
SUPERCOVER PLANE RASTERIZATION
A Rasterization Algorithm for Generating Supercover Plane Inside A Cube

T. Petković, S. Lončarić
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia

tomislav.petkovic.jr@fer.hr, sven.loncaric@fer.hr

Keywords: computer graphics, supercover plane rasterization

Abstract: An analysis of a rasterization algorithm for generating supercover planes in 3D voxel space is presented. The
derived algorithm is an extension to the classical 2D line rasterization algorithm. Additional voxels needed
to form the supercover 3D plane are identified by rasterizing two additional 2D lines per volume slice. A
discussion on how to modify the algorithm to rasterize finite supercover 3D plane segments with arbitrary
parameters by using integer arithmetic only is given.

1 Introduction

One of the problems in various applications of
computer graphics along with line drawing is rasteri-
zation of planary surfaces. Our ability to obtain huge
volumetric data is ever increasing, especially in bi-
omedical fields where 2563 is currently the most com-
mon volume size. When analyzing such volumetric
data-sets one is not always satisfied with the simple
line and plane drawing and rasterization algorithms
as some interesting and sometimes not desirable ef-
fects can be introduced, such as existence of tunnels
in surfaces so for example 26-connected line can pass
through the 18-connected plane (Cohen-Or and Kauf-
man, 1997).

Most popular algorithm for line drawing was pre-
sented by Bresenham (Bresenham, 1965), and first
generic study on plane rasterization was done by Kim
(Kim, 1984). A fast plane weaving algorithm for ras-
terizing 18-connected digital planes was described by
Lincke at al. (Lincke and Wüthrich, 1999). In this
article a simple 3D supercover plane generation al-
gorithm is presented. The described algorithm is an
extension of the weaving algorithm presented by Lin-
cke et al.

The article is organized as follows: in section 2
we present the notation and definitions. In section 3
a review of exact weaving plane algorithm is given.
Section 4 presents an idea for weaving the 3D super-

cover plane and explains details about the rasteriza-
tion algorithm. We conclude the article in section 5.

2 Preliminaries

Let R be the set of real numbers and let Z be the
set of integers. When digitizing three dimensional
space a grid usually used is the cubic grid. As we
are interested in finite volumes only a subset of Z3

is needed. So our area of interest is a subset of 3D
Euclidean space R3 that consist of all points whose
coordinates are integers and are within chosen inter-
vals.

Square brackets denote both the rounding operator
and a set of all residues module q when the index is
written, so [x] is the rounding operator, but [p]q is the
set of all residues of p modulo q.

A voxel in R3 corresponding to a discrete point
(x,y,z) ∈ Z3 is defined by the continuous unit cube
with the center at (x,y,z). Let us denote the cube
associated with one voxel as V(x,y,z) = [x− 1

2 ,x +
1
2]× [y− 1

2 ,y + 1
2]× [z− 1

2 ,z + 1
2]. The voxel is so-

metimes called spel (spatial element), but note that a
spel is not necessarily a voxel. A face of a cube asso-
ciated with a voxel is just a face, but if two voxels are
in relation then corresponding shared face is called a
surfel (surface element). Let X be any set and ρ be a

binary relation on X . If (p,q)∈ ρ then p is ρ-adjacent
of q. If ρ is a symmetric relation then for any p,q ∈ X
(p,q) ∈ ρ if and only if (q, p) ∈ ρ. We say that p and
q are ρ-adjacent (Herman, 1998).

For X = Z3 we define three symmetric binary re-
lations on Z3 that correspond to 26, 18 and 6 voxel
connectivity. For any two points p = (p1, p2, p3) and
q = (q1,q2,q3) of Z3 we say that they are 18 connec-
ted or (p,q) ∈ δ3 if and only if they share a face or
an edge. The simplest plane rasterization in 3D is 18-
connected, so adjacent voxels in a digital plane will
share a face or an edge. Such plane is not tunnel-free
and 26-connected line can pass through such plane.
For some applications where this is not acceptable one
must find a plane that is tunnel-free. A supercover
plane is a likely candidate as it has some additional
desirable properties and is also a tunnel-free struc-
ture. We will adopt the definitions by Andrès (Andrès,
2003):

Definition 2.1 (Supercover) A supercover S(X) of a
continuous object X is the set of all the discrete points
p ∈ Zn and associated voxels such that V(p)∩X 6= /0.

One of the drawbacks of the supercover objects is
existence of bubbles.

