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Summary

In this note the finite element equations of motion for 3D solids and 3D beams are con-

sistently derived from the underlying Cauchy’s equations of motion.

1. Introduction

In this note the finite element equations of motion for 3D solids and 3D beams are derived

from the underlying Cauchy’s equations of motion. The following aspects are addressed in

formulating the finite element equations for 3D solids in Section 2 (References 1-8 should

be consulted for a deeper understanding):

1. Formulation of the weak form of the problem

2. Integration by parts and manipulation of differential operators

3. Piola transform (change of variables and pull-back)

4. Interpolation of test functions and additional tensorial transformations

In Section 3, the beam kinematics is presented and the finite element equations are derived

by introducing it into the continuous weak form of the equations of motion for 3D solids

given in Section 2. The following aspects are stressed (References 8-14 should be consulted

for a deeper understanding):

5. Configuration space and its kinematically admissible perturbation
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6. Geometric properties of the cross section as a consequence of the beam kinematics

7. Angular velocities and accelerations and specific momenta due to the beam kinematics

8. Stress resultants and applied loading due to the beam kinematics

9. Vector form of the strain measures due to the beam kinematics

In Section 4, an attempt at justifying the linear relationship between the stress resultants

and the vector strain measures for a linear elastic material is made.

2. 3D elastodynamics

2.1 Kinematics of the deformation

Consider a body, denoted as B, assumed to be subject to a smooth invertible mapping

into the ambient space φ : B → R3. Let the surface of the body ∂B be Lipshitz-continuous

(smooth and simply connected, loosely speaking) and consist of two parts: part Eu with

prescribed kinematics and parts part Ep with prescribed surface tractions such that

Eu ∩ Ep = ∅ (2.1)

Eu ∪ Ep = ∂B. (2.2)

Normally, we will distinguish between the mappings that take place at different times

by defining a mapping φt : B × R+ → R3. At time t, B, Eu and Ep are mapped into

φt(B) ⊂ R3, φt(Eu) ⊂ R2 and φt(Ep) ⊂ R2, where φt(•) is a shorthand notation for

φ(•, t).

For a chosen material particle X in a body define a mapping κ : B → R3 and denote the

reference position vector of material particle X at a chosen time t = t̄ as X = κ(X). Also

define
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x = φt(X) (2.3)

as the position vector of material particle X (pointed at by the position vector X in the

reference state) in the current state, at time t.

p

φt (

E

X

φt (

E

)

)

φt

)u

φt (B

X

u

Ep

B
E

X

x

Figure 1. Mappings between the reference state and the current state

2.2 Cauchy’s equations of motion and their weak form

The (local) Cauchy’s equations of motion are defined in the current state (at time t) as [1]

divσ + pv = ρẍ on φt(B), (2.4)

where σ is the Cauchy (true) stress tensor, divσ = σ∇x, pv is a distributed loading per

unit volume, ρ is the current density of the material and a superimposed dot indicates a

material time differentiation. For an arbitrary position vector x, given componentially as

x = xiEi =

x1

x2

x3

, the differential operator ∇x is defined as ∇x = ∂
∂xi Ei =


∂

∂x1

∂
∂x2

∂
∂x3

.

This equation has to be complemented with the natural boundary conditions
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σn − ps = 0 on φt(Ep), (2.5)

where n is an outward normal to surface φt(Ep) and ps is a distributed loading per unit

area of this surface. Furthermore, there are also essential boundary conditions

x = x̄ on φt(Eu). (2.6)

The weak form of Cauchy’s equation of motion is obtained by taking a dot product of

Eqns (2.4) and (2.5) with some test function v, which belongs to the same set of functions

as the admissible variations of the configuration. The test functions are required to vanish

on φt(Eu), thus identically satisfying Eqn (2.6). By integrating the dot product of Eqns

(2.4) and (2.5) with v over the domain of the definition of the problem we obtain the

following weak form

G(x,v) ≡
∫

φt(B)

v · (divσ + pv − ρẍ) dV −
∫

φt(Ep)

v · (σn − ps) dS = 0. (2.7)

By introducing the identity v · divσ = div (σv) − gradv : σ, where gradv = v ⊗ ∇x =

