6= s′. The minimization of the variational energy with respet to the omplex oe�ients a∗
s yieldsthe generalized eigenvalue problem,

∑

s′

〈Ψs
K |Ĥ |Ψs′

K〉 as′ =
∑

s′

〈Ψs
K |Ψs′

K〉 as′ , (3)the solutions of whih are the lowest and exited polaron states for a given momentum K.
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2For a given set of parameters the RCSM trial wave funtion (2) is hosen aording to the properties of the e�etivepotential that haraterizes the adiabati dynamis of the polaron. This makes the RCSM essentially di�erent fromthe other variational approahes in the literature. Eah loalized polaron wave funtion |ϕs
j〉 in eq. (2) is formed as aprodut of the eletron and the lattie part,

|ϕs
j〉 =

[

∑

n

ηn(~xs) c†j+n

]

Ŝj(~x
s + i~ps) |0〉 . (4)The wave funtion (4) is parameterized by the N -dimensional omplex vetor ~xs + i~ps = {xs

n, ps
n}, where N is thenumber of lattie sites (N → ∞). The lattie part in eq. (4) is given in terms of the oherent states, i.e., of thedisplaed harmoni osillators,

Ŝj(~x
s + i~ps)|0〉 ≡

∏

n

exp
[

(xs
n + ips

n)(b†j+n − bj+n)
]

|0〉 .Here, the vetor omponent xs
n de�nes the mean lattie displaement at the site j + n, whereas ps

n de�nes the meanlattie momentum. In eq. (4), the eletron state ηn(~xs) is given by the eletron ground state orresponding to themean lattie deformation ~xs. In this respet, the method of alulating ηn(~xs) in eq. (4) follows the same steps as theadiabati approximation6. In partiular, the eletron wave funtion is obtained as the ground state ν = 0 solution ofthe equation
ε(ν)(~xs) η(ν)

n = −t
(

η
(ν)
n+1 + η

(ν)
n−1

)

− 2g xs
n η(ν)

n . (5)With ηn ≡ η
(0)
n in eq. (4), ∑

n |ηn|2 = 1, the expetation value of the Hamiltonian (1) is obtained for the loalizedpolaron wave funtion (4) as
〈ϕs

j |Ĥ |ϕs
j〉 = ω0|~ps|2 + ω0|~xs|2 + ε(~xs) , (6)where ε(~xs) ≡ ε(0)(~xs) is the eletron ground state energy of eq. (5). The last two terms in eq. (6) de�ne the adiabatipotential UAD(~x), i.e., the potential energy of the lattie in the adiabati approximation. This simple relation betweenthe wave funtion (4) and the adiabati potential provides a well-ontrolled and e�ient way of treating the adiabatiorrelations.Although ~xs an represent any lattie deformation in eq. (4), it is important to realize that the set of wave funtions

|ϕs
j〉 in eq. (2) is meant to apture the polaron dynamis around the site j, whereas the deloalization of the polaronover the entire lattie is aounted for by the translationally invariant form of the trial wave funtion (2). Furthermore,it should be stressed that the trial wave funtion (2) inludes nonadiabati proesses as well. Namely, eah loalizedpolaron wave funtion |ϕs

j〉 in eq. (4) ful�lls the adiabati approximation only to the mean-�eld level. That is, in eq. (4)the loalized eletron wave funtion ηn(~xs) is determined through eq. (5) by the mean lattie deformation ~xs. On theother hand, the lattie quantum �utuations around ~xs assoiated with oherent states, in eq. (4) are not followedadiabatially by the eletron. In partiular, one an easily verify that the RCSM reprodues the well-known smallnonadiabati polaron3. For λ = εp/t ≫ 1, the polaron lattie deformation loalizes adiabatially to a single lattiesite, xs
n ≈ g/ω0 δn,0, where δn,0 is the Kroneker delta. By onsidering solely this lattie on�guration orrespondingto the minimum of the adiabati potential, eq. (5) gives η

(0)
n ≈ δn,0, whih yields, through eq. (2), the polaron wavefuntion as

|ΨK〉 ≈ 1/
√

N
∑

j

eiKj c†j eg/ω0 (b†
j
−bj)|0〉 .The orresponding expetation value of the energy (3) is equal to the small nonadiabati polaron energy −εp −