Definition 2.2 (Bubble) A k-bubble is the supercover
of an Euclidean point that has exactly k half-integer
coordinates.

3 An Exact Weaving of Digital Plane

An attractive method to produce digital planes is
by using weaving techniques (Lincke and Wüthrich,
1999). Basic idea is to decompose the rasterization
of a surface into two orthogonal curve rasterizations.
For the planes both curves are lines and by copying
one along the other plane is obtained. The line being
copied is usually called master and the line used for
determining the positions of the master is called base.
As all lines in the plane along the base are copies of
the master and thus have the same chain code we only
need to compute the rasterizations of the master and
base lines. Copying the master line then completes
the plane weaving.

We usually denote a line with the letter L. As we
are interested in lines with the same slope and diffe-
rent intercepts we only need to know the value of the
intercept.

Definition 3.1 (Straight line) For any k ∈ Z and a
pair p and q of relatively prime numbers, q 6= 0, the
straight line Lk is a set of points Lk = {(x,y) ∈ R2 :
y = p

q x+ k
q}.

2
4

6
8

10

2

4

6

8

10

1

2

3

4

5

6

2
4

6
8

10

2

4

6

8

10

1

2

3

4

5

6

Figure 1: A continuous and digital representation of the
plane defined by x+2y−5z = 0. For the digital representa-
tion voxels belonging to the master are shown as wire-frame
and base is shown using darker shading

However, when copying the master line one must
notice that simple copying of the master along the
base will not produce nearest neighbor rasterization
as defined in (Wüthrich, 1998). To obtain a proper
rasterization one must also consider shift in the line
chain code that is introduced as the intercept changes.
Lincke et al. (Lincke and Wüthrich, 1999) have pre-
sented an exact weaving rasterization algorithm for
digital planes. Main result is the theorem stating how
to compute a shift of any line at given position:

Theorem 3.1 (Line shift) Let Le be a straight line
given by y(x) = p

q x + e where p and q are relatively
prime numbers, p,q ∈ Z, p ≤ q, q 6= 0 and e is an
arbitrary real intercept. The shift s of Le at position
i ∈ Z is given by [s]q = [rp∗]q with r = [pi + qe]q if q
is odd and r = [pi+qe+ 1

2]q if q is even.

The weaving algorithm now copies the master line
along the base, but the chain code is shifted by s. Ras-
terization of the plane x + 2y−5z = 0 is shown in fi-
gure 1.

The plane weaving algorithm produces an exact
rasterization of the plane Ax + By +Cz + D = 0 with
rational coefficients A, B, C and D. Produced rasteri-
zation is 18-connected set that does not contain all the
voxels a plane intersects. In figure 2 an 18-connected
plane x + 2y− 5z = 0 is superimposed over continu-
ous plane. One can immediately notice that continu-
ous plane is not contained within the 18-connected
representation.

0
2

4
6

8
10

0
1

2
−1

0

1

2

3

4

0
1

2

0
1

2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3: A middle line with upper and lower lines we need to rasterize to obtain the supercover plane rasterization. On the
right a single voxel belonging to the master line is shown. For each such voxel we must determine where the intersection
between upper (or lower) line and neighboring voxel borders is

Figure 2: A continuous plane x + 2y− 5z = 0 is not conta-
ined within 18-connected digital representation

4 Extension to Supercover Planes

Consider a continuous plane P given by Ax +
By + Cz + D = 0 where A,B,C,D ∈ Z. Let also a
be an absolute value of A etc., so a = |A|, b = |B|,
c = |C| and d = |D|. Without loss of generality we can
assume 0 < a,b ≤ c. The implicit formula for such
plane is z =− 1

C (Ax+By+D) with the corresponding
18-connected rasterization Dig(P) =

{
(x,y,z) : x,y ∈

Z,z =
[− 1

C (Ax + By +C)
]}

. The supercover rasteri-
zation S(P) of the plane P is sligtly different, and is
defined by S(P) =

{
(x,y,z) ∈ Z3 : −⌊ a+b+c

2 + D
⌋

<

Ax+By+Cz≤ ⌊ a+b+c
2 −D

⌋
+1

}
. When weaving an

arbitrary plane we simply copy the master line. To
each copy we can assign one slice of the space Z3.

Definition 4.1 (Slice) A slice Si(k), k ∈ Z, in discrete
spaceZn is a subset of spels with i-th coordinate fixed,

Si(k) = {x ∈ Zn : xi = k}.

We will call two slices Si(k) and Si(l) adjacent iff |k−
l|= 1.