∂vi

∂xj Ei ⊗ Ej =


∂v1

∂x1
∂v1

∂x2
∂v1

∂x3

∂v2

∂x1
∂v2

∂x2
∂v2

∂x3

∂v3

∂x1
∂v3

∂x2
∂v3

∂x3

, a colon indicates a double tensor contraction, and

applying the divergence theorem via
∫

φt(B)
div(σv)dV =

∫
∂φt(B)

v ·σndS and noting that∫
∂φt(Ep)

v · σndS = 0 due to the kinematic admissibility of the test functions, Eqn (2.7)

turns into

G(x,v) ≡ −
∫

φt(B)

[gradv : σ + v · (ρẍ − pv)] dV +
∫

φt(Ep)

v · psdS = 0. (2.8)

Let us introduce the Piola transform of σ via σ = 1
J P F t with J = detF , F = GRADx =

x ⊗ ∇X and P the first Piola-Kirchhoff stress tensor [1]. The first term in Eqn (2.8)
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then transforms as
∫

φt(B)
gradv : σdV =

∫
B gradv : PF tdV0. By evaluating the tensor

contraction via A : B = tr
(
ABt

)
∀ A,B ∈ End(n), n ∈ N and using the identity

gradvF = GRADv, we further obtain
∫
B gradv : PF tdV0 =

∫
B GRADv : P dV0. Intro-

ducing this result and ρdV = ρ0dV0 as well as Nanson’s formula ndS = JF−tn0dS0 [2]

into Eqn (2.8) gives

G(x,v) ≡ −
∫
B

[GRADv : P + v · (ρ0ẍ − pv0)] dV0 +
∫
Ep

v · ps0dS0 = 0. (2.9)

2.3 Interpolation of test functions

Let us spatially discretise the problem by choosing Ni nodal points on body Bi and ap-

proximating the test function v(i) as follows

v(X) .= vh(X) = Ij(X)vj , j = 1, . . . , N, (2.10)

where Ij(X) are Lagrangian polynomials satisfying the standard conditions

Ij(Xk) = δj
k ,

Ni∑
j=1

Ij(X) = 1 ,

Ni∑
j=1

∇Ij(X) = 0

and the summation convention on the repeated indices is assumed. By noting the following

identity

GRADvh : P = [(Ijvj) ⊗∇X ] : P = [vj ⊗ (∇XIj)] : P = tr[vj ⊗ (∇XIj)P t]

= tr[vj ⊗ (P∇XIj)] = vj · P∇Ij(X),

the approximate weak form follows from Eqns (2.9) and (2.10) as
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Gh(x,v
(i)
j ) ≡ −vj ·

[(
qj

k + qj
m

)
− qj

e

]
︸ ︷︷ ︸

gj

= 0.

qj
k =

∫
B

P∇IjdV0

qj
m =

∫
B

Ijρ0ẍdV0

qj
e =

∫
B

Ijpv0dV0 +
∫
Ep

Ijps0dS0

are the standard vectors of internal, inertial and external forces, respectively, at node j

of the element (body) and gj is the standard dynamic residual vector at node j of the

element (body).

tφ

)B

B

φt (

Figure 2. Finite element discretisation

3. 3D beam theory obtained by constraining 3D continuum

3.1 Beam kinematics

A solid body is referred to as a beam if two of its dimensions are much smaller than its

third dimension. For such a body, it is useful to define the centroid axis of the beam as the
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collection of centroids of the two-dimensional segments (called the cross sections) spanned

by the base vectors pointing along the two smaller dimensions of the beam. Let us denote

the position vector of the centroid axis at time t as rt. For a beam of initial length L,

which undergoes an arbitrary deformation in the ambient space R3, we therefore have

rt(p) = r(p, t) : [0, L] ×R+ → R3, (3.1)

where p ∈ [0, L] is an arc-length parameter of the beam, to be defined in more detail later.

