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Abstract - The components values in electrical circuits devi-
ate from nominal ones due to different reasons: component 
tolerances, aging etc. If deviations are inside tolerance 
bounds, sensitivity analysis could be performed in order to 
asses network’s characteristic changes. If component values 
deteriorate outside tolerance bounds, than we speak about 
failures of the network. In the latter case it is necessary to 
carry out the fault isolation procedure and one need to per-
form the testability analysis first in order to find optimal 
testing conditions. This paper tries to find correlation be-
tween sensitivity (Shoeffler’s) of a network characteristic and 
testability on single component failures. The emphasis is on 
the analog filters. In one example the testability and sensitiv-
ity analyses were done on the eight order Chebyshev narrow 
band pass filter which was realised by different structures, 
i.e. CAS, FLF, CBQ and LF. The main conclusion is that 
those structures having lower sensitivities, have lower test-
ability too, in the corresponding frequency bands. Therefore, 
Shoeffler’s sensitivity could be proposed as the measure of 
testability. 
 

I INTRODUCTION 
 
 How accurate would electric filter satisfy given specifi-
cations, depends on accuracy of elements which consist 
the filter and the way the filter is constructed. There are 
different reasons for the components values deviations 
from nominal such as component tolerances, aging, 
parasitic effects, external influences (temperature, humid-
ity), and so on. By performing sensitivity analysis [1, 2] it 
is possible to asses filter characteristic changes due to 
component values deviations. The main assumption is that 
deviations are within component tolerances. Active filters 
are more sensitive on these changes than passive filters. 
Many authors in recent years has tried to offer such solu-
tions in filter design that could decrease sensitivities to 
component values deviations. 
 On the other hand, the component value can deteriorate 
in much more drastical sense, when deviation comes out of 
tolerance boundaries. Then we speak about component 
failures in circuits. In these cases it is useful to carry out 
the fault isolation procedure. Many authors has proposed 
efficient methods for fault analysis [3, 4, 5]. 
 In this paper we try to find the correlation between filter 
characteristic sensitivity to component parameters devia-
tions and feasibility of fault isolation. The emphasis is on 
the fault analysis of analog filters. 
 
 

II DEFINITIONS OF SENSITIVITY AND 
TESTABILITY 

 
A. Sensitivity of active filters 
 
 Active filters with transfer functions of higher order are 
realised as a set of mutually interconnected blocks. The 

way this connection is accomplished is said to be the filter 
structure. The widest application has cascade structure 
because of its simplicity. However, it has been shown that 
some multiple feedback structures have significantly lower 
sensitivities than the cascade structure. Therefore they 
became an object of interest of many researchers. Narrow 
band pass filters especially have notable sensitivity 
problem [1]. 
 Given the network function F(s, r1, …, rn), where s is 
complex variable and rk; k=1, …,n are real parameters, the 
relative function deviation ∆F/F due to one parameter 
value relative deviation ∆rk/rk in the first approximation 
can be given by 
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represents relative sensitivity of function F to single 
parameter rk. 
 In the real situation more than one component can 
change from nominal value. Hence, we define the criterion 
to asses function deviation due to change of many parame-
ters. Suppose ∆rk/rk are independent normal random vari-
ables with zero means and standard deviations equal to σr. 
The squared standard deviation σF of relative function 
change ∆F/F is 
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where sum of squares of function sensitivities to all 
parameters is called Shoeffler’s sensitivity and defined as 
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 In majority of cases Shoeffler’s sensitivity provide good 
enough criterion for assessing filter’s quality. Concerning 
structures with feedback loops it is very complicated to 
calculate (4) analytically, therefore we shall use numerical 
methods in this paper. We calculate standard deviation σF 
of relative change of function ∆F/F which equals to square 
root of Shoeffler’s sensitivity [1, 2]. 
 