Weaving algorithms compute 2D rasterization of
a line in one slice which is then replicated for all
other slices we are interested in. When we want
to obtain a supercover rasterization of a plane seg-
ment we must trace two additional lines per slice
along with the master line as is shown in figure 3.
The master line (dot-dash line) corresponds to the
line Lm : z = −A

C x− 1
C (By0 + D), so the intercept is

− 1
C (By0 +D) and m =−A

C . The lower line Ll and the
upper line Lu are passing through planes with half-
integer coordinates in y. Again, without loss of ge-
nerality we can assume the slope of the plane along y
dimension is such that z increases as we move from
y0 − 1

2 to y0 + 1
2 (so B > 0). Upper and lower li-

nes are now Lu : z = −A
C x− 1

C (By0 + B
2 + D) and

Ll : z =−A
C x− 1

C (By0− B
2 +D).

Lemma 4.1 (Continuity) For plane P and two adja-
cent slices Si(k) and Si(l) either Ll from Si(k) and Lu
from Si(l) or Lu from Si(l) and Ll from Si(k) are the
same.

The result is obvious and follows immediately from
|n−m| = 1. Together with the following theorem by
Lincke et al. (Lincke and Wüthrich, 1999) it provides
the basis for weaving supercover planes.

Theorem 4.2 (Line Equivalence) Let Lk be the 2D
line y = p

q x + k
q where p and q are relatively prime.

For all k ∈ Z the set of straight lines Lk having the
same rasterization (up to shift) is an equivalence class
and it contains all lines defined by y = p

q x + e, e ∈ R
with k

q − 1
2q < e≤ k

q + 1
2q if q is odd and k−1

q < e≤ k
q

if q is even.

In our example the intercept e for upper and lower line
is e =− 1

C (By0± B
2 + kB). We must show that for up-

per and lower lines in two adjacent slices we obtain
the same line cover when shift is introduced—when
we copy the master slice lower (or upper) line raste-
rization in one slice must be equal to the rasterization
of the upper (or lower) line in the adjacent slice.

Lemma 4.3 (Equal shifts) When copying the three
lines in master slice Si(0) to slice Si(j) shifts sm, su
and sl are at constant shift distance.

We must compute shifts for three lines Lm, Ll and
Lu. All three lines have the same slope, but the in-
tercepts are different. By theorem 3.1 for odd C
we have [sm]q = [[p j +qm]p∗]q = [[A j +B j +D]A∗]c,
[su]q = [[p j + qu]p∗]q = [[A j + B j + B

2 + D]A∗]c and
[sl]q = [[p j + ql]p∗]q = [[A j + B j− B

2 + D]A∗]c. As
A j + B j + D is a whole number we have [su]c =
[(A j + B j + D)A∗ + [B

2]A∗]c = [sm]c + [[B
2]A∗]c and

[sl]c = [sm]c − [[B
2]A∗]c. The distance between the

shifts is the same, so we do not need to copy three
lines separately, but we can copy the whole slice.

Without loss of generality let us compare the
lower line Ll and upper line Lu in one slice when 0 <
a ≤ b ≤ c. Note that both lines have the same slope.
Corresponding intercepts are eu = − 1

C (By0 + B
2 + D)

and el =− 1
C (By0− B

2 +D). As q =−C for odd C and
upper line Lu we have − ku

C + 1
2C < −eu ≤ − ku

C − 1
2C .

Doing the same for Ll we obtain two inequalities
ku − 1 < 1

2 (2By0 − B + 2D− 1) ≤ ku and kl − 1 <
1
2 (2By0−B + 2D− 1) ≤ kl . By examining obtained
inequalities for odd and even B, and then for even C
we can compute the difference between the intercepts.
We obtain ku− kl = B or u− l = B.

Lemma 4.4 (Switching) When copying the upper,
master and lower lines for two adjacent slices Si(k)
and Si(l) covered voxels faces selected by upper line
from one slice and lower line from another will be the
same.

Let us first compute the shift distance between two
master lines in two adjacent slices Si(k) and Si(l),
l = k + 1. We have [sm,k]c = [[Ai + Bk + D]A∗]c and
[sm,l]c = [[Ai + B(k + 1) + D]A∗]c = [sm,k]c + [BA∗]c,
so two slices are shifted by [BA∗]c. Note that as the
shift between any two adjacent slices is the same we
can simply shift-and-copy the chain codes from the
previous slice. Now as [sl,k+1]c and [su,k]c are shifted
by ±[[B

2]A∗]c shifts for upper and lower line are also
the same.