Also, it is reasonable to introduce certain kinematic hypotheses (the beam hypotheses),

which serve to reduce the total number of degrees of freedom of a discretised system to

be arrived at at a later stage. Furthermore, they will prove indispensable in the process

of applying the theory from Section 2. The most important beam hypothesis is that of

the undeformability of cross sections. By denoting the cross section at p ∈ [0, L] as A(p)

and by introducing a set of material coordinates {X1 = p,X2,X3} which parametrise

the initial configuration of the beam with respect to an orthonormal basis of base vectors

Gi (i = 1, 2, 3) as depicted in Fig. 3, we have the spatial position vector of an arbitrary

material particle within the beam body as the following mapping

xt(Xi) = x(Xi, t) : [0, L] ×A(X1) ×R+ → R3. (3.2)

Here and throughout the text, we choose to parametrise the kinematic quantities with

respect to the initial state (other choices are possible). We will focus our attention only

to beams which are initially straight and have uniform cross section A(X1) = const. We

also define a vector basis of a spatially fixed inertial frame and denote it as Ei (i = 1, 2, 3)

with co-ordinates {X,Y,Z}, so that the material frame is defined with respect to it via
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Gi = Ei. At time t, we define an orthonormal “moving” frame rigidly attached to a cross

section at X1 via

gi,t(X
1) = gi(X

1, t) = Λ(X1, t)Ei, (3.3)

where Λ ∈ SO(3) is a proper orthogonal transformation satisfying detΛ = 1 and Λ−1 =

Λt.

ii
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Figure 3. Beam kinematics

Note that in general ∂
∂X1 r(X1, t) �= g1(X

1, t) unless t = 0. The position vector xt(Xi) =

x(Xi, t) can now be expressed as

xt(Xi) = rt(X1) + Xαgα(X1) = rt(X1) + Λ(X1, t)XαEα, (3.4)

where α = 2, 3 and (X2,X3) ∈ A. Greek indices will be used whenever summation

runs over values 2 and 3. The deformed configuration of the beam is therefore com-

pletely defined by its deformed position vector and the collection of the moving frames
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along the deformed centroid axis. We say that a configuration space C is defined as

C =
{
(r,Λ) : [0, L] → R3 × SO(3)

}
. By superposing a perturbation εν = (εη, εµ) onto

configuration φ = (r,Λ) we arrive at an adjacent configuration

φε = (rε,Λε) = (r + εη, exp ε̂µΛ) . (3.5)

The linearised kinematics follows from the definition Dφ · ν = d
dε

∣∣∣∣
ε=0

φε as

Dφ · ν = (η, µ̂Λ) . (3.6)

Note that µ̂Λ /∈ SO(3) hence Dφ · ν /∈ C. The definition of a tangent space to C (at

identity) then follows as T(r,I)C =
{
(η, µ̂) : [0, L] → R3 × so(3)

}
. Due to a co-ordinate

transformation character of Λ and due to a topological equivalence of R3 and so(3) (to

which v and v̂ respectively belong) we are justified in employing a less stringent definition

of the tangent space via

T(r,Λ)C =
{
ν = (η,µ) : [0, L] → R3 ×R3

}
. (3.7)

As a result, the relationship between an admissible variation v of a position vector x,

which follows by taking a directional derivative of x in the direction of v as v = Dx · v =

d
dε

∣∣∣∣
ε=0

xε = d
dε

∣∣∣∣
ε=0

(x + εv), and the admissible translation and rotation follows from Eqn

(3.4) as

v = η + µ × (x − r). (3.8)
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3.2 Beam equations of motion obtained from results for 3D continuum

With Eqn (3.8) at hand and by evaluating the tensor contraction via A : B = tr
(
ABt

)
∀ A,B ∈ End(n), n ∈ N and utilising the first Piola-Kirchhoff stress vectors T i which

measure internal forces with respect to a unit of initial area defined by unit normals Gi,

defined as T i = P Gi ⇐⇒ P = T i ⊗ Gi, the beam equations of motion for the analysed

problem can be derived from the weak form of a 3D solid body

G(x,v) ≡ −
∫
B

[GRADv : P + v · (ρ0ẍ − pv0)] dV0 +
∫
Ep

v · ps0dS0 = 0.

which is taken from Eqn (2.9). In this way, the following result is obtained

G(r,Λ,η,µ) ≡ −
∫
B

tr
{

∂

∂Xi
[η + µ × (x − r)] ⊗ GiGj ⊗ T j

}
dV0

−
∫
B

[η + µ × (x − r)] · (ρ0ẍdV0 − pv0)dV0 +
∫
Ep

[η + µ × (x − r)] · ps0dS0 + . (3.9)