B. Fault analysis and testability 
 
 By fault, in general, we mean any change in the value of 
an element with respect to its nominal value which can 
cause the failure of the whole circuit. The faults could be 
hard (catastrophic) or soft (deviation faults) depending on 
amount of element value deviation. When faulty element 
deviates from its nominal value outside tolerance bounds, 
but without reaching its extreme values, it produces soft 
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fault of circuit. Open and short circuit of elements produce 
hard faults [3, 4, 5]. 
 When only one parameter causes the fault, it is referred 
to as a single fault. When several parameters simultane-
ously change they produce multiple fault. 
 To perform fault analysis on an analog filter we choose 
frequency domain, because magnitude of its transfer func-
tion is of major interest. The choice of test frequencies is 
then very important. 
 To find the most informative set of measurements for 
fault analysis many authors have defined various testability 
measures. Optimal testing conditions can be found 
maximising such a measure. 
 Using probabilistic theoretical approach, Freeman [4] 
presented one criterion for selecting optimum set of meas-
ures. It is based on statistical model of network and 
assumes occurrences of noncatastrophic faults. 
 The actual value of voltage measurement due to compo-
nent failures and measurement errors is given by 
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where ∆rk represents deviation from nominal value of the 
kth component, εi represents the error in measurement, Vi

0 
is the nominal voltage at the ith measurement (i.e. ith fre-
quency) and the partial derivatives are evaluated at nomi-
nal values for all parameters. Freeman assumed that ∆rk 
and εi are independent random normal variables with 
means equal to zeros and the standard deviations equal to 
wk and σi, respectively. The probability of measuring vec-
tor Vm is given by multivariate normal distribution with 
vector of mean values V0 and the variance-covariance 
matrix U whose element Uij, evaluated for nominal com-
ponent parameters, is 
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For independent measures matrix U is diagonal. 
 Freeman has shown, that the maximum of information 
could be given for the set of measurements IM which 
maximise the determinant of U [4]. This way Freeman 
defined testability measure 
 T(ω)=U(ω) (7) 
 Testability T depends on measured system, test points 
and test stimuli. The frequencies that give greater value for 
T have to be chosen because they provide more infor-
mation. 
Assume that rk is the only element that could be faulty. 
Using network transfer function F(s), unit input voltage, 
σi2=0, wk2=1 the determinant U(ω) is just a scalar value 
given by 
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and represents square absolute sensitivity of function F on 
single parameter rk. 
 The catastrophic faults are sort of noncatastrophic faults 
with extreme shift in parameter values.  Thus maximising  

T could also be criterion for obtaining the optimal set of 
measurements for catastrophic fault detection. 
 
 

III STRUCTURES WITH LOW SENSITIVITY 
 
 As we stressed earlier, band pass filters have greater 
sensitivity [2], therefore they will be the object of analysis. 
All blocks, the filters in the Fig. 1. consist of, are second 
order and have band pass transfer function 
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where ωpi and Qpi represent pole frequency and Q-pole 
factor, respectively. Blocks form structures and thus realise 
filters. Choice of the structure influences the filters transfer 
function sensitivity. 
 The widest implementation has the cascade structure 
shown on the Fig. 1.a, because of its simplicity. Its sensi-
tivity has been most researched [1]. 

 
Fig. 1.a CAS structure 

 
 Follow the Leader Feedback structure (FLF) is pre-
sented in the Fig. 1.b. 

 
Fig. 1.b FLF structure 

 
 The Leap Frog structure (LF) in Fig. 1.c, also known as 
active ladder structure, simulates flow chart of passive 
ladder LC network. It is known that those passive net-
works have low sensitivity, therefore the LF structure has 
low sensitivity, too. The only inconvenient thing is that 
those structures have inner blocks with infinite Q-pole 
factor. 

Fig. 1.c LF structure 
 
 Finally, one combination of minimal FLF and cascade 
structures is cascade of biquartic sections (CBQ). It has 
improved features in pass band and in stop band, too. The 
two blocks inside each feedback loop are identical. The 
structure is shown on Fig. 1.d. 

 
Fig. 1.d CBQ structure 

 
 

IV EXAMPLE 
 
 Analysis of transfer function sensitivity on component 
values deviations and testability analysis were performed 
on the 8th order Chebishev band pass filter with narrow 
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pass band width of 0.1 and pass band ripple defined by 
reflection factor equal to 0.1. Magnitude H(jω)[dB] of 
its transfer function is shown in the Fig. 2. 
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Fig. 2. Magnitude of narrow BP-filter 

 
CAS, FLF, LF and CBQ structures presented in the Fig. 1. 
have been realised. Their coefficients are given in the 
Table I [1]. 