εK e−εp/ω0 , with εK the free eletron energy. Suh dispersion of the polaron is purely nonadiabati: during thehopping to the nearest-neighbor sites the eletron and the lattie deformation detah from eah other.When the adiabati ontributions to the polaron dispersion, desribed by a joint motion of the eletron and thelattie deformation, are dominant the situation is fundamentally di�erent. In partiular, the adiabati motion of thepolaron between lattie sites is haraterized by two types of stationary points of UAD(~x), the minima ~xM and the



3saddle points with the lowest energy ~xPN (i.e., two types of lattie deformations). The �rst orrespond to polaronsentered at the lattie site, whereas the seond orrespond to polarons entered half-way between the lattie sites.Their di�erene in energy de�nes the Peierls-Nabarro (PN) barrier ∆PN ,
∆PN = UAD(~xPN ) − UAD(~xM ) ,whih is the minimal energy barrier that must to be overome in order to move the polaron lassially and adiabatiallyfrom one lattie site to another.The adiabati motion of the large polaron within one unit ell involves hanges of the lattie deformation over manylattie sites. This di�ulty of dealing with a large number of lattie oordinates an be avoided by introduing asmaller set of new oordinates that are most relevant for the polaron dispersion. One of the possible solution is towork with the moving set of oordinates ξ and Qα(ξ), where ξ is the entroid oordinate determining the position ofthe polaron along the minimal energy path of its motion, while Qα(ξ) are the oordinates of the normal modes α thatare moving with the polaron9,10. The e�ieny of this approah is derived from the fat that the e�etive ouplingof ξ with Qα(ξ) is signi�ant only for a few modes α.While in the RCSM ontext, the moving set of oordinates an be used quite generally for various eletron-phononmodels. An alternative hoie of oordinates is onsidered here for the Holstein model, based on the spei� propertiesof the adiabati potential. The homogenous lattie deformation in eq. (1) ouples only to the total eletron density.Consequently, the harmoni dynamis of the homogenous q = 0 lattie mode an be separated out, and one hasto onsider expliitly only the lattie deformations satisfying the sum rule ∑

n xn = g/ω0
7. For these physiallyinteresting deformations ~x = g/ω0 x̂, where x̂ denotes the N -dimensional unit vetor, it follows from eq. (5) that

UAD(~x) exhibits a simple saling behavior, to our knowledge not noted before,
UAD(~x) = ω0|~x|2 + ε(~x) = εp UAD(x̂, λ) , (7)with εp = g2/ω0 and λ = εp/t determining respetively the amplitude and the shape of the adiabati potential. Oneimmediately reognizes that λ governs the unit vetors orresponding to stationary points, given by ~∇UAD(~x) = 0 ⇒

xn = g/ω0 |ηn|2. These points an be found8 from the disrete nonlinear Shrödinger equation (5). Furthermore,
λ governs the harmoni adiabati dynamis around the minima of UAD(~x). The expansion of UAD(~x) in powers ofdisplaements ~δ from the equilibrium deformation ~xM , ~δ = ~x − ~xM , is given by

UAD(~x) = UAD(~xM ) + ω0

∑

n,m

Πn,m δnδm + UAH
AD .The seond term determines the harmoni �utuations, while the adiabati anharmoni dynamis is desribed by thehigher order ontributions UAH

AD . The Hessian matrix Πn,m depends on λ, and it an be expressed by means of theeletron basis (5) orresponding to ~xM
6,10,

Πn,m = δn,m − 4 εp η(0)
n η(0)

m

∑

ν 6=0

η
(ν)
n η

(ν)
m

ε(ν) − ε(0)
,with δn,m the Kroneker delta. Up to the seond order in ~δ, the lattie vibrations deouple in terms of normal modes

α, whih are haraterized by normal oordinates δα and eigenenergies ωα. Notie that both, the unit displaement
δ̂α along the normal oordinate δα and the ratio ωα/ω0, with ω0 the bare phonon energy, are determined by λ.As shown here, the use of normal oordinates δα provides a simple and e�ient way of keeping trak of thelattie on�gurations that are relevant for the motion of the Holstein polaron assoiated with one unit ell. Namely,by onsidering the displaement from the equilibrium on�guration to the nearest saddle point in terms of normaloordinates,