After noting GiGj = Gi ·Gj = δij and making use of Eqn (3.4), Eqn (3.9) can be further

transformed into

G(r,Λ,η,µ) ≡
∫
B

ρ0 [η · (r̈ + Xαg̈α) + µ × (x − r) · (r̈ + Xαg̈α)] dV0

−
∫
B

(
tr
{[

∂η

∂Xi
+

∂µ

∂Xi
× (x − r) − µ × ∂r

∂Xi

]
⊗ T i

}
+ tr

[
µ × ∂x

∂Xi
⊗ GiP

t

])
dV0

+
∫
B

[η · pv0 + µ × (x − r) · pv0] dV0 +
∫
Ep

[η · ps0 + µ × (x − r) · ps0] dS0. (3.10)

The second term in the second integral vanishes due to ∂x
∂Xi ⊗Gi = GRADx = F and the

Piola identity FP t = Jσ [1]. Because the Cauchy stress tensor σ is symmetric and µ̂ is

skew-symmetric, Jtr(µ̂σ) = 0. By following Eqn (3.3) we obtain
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Xαg̈α =
( ̂̇w + ŵ2

)
(x − r) =

( ̂̇w + ŵ2
)

Xαgα, (3.11)

where w is obviously the angular velocity of any vector Xαgα within the cross section

and thus also the (spatial) angular velocity of the orthonormal basis gi. Likewise, ẇ is

the (spatial) angular acceleration of the orthonormal basis gi. Making use of the identity

âb̂âb = b̂ââb ∀ a, b ∈ R3 and Eqns (3.1), (3.2) and (3.7), assuming a homogeneous

distribution of density ρ0 over a cross section, denoting Ep = A0 ∪ AL ∪ (L × ∂A)\∂Au,

where ∂A is the closed curve surrounding a cross section A and index to A indicates the

position of the cross section in terms of the arc-length co-ordinate X1, we obtain

G(r,Λ,η,µ) ≡ −
∫
B

tr
{
[η′ + µ′ × (x − r) − µ × r′] ⊗ T 1

}
dV0−

∫ L

0

ρ0

{
η·
∫
A

(r̈−pv0)dA

+η ·
( ̂̇w + ŵ2

)∫
A

(x − r) dA + µ ·
∫
A

(x − r) × (r̈ − pv0)dA − µ ·
∫
A

̂(x − r)
2
dAẇ

−µ ·ŵ
∫
A

̂(x − r)
2
dAw

}
dX1 +

∫ L

0

[
η ·
∮

∂A
ps0d(∂A) + µ ·

∮
∂A

(x − r) × ps0d(∂A)
]

dX1

+η0 ·
∫
A0

pv0dA+µ0 ·
∫
A0

(x − r)×pv0dA+ηL ·
∫
AL

pv0dA+µL ·
∫
AL

(x − r)×pv0dA = 0,

where a dash denotes a differentiation with respect to X1. By introducing the material

angular velocity W = Λtw and acceleration Ẇ = Λtẇ and the following notation for the

area and the mass moment of inertia tensor of a cross section

A =
∫
A

dA , Jρ = ρ0J = −
∫
A

ρ0X
αXβdAĜαĜβ

and the following notation for the applied loading

f =
∫
A

pv0dA +
∮

∂A
ps0d(∂A)
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t =
∫
A

(x − r) × pv0dA +
∮

∂A
(x − r) × ps0d(∂A)

F 0 =
∫
A0

pv0dA, T 0 =
∫
A0

(x − r) × pv0dA

F L =
∫
AL

pv0dA, T L =
∫
AL

(x − r) × pv0dA

and by noting that
∫
A (x − r) dA = 0 so long as r is the centroidal axis of the beam, we

further obtain

G(r,Λ,η,µ) ≡ −
∫ L

0

[
η′·
∫
A

T 1dA + µ′·
∫
A

(x − r) × T 1dA − (µ × r′)·
∫
A

T 1dA

]
dX1

−
∫ L

0

[
η · Aρ0r̈ + µ · Λ

(
JρẆ + W × JρW

)]
dX1 +

∫ L

0

(η · f + µ · t) dX1

+η0 · F 0 + µ0 · T 0 + ηL · F L + µL · T L = 0.