By combining those results we can state that in-
tersection of voxel faces selected by the master and
lower (or upper) line from slice Si(k) and voxel faces
selected by the master and upper (or lower) line from

slice Si(l) will form the supercover of the line shared
by two slices. So when weaving supercover planes we
could find two 2D supercover rasterizations of upper
and lower lines (they must contain the master line),
for example by using modified Bresenham algorithm
presented in (Dedu, 2002). However, we can trace
original line and only check whether upper or lower
lines have non-empty intersection with upper or lower
adjacent voxel as shown in figure 3.

4.1 Computing the cover for one slice

How can we compute the cover for one slice only?
Our plane P is given by Ax + By +Cz + D = 0 with
0 < a ≤ b ≤ c. If we start the line at coordinates
(x0,y0,z) we can compute the shifts [sm]c, [sl]c and
[sk]c and then we can copy the chain codes as done in
(Lincke and Wüthrich, 1999) for naive planes. Now
we have several possibilites when weaving a plane:
a) we can compute the shift for each slice as done
by Lincke et al. (Lincke and Wüthrich, 1999), or b)
we can compute the shift difference between two ad-
jacent slices and simply correct the shift from previ-
ous slice (p∗ required for the shift computation can be
computed when rasterizing the master slice). Alter-
natively we can compute the starting values for error
variables and rasterize each slice separately.

Let us compute the starting error for single slice.
The real value of z coordinate is −A

C x0− 1
C (By0 +D),

and [z] is the closest integer value. Now the error va-
riable is difference z− [z] scaled to 2C, so

ez = 2C(z− [z]) = 2(−Ax0−By0−C[z]+D).

When computing the cover for one slice we also need
the to know the error variables for upper and lower
lines. When 0 < a ≤ b ≤ c the error from the slice
defined by [z] for the lower line is el = ez−a−b, and
for the upper line is eu = ez + a + b. If either of el or
eu falls outside of the voxel the lower and upper lines
will start at [z] + 1 or [z]− 1 respectively. Now we
can trace those three lines simultaneously to obtain
the cover for one slice.

The upper line and the lower line must be superco-
ver lines. In the previous section we have shown that
the chain codes for upper line and lower line are shif-
ted ±[[B

2]A∗]c when compared to the master, however
we must note that the computed shift is for the simple
chain code. As we want to compute the supercover
of the both upper and lower lines unfortunately the
rounding operator must have different definitions for
those lines. The rounding operator [x] is defined by
k− 1

2 < x ≤ k + 1
2 . The problem occurs when either

of upper and lower lines passes exactly through the
point with half-integer coordinates. For the upper line

Figure 4: A 18-connected digital representation of the plane
defined by x+2y−5z = 0 and it’s supercover

as is shown in figure 3 we must select upper voxel
when the line passes through back upper right voxel
vertex (shown as a circle), and for the lower line we
must select the lower voxel when the line passes thro-
ugh front lower left vertex (also shown as a circle). So
the rounding operator is different for lower and upper
lines.

By using similar reasoning as done in the previous
section we can show that the shift for the supercover
case will differ at most by one when compared to the
shift ±[[B

2]A∗]c. The additional shift by one is con-
sistent for all the slices and will not affect the cover
shared between two slices. By copying and shifting
the slice we can obtain the plane.

One rendering of a plane is shown x+2y−5z = 0
in figure 4. Note that one should expect the regular
chain codes for upper and lower lines to be shifted by
±[[B

2]A∗]c = ±1, but as the lines are supercover the
shift is two.

4.2 Restriction to a Finite Volume

Usually we are interested in computing a plane wit-
hin a finite volume—usually a cube or a parallelepi-
ped, so the plane-generating algorithm should be able
to draw planes with arbitrary parameters within the
subvolume.