~δPN = ~xPN − ~xM ∼ g/ω0

∑

α

cos γα δ̂α ,one �nds that ~δPN lies almost entirely in the plane of the two lowest normal modes. That is, for all values of parameter
λ, whih determine the arguments γα, one obtains cos2 γP + cos2 γB > 0.99. Here, P (pinning) and B (breather) are
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Figure 1: The adiabati potential for the small polaron ase (λ = 2), as a funtion of oordinates δP and δB , belonging to thepinning and breather normal modes. The absolute minimum, the two saddle points and the two loal minima are denoted by
M , PN , and ML, respetively.used to denote the two lowest, odd and even, normal modes. A better insight into the properties of the adiabatipotential an be obtained from �g. 1, whih shows the adiabati potential for λ = 2 as a funtion of displaementsalong the normal oordinates δP and δB. The absolute minimum of the adiabati potential is at the origin, while thesaddle points PN orrespond to the top of the PN barrier. It is satisfatory that the two loal minima ML are given bylattie on�gurations whih are lose to the equilibrium deformation of the polaron entered at the nearest-neighborsites.The above �ndings related to the properties of the adiabati potential imply that in order to desribe the adiabatipolaron motion properly it is su�ient to take into aount the adiabati orrelations related to the pinning andbreather modes in eq. (4). Suh a proedure breaks the translational symmetry of the adiabati potential (7),

UAD(~x) → U(~xM ) + U(δP , δB) + ω0

∑

α6=P,B

δ2
α . (8)

U(δP , δB), shown in �g. 1, desribes the part of the adiabati potential UAD(~x) that is relevant for the polaron motionwithin one unit ell. The adiabati orrelations related to higher normal modes, α 6= P, B, whih weakly a�et thepolaron dispersion properties, are not of signi�ant physial interest here. These nearly harmoni orrelations resultin the softening of the higher modes. If not ignored, this softening would be manifested by a set of eigenenergies ωαthat replae ω0 in the third term of eq. (8), ωα
<∼ ω0.In the present ase, having identi�ed the two essential oordinates for the adiabati motion of the Holstein polaronwithin one unit ell, δP and δB, it is straightforward to proeed with the RCSM. One onsiders a set of wave funtions(4) given by omplex amplitudes ~xs + i~ps orresponding to the points on the grid lying in the plane of the two lowestnormal modes,

~xs = ~xM + n ∆x δ̂P + m ∆x δ̂B , ~ps = n′ ∆p δ̂P + m′ ∆p δ̂B , (9)with n, m, n′, m′, integers, and ∆x, ∆p, grid spaings. The �nite set of states (4), important for the low-frequenydynamis, an be hosen by onsidering only suh ~xs and ~ps for whih the energy (6) is below a ertain value. Forthe polaron ground state, this value should be at least of the order of a few ω0, or of the order of the PN barrier ifthis barrier is large11. The grid spaing ∆x in eq. (9), as it an be seen from eqs. (2) and (4), de�nes the numberof di�erent eletron wave funtions ηn involved in alulations. The adiabati orrelations are desribed with betterauray as this number is inreased by dereasing ∆x. However, when ∆x is too small, ∆x ≪ 1, some funtions(4) are nearly idential, and eq. (3) annot be solved numerially. Nevertheless, satisfatory results are obtained for
∆x, ∆p ∼ 1 already.In order to hek the validity of the RCSM, a omparison with the results of the previously developed12 exattranslational method (ETM) is performed. For t/ω0