By introducing the specific translational momentum k = Aρ0u̇, the specific angular mo-

mentum π = ΛJρW , the stress resultant N = Λt
∫
A T 1dA = Λt

∫
A PG1dA and the

stress-couple resultant M = Λt
∫
A (x − r) × T 1dA = Λt

∫
A (x − r) × PG1dA, we get

G(r,Λ,η,µ) ≡ −
∫ L

0

[
(η′ − µ × r′)·ΛN + µ′ ·ΛM + η ·(k̇ − f) + µ·(π̇ − t)

]
dX1

+η0 · F 0 + µ0 · T 0 + ηL · F L + µL · T L = 0. (3.12)

For a linear elastic material, the relationship between the stress resultants and some energy

conjugate strain resultants γ and κ is normally defined as

N = CNγ and M = CMκ, (3.13)
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where CN and CM are given as

CN = (EG1 ⊗ G1 + GGα ⊗ Gα)A (3.14)

CM = (GG1 ⊗ G1 + EGα ⊗ Gα)J , (3.15)

with E and G being Young’s and shear moduli and A and J being given in Eqns (3.11).

These results may be rigorously derived from a continuum form of a linear material in terms

of a particular choice of strain and stress tensors upon introduction of beam kinematic

hypotheses (see Section 4). In engineering beam theory, however, the shear modulus in

Eqn (3.14) is usually corrected due to the non-linearity of the distribution of the shear

stresses over cross sections. In a similar vein, the shear modulus in Eqn (3.15) is corrected

to take into account the effect of Saint-Venant torsion for non-circular cross sections.

It follows from the equivalence between Hamilton’s principle and the weak form of Cauchy’s

equations of motion, that the linearised strain resultants d
dε

∣∣∣∣
ε=0

γε and d
dε

∣∣∣∣
ε=0

κε must

belong to the same space as Λt (η′ − µ × r′) and Λtµ′, shown to be duals to N and M ,

d

dε

∣∣∣∣
ε=0

γε = Λt (η′ − µ × r′) and
d

dε

∣∣∣∣
ε=0

κε = Λtµ′. (3.16)

Using Eqns (3.5), (3.6) and (3.16) the following relationships between the configuration

and the adopted strain resultants are obtained

d

dε

∣∣∣∣
ε=0

γε = Λt d

dε

∣∣∣∣
ε=0

r′
ε +

d

dε

∣∣∣∣
ε=0

Λt
εr

′ =
d

dε

∣∣∣∣
ε=0

(Λt
εr

′
ε) ⇐⇒ γ = Λtr′ − G1 (3.17)

d

dε

∣∣∣∣
ε=0

κ̂ε = Λtµ̂′Λ = Λt(µ̂Λ)′ − Λtµ̂Λ′ = Λt(
d

dε

∣∣∣∣
ε=0

Λε)′ +
d

dε

∣∣∣∣
ε=0

Λt
εΛ

′

=
d

dε

∣∣∣∣
ε=0

(Λt
εΛ

′
ε) ⇐⇒ κ̂ = ΛtΛ′. (3.18)
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3.3 Interpolation of translational and rotational test functions

In order to apply the finite element approach to the present problem it is necessary to

assume a shape of the kinematically admissible test functions νt = 〈ηt µt〉. On the

segment [0, L] we choose to interpolate η and µ as

η(X1) .= ηh(X1) =
N∑

I=1

II(X1)ηI

µ(X1) .= µh(X1) =
N∑

I=1

II(X1)µI ,

where N is the number of nodes on beam B and II(X1) : [0, L] → [−1, 1] ⊂ R are

Lagrangian polynomials of the degree N−1. We will often use the following notation

ν(X1) .= νh(X1) =
N∑

I=1

II(X1)νI ,

with νt(X1) = 〈ηt(X1)µt(X1)〉 and νt
I = 〈ηt

I µt
I〉. By applying this interpolation to the

weak form (3.12), the approximated weak form is obtained as

Gh(r,Λ,νI) ≡ −νI ·
[ qI

k︷ ︸︸ ︷∫ L

0

{
II′

ΛN
−IIr′ × ΛN + II′

ΛM

}
dX1 +

qI
m︷ ︸︸ ︷∫ L

0

{
II k̇
II π̇

}
dX1

−
(∫ L

0

{
IIf
IIt

}
dX1 + δI

1

{
F 0

T 0

}
+ δI

N

{
F L

T L

})
︸ ︷︷ ︸

qI
e

]
= 0, (3.19)

or, in a compact notation, Gh(r,Λ,νI) ≡ −νI · gI = 0, where gI = qI
k + qI

m − qI
e is the

dynamic residual vector at node I of the element and the definition of the corresponding

nodal vectors of internal, inertial and external loads, qI
k, qI

m and qI
e is obvious from Eqn

(3.19).
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4. Derivation of constitutive relations (3.13)-(3.15)