Chain code of the digital 2D line y = p
q n + e with

p,q ∈ N and 0 < p ≤ q is periodic. If p and q are

relatively prime the period is q (Pham, 1987). If we
restrict the continuous plane P : Ax+By+Cz+D = 0
with arbitrary parameters (so A,B,C,D∈R) to a cube
we want to find another plane having the same rasteri-
zation, but with the coefficients being whole numbers.
Without the loss of generality we can only consider
the planes where 0 < a,b ≤ c such that intersection
with the parallelepiped is not an empty set. As the C
is the largest coefficient by absolute value when raste-
rizing a plane we must compute only the z coordina-
tes, [z] = [− 1

C (Ai+B j +D)], so a digitized plane wo-
uld be Dig(P) =

{
(i, j,k) : i, j ∈ [i1, i2]× [j1, j2],k =[− 1

C (Ai + B j +C)
]}

. For digitized coordinates we
require the following inequalities to have same solu-
tions in k:

k− 1
2
≤− 1

Ĉ
(Âi+ B̂ j + D̂)≤ k +

1
2

(1)

k− 1
2
≤− 1

C
(Ai+B j +D)≤ k +

1
2

(2)

Here the Â, B̂, Ĉ and D̂ are whole numbers repre-
senting a plane that has same rasterization as the
plane P. For the midpoint line drawing algorithm
usually we must double all the values, so we can
expect something similar here. Let us assume that
Â = [αA], B̂ = [αB] etc., where α is positive real cons-
tant. We can rewrite the (1) and (2) so

[− 1
[αC] ([αA]i+

[αB] j+[αD])
]
=

[− 1
C (Ai+B j+D)

]
and consequen-

tly
∣∣− 1

[αC] ([αA]i+[αB] j+[αD])+ 1
C (Ai+B j+D)

∣∣ <
1
2 . Now we have

[αA] < 2
(
[αA]i+[αB] j

−Ai+B j +D
C

[αC]+ [αD]
)

< [αC],
(3)

and as 0 < a,b≤ c. As Ĉ = [αC] is integer we can put
α = n

C , n ∈ N, so Ĉ = n. Now (3) transforms to

2
∣∣∣
([

n
{A

C

}]
−n

{A
C

})
i+

([
n
{B

C

}]
−

n
{B

C

})
j +

([
n
{D

C

}]
−n

{D
C

})∣∣∣ < |n|.
(4)

As ([n{A
C}]− n{A

C}) and other similar constructs are
always between − 1

2 and 1
2 we can find the worst case

|Ĉ| = |n| > max |i|+ max | j|+ 1. In fact when ras-
terizing arbitrary plane within finite volume we only
need to check the size of the finite volume. Consequ-
ently, we can scale the coefficients so the largest one
has the absolute value greater then max

(|i1|, |i2|
)
+

max
(| j1|, | j2|

)
+1.

Figure 5: A 18-connected digital representation of the plane
defined by 5x+5y−5z = 0 and it’s supercover

5 Conclusion

A supercover plane algorithm that uses only inte-
ger arithmetic was presented. Two variants are possi-
ble, one that simply traces a line for each slice and a
weaving algorithm. Additionally it was shown that if
we want to draw a finite segment of a plane we only
need to scale and round the plane coefficients.

If the square plane segment of side lengths n and
m, n < m has to be generated the complexity of first
approach is O(mn). The weaving approach needs to
generate one line segment of the length q and then it
is copied n times, so we can expect the complexity of
O(nq). Due to the large variety of available hardware
performace analysis and code profiling was not done
as it would probably be application and hardware spe-
cific, however we are currently working on this pro-
blem.

REFERENCES

Andrès, E. (2003). Discrete linear objects in dimension n:
the standard model. Graph. Models, 65(1-3):92–111.

Bresenham, J. E. (1965). Algorithm for computer control
of a digital plotter. IBM System Journal, 4(1):25–30.

Cohen-Or, D. and Kaufman, A. (1997). 3D line voxeliza-
tion and connectivity control. Computer Graphics and
Applications, 17(6):80–87.

Dedu, E. (2002). Design of a Simulation Model of Multi-
Agent Systems, and its Parallel Algorithmic and Im-
plementation on Shared-Memory MIMD Computers:
ParSSAP Model. PhD thesis, PRiSM, UVSQ, Versa-
illes, France.

Herman, G. T. (1998). Geometry of Digital Spaces. Ap-
plied and Numerical Harmonic Analysis. Birkhāuser,
Boston.

Kim, C. E. (1984). Three-dimensional digital planes. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 6(5):639–644.

Lincke, C. and Wüthrich, C. A. (1999). An exact weaving
rasterization algorithm. In Skala, V., editor, WSCG’99
Conference Proceedings.

Pham, S. (1987). Equations of digital straight lines. In CG
International ’87 on Computer graphics 1987, pages
221–248, New York, NY, USA. Springer-Verlag New
York, Inc.

Wüthrich, C. A. (1998). A model for curve rasterization in
n-dimensional space. Computers & Graphics, 22(2–
3):153–160.