Table I Coefficients of structures on Fig. 1. 
 i Qp ωp k β 

 1 13.202 0.9755 1.0000  
CAS 2 13.202 1.0251 1.4274  
 3 31.919 0.9420 2.1733  
 4 31.919 1.0615 7.1188  
 1 18.665 1.0000 2.5933 0.0000
FLF* 2 18.665 1.0000 2.4669 0.8571
 3 18.665 1.0000 2.3572 0.2263
 4 18.665 1.0000 2.1840 0.1601
 1 13.198 1.0000 1.4482  
CBQ 2 13.198 1.0000 1.0363 0.2843
 3 31.862 1.0000 3.8230  
 4 31.862 1.0000 3.4848 1.0880
 1 9.357 1.0000 1.2085 0.8116
LF 2 ∞ 1.0000 0.07892** 0.7508
 3 ∞ 1.0000 0.08267** 0.6810
 4 9.307 1.0000 1.3737  

*There is coefficient β0=0.4582 
**Instead of value of k in the table is kωp/Qp 
 
 All 2nd order blocks Ti ; i=1, …,4 in (9) are realised 
with general purpose section (GP) shown oh the Fig. 3. 

  
Fig. 3. GP section in realisation of filter blocks 
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One can use (10) to calculate required parameters for GP 
section’s transfer function. This section is suitable because 
it can realise infinite pole Q factors. Furthermore, pole 
frequency and pole Q factor can be tuned independently. 
One could tune ωp with R4, Qp with R3 and k with R1. 

 As stated earlier, main assumption is that the relative 
element value deviations are independent normal variables 
with zero means and standard deviations σr. Let σr equals 
to 1%. Performing analysis on computer, the standard 
deviation σF of relative change of magnitudeF(jω) in 
[dB] defined in (3) has been calculated and presented on 
the Fig. 4. Influence of feedback elements and gain of 
active elements in overall sensitivity has not been included 
in consideration. The sensitivities of feedback elements 
could be neglected. 
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Fig. 4. Square root of Shoeffler’s sensitivity 

of structures on Fig. 1. 
 
 Sensitivity analysis on Fig. 4. shows that CAS structure 
has the biggest sensitivity, and structures with feedbacks 
have lower sensitivities. The best results yields LF struc-
ture [1]. 
 After all, the testability measure T defined in (8) has 
been applied for possible faults of every single element in 
all GP blocks. Elements in feedback and active elements 
are not taken into consideration. Analysing faults of R2, R4, 
R5 and C2 produced identical testability curves, fur-
thermore, testability of R6 and C1 were close to them, too. 
We distinguish among three main groups of elements in 
GP section that could be tested under similar conditions. 
Those three representative elements are R1, R3 and R4 (R4 
represents behaviour of R2, R5, R6, C1 and C2). Using them, 
as we stated earlier we can tune k, Qp and ωp. Testability 
analysis [3] has been performed for all four blocks (noted 
with I, II, III, IV) of CAS, FLF, LF and CBQ structures. 
Results are presented on the Fig. 5., and give us 
comprehensive picture about testability of all elements in 
mentioned structures. 
  Analysing characteristics on the Fig. 5. one can see that 
the optimal region for fault analysis of elements in CAS 
structure is situated throughout all pass band. For 
structures with feedback loops (FLF, CBQ, LF) testability 
is lower in the middle of the pass band and higher in pass 
band edges. Blocks with higher Q have greater testability. 
 This all is similar with sensitivity analysis carried out on 
different structures, as shown on the Fig. 4. One can 
therefore use Shoeffler’s sensitivity to find optimal 
frequency ranges for fault analysis instead of hardly 
calculating T. 
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Fig. 5. Testability of faults caused by single elements R1, R3, R4 in blocks I, II, III, IV (CAS, FLF,CBQ,LF) 

 
V CONCLUSION 

 
 Obtained results show that there is correlation between 
sensitivity and testability. One can use Shoeffler’s sensi-
tivity analysis to determine optimal conditions for fault 
analysis. One can say that Shoeffler’s sensitivity is good 
measure of testability. This was approved in comparing 
with Freeman’s probabilistic testability measure. 
 Second conclusion is that structures with lower sensi-
tivities have lower testabilities in corresponding ranges, 
and are less suitable for fault analysis. 
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