From Eqn (3.4), the deformation gradient is obtained as

F = x ⊗∇X =
∂

∂Xi
(r + ΛXαGα) ⊗ Gi = (r′ + Λ′XαGα) ⊗ G1 + ΛGα ⊗ Gα

= Λ[Gi ⊗ Gi + Λt(r′ − g1 + Λ′XαGα) ⊗ G1],

which, after introducing the strain measure resultants defined by Eqns (3.17) and (3.18),

becomes

F = Λ[I + (γ + κ × XαGα) ⊗ G1] = Λ[I + ε ⊗ G1], (4.1)

where we have introduced the shorthand notation

ε = γ + κ × XαGα. (4.2)

In order to show that the linear relationships between the stress and strain resultants

defined by Eqns (3.13)-(3.15) follow from a linear constitutive law applied to a suitably

chosen virtual-work conjugate stress and strain tensors, it is useful to consider the specific

virtual work (over the unit of initial volume) due to the action of internal (elastic) forces,

W̄ , which in terms of the deformation gradient and first Piola-Kirchhoff stress tensor reads

W̄ = P : F̄ , (4.3)

where F̄ is the kinematically admissible variation of the deformation gradient, which

follows from Eqn (4.1) as F̄ = µ̂F + Λε̄ ⊗ G1, with ε̄ = Λt[η′ − µ × r′ + µ′ × (x − r)].
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By noting that P : (µ̂F ) vanishes as explained in the paragraph between Eqns (3.10) and

(3.11), Eqn (4.3) turns into P : F̄ = (ΛtP ) : (ε̄⊗G1), i.e. ΛtP and ε⊗G1 make another

pair of virtual-work conjugate stress and strain tensors.

The stress tensor ΛtP , which is obtained by rotating the first leg of the first Piola-

Kirchhoff stress tensor by the rotation between the spatial and the material basis, bears

some resemblance to the Biot stress tensor B = RtP , which is obtained by rotating

the first leg of the first Piola-Kirchhoff stress tensor by the rotation R from the polar

decomposition of the deformation gradient F = RU , where U is a symmetric right-stretch

tensor. An attempt to impose a linear constitutive law between ε ⊗ G1 and ΛtP would

not result in the linear relationship between the beam strain and stress resultants (3.13)-

(3.15). Instead, it is necessary to define a new stress tensor Σ, which is (i) virtual-work

conjugate to sym(ε ⊗ G1), i.e.

(ΛtP ) : (ε̄ ⊗ G1) = Σ : sym(ε̄ ⊗ G1) (4.4)

and which (ii) preserves the stress vector acting on the cross section of the beam ΛtP G1,

ΛtPG1 = ΣG1. (4.5)

Eqn (4.4) results in ε̄ · 1
2
(Σ + Σt)G1 = ε̄ · ΛtPG1, which along with Eqn (4.5) leads to

ΣtG1 = ΛtPG1. (4.6)

With as yet undefined components Gα · ΣGβ of the stress tensor Σ, we now impose the

linear constitutive law between stress tensor Σ and its energy-conjugate strain tensor EΣ
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Σ = (2µII + λI ⊗ I)EΣ =
E

1 + ν
EΣ +

Eν

(1 − 2ν)(1 + ν)
trEΣI, (4.7)

where II = Gi ⊗ Gi ⊗ Gi ⊗ Gi is the fourth order identity tensor, µ = E
2(1+ν)

and

λ = Eν
(1−2ν)(1+ν) are Lamé’s constants, E is Young’s modulus and ν is Poisson’s ratio. At

this stage it is necessary to introduce the beam stress condition

Gα · ΣGβ = o, (4.8)

which along with Eqns (4.5) and (4.6) makes it clear that the stress tensor Σ is symmetric.