<∼ 5 the ETM provides the polaron band struture below thephonon threshold with great auray7,13. This makes it partiularly suitable for the analysis of the RCSM, whih
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Figure 2: Panel a): the polaron band struture below the phonon threshold for t = 5 resolved by the ETM (solid urves) andthe RCSM (dashed urves). Panel b): ETM vs. RCSM polaron e�etive mass mel/m
(i)
pol for the two lowest i = 0, 1 bands(t = 5). Panel ): the polaron band struture for t = 250 in the rossover regime by means of 22 states with di�erent momentafor eah band, K = 0, π, n × 0.15, n ≤ 20. ω0 is used as the unit of energy.exhibits the exited polaron bands as well. Figure 2a shows the lowest i = 0 and the two i = 1, 2 exited bandsrelated to the pinning and the breather mode in terms of the band boundaries orresponding to K = 0 and K = πpolaron states. All the urves are given with respet to the ETM ground state energy. The solid urves are the ETM,whereas the dashed are the RCSM results. The hoie of parameters in �g. 2a orresponds to the rossover regimebetween free and pinned polaron states. As disussed in detail in ref.13, for g/ω0 ≈ 3.2 there is a strong hybridizationof the i = 1 and i = 2 exited bands. Suh behavior may be explained from eq. (8) and �g. 1: the two lowest normalmodes are e�etively oupled by the polaron motion. The ETM bands shown in �g. 2a are reprodued very auratelyby the RCSM. The di�erenes beome pronouned only lose to the phonon threshold E

(i)
K ≈ ω0, where long-rangeorrelations mediated by weakly orrelated phonon exitations beome important due to the existene of the ontinuumof states above ω0

13. Figure 2b shows the inverse e�etive mass of the polaron, mel/m
(i)
pol = ∂E

(i)
K /∂ǫK |K=0 for thesame parameters as in �g. 2a. One �nds that the agreement between the ETM (solid urves) and the RCSM (dashedurves) is exellent for the i = 0, 1 bands, even though mpol varies over four orders of magnitude.The polaron rossover from pinned to free polaron states, shown in �g. 2a for t/ω0 = 5, orresponds to an adiabati-nonadiabati rossover in the polaron dynamis. Namely, all the exited bands below the phonon threshold, relatedto the soft adiabati phonon modes, at the weak-oupling side of �g. 2a shift towards the phonon threshold, indiatingthat the adiabati orrelations beome suppressed ompletely by the nonadiabati ontributions13. On the ontrary,the polaron rossover shown in �g. 2 for t/ω0 = 250 is governed entirely by the adiabati dynamis. Figure 2 showsthe lowest and the exited bands orresponding to the pinning and breather modes, shifted by the RCSM ground stateenergy. Eah of the bands is given by the 22 states with di�erent momenta, K = 0, π, n × 0.15, n ≤ 20. On the leftside of �g. 2 the polarons are free (large), i.e., the PN is negligible. The polaron dispersion is approximately givenby EK ∼ K2 for the whole energy range shown in �g. 2. For g/ω0 ≈ 15 the energy of the K = 0 state involving theexited breather mode is very lose to the value derived in the ontinuous adiabati approximation (large adiabatipolarons), ωB/ω0 = 0.65. On the right side of �g. 2 the spetrum is haraterized by a large PN barrier (smalladiabati polarons). That is, the bandwidths are exponentially small, while the position of the exited bands aregiven by the multiples of the pinning and breather mode energies, mωP + m′ωB. The rossover between pinned andfree adiabati polarons takes plae in the entral part of �g. 2, where strong hybridization between exited bandsours due to the pinning e�ets.It is important to realize that the polarons at the left side of �g. 2 are fundamentally di�erent from the polaronsat the left side of �g. 2a. While the latter are nonadiabati and haraterized by strong quantum e�ets, the e�etivemass of the former is predited orretly by the lassial soliton theory, i.e., as for the lassial lattie deformationthat moves along the lattie. The band struture in �g. 2, exhibiting many polaron bands, has never been obtainedbefore. It reveals how the dispersion of the adiabati polarons hanges its harater from the quantum to the lassialone, as the PN barrier dereases.In onlusion, the newly proposed RCSM treats the low-frequeny dynamis of harge arriers whih interat withthe quantum lattie. Its appliation to the 1D Holstein polaron problem provides the polaron band struture in theadiabati limit t ≫ ω0, not reahable by any other available method. In partiular, the RCSM gives an auratedesription of the rossover between the small and large adiabati polarons, for whih the nature of the polarondispersion hanges from quantum to lassial one. For t ∼ ω0 the auray of the RCSM is veri�ed by omparisonto the pratially exat ETM results. The only di�erenes of note are found only for weak ouplings lose to thephonon threshold when the long-range nonadiabati orrelations are important. As the weak-oupling regime an be
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