Results (4.5), (4.6) and (4.8) all follow from the following relationship between Σ, Λ and

P :

Σ = sym[(I + Gα ⊗ Gα)ΛtP (G1 ⊗ G1)]

Condition (4.8) leads to E
1+ν Gα · (EΣ + ν

1−2ν trEΣI)Gβ = 0 ⇐⇒ EΣ,αβ = −δαβ
ν

1−2ν EΣ,ii,

which results in

EΣ,23 = EΣ,32 = 0 , EΣ,22 = EΣ,33 = −νEΣ,11 =⇒ trEΣ = (1 − 2ν)EΣ,11. (4.9)

Introducing this result into Eqn (4.7) gives Σ = E
1+ν (EΣ+νEΣ,11G1⊗G1). After adopting

1
2 (G1⊗ε+ε⊗G1) for EΣ, which makes a perfect sense due to the virtual work conjugacy

between 1
2
(G1 ⊗ ε̄ + ε̄ ⊗ G1) and Σ, we finally obtain

Σ = [2GII + (E − 2G)I ⊗ I]EΣ , EΣ =
1
2
(G1 ⊗ ε + ε ⊗ G1). (4.10)
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It should be noted that the last result in Eqn (4.9) in conjunction with the adopted

definition of the strain tensor EΣ leads to a paradoxical result trEΣ = (1 − 2ν)trEΣ,

which is a consequence of introducing a plane-stress type condition (4.8) into a problem

where the kinematical constraints (the rigidity of cross sections) dictate a plane-strain

type condition. Obviously, the two conflicting requirements are reconciled for ν = 0. It

may be said that only in this case can the beam theories be consistently derived from the

equations of 3D continuum mechanics.

Using N = Λt
∫
A T 1dA = Λt

∫
A P G1dA and Eqns (4.5) and (4.10) we obtain

N =
∫
A

ΣG1dA =
∫
A

[G(G1 ⊗ ε + ε ⊗ G1) +
1
2
(E − 2G)tr(G1 ⊗ ε + ε ⊗ G1)I]G1dA =

[G(I + G1 ⊗ G1) + (E − 2G)G1 ⊗ G1]
∫
A

εdA,

or after introducing A =
∫
A dA and Eqn (4.2) and noting

∫
A XαdA = 0,

N = (EG1 ⊗ G1 + GGα ⊗ Gα)Aγ =

EA 0 0
0 GA 0
0 0 GA

 γ1

γ2

γ3

 .

Using M = Λt
∫
A (x − r) × T 1dA = Λt

∫
A (x − r) × PG1dA and Eqns (4.2), (4.5) and

(4.10) and noting
∫
A XαdA = 0 we obtain

M = Gα ×
∫
A

XαΣG1dA = Gα × (EG1 ⊗ G1 + GGγ ⊗ Gγ)
∫
A

XαXβdAκ̂Gβ

= −Ĝα(EG1 ⊗ G1 + GGγ ⊗ Gγ)Ĝβ

∫
A

XαXβdAκ. (4.11)

By observing the following results
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ĜαG1 ⊗ G1 = eα1γGγ ⊗ G1 = −eαγ1Gγ ⊗ G1 = −Gγ ⊗ (Gα × Gγ) = Gγ ⊗ GγĜα,

where eijk is the permutation symbol defined as e123 = e231 = e312 = −e132 = −e321 =

−e213 = 1 and eijk = 0 in all other cases, and

ĜαGγ ⊗ Gγ = Ĝα(I − G1 ⊗ G1) = (I − Gγ ⊗ Gγ)Ĝα = G1 ⊗ G1Ĝα,

and making use of J = −
∫
A XαXβdAĜαĜβ = −J3Ĝ

2

2 − J2Ĝ
2

3, with J3 =
∫
A X2X2dA

and J2 =
∫
A X3X3dA, Eqn (4.11) results in

M = (GG1 ⊗ G1 + EGγ ⊗ Gγ)Jκ =

G(J2 + J3) 0 0
0 EJ2 0
0 0 EJ3

κ1

κ2

κ3

 .

It should be noted that these results are derived without ever introducing restrictions to

small strains. The linear constitutive relationship between the stress and strain resultants

in beams follows rigorously from the linear constitutive law defined between the stress

tensor Σ = sym[(I +Gα⊗Gα)ΛtP (G1⊗G1)] and the strain tensor EΣ = sym(ΛtF −I),

where F is the deformation gradient, P is the first Piola-Kirchhoff stress tensor and Λ is

the rotation of the cross section.
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