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Abstract – In order to minimize operating time in the crane 
handling operation, fast load positioning with minimum load 
swinging has to be acquired. This conflicting control demand 
requires proper control action. In this paper optimal control 
design for the rotational crane control system is applied in 
order to achieve trade off between fast load transfer and 
minimum load swinging. In this SIMO (Single Input Multiple 
Output) system, state feedback controller based on Linear 
Quadratic (LQ) optimisation technique is realized. The 
controller is designed, simulated and experimentally verified 
on the planar rotary gantry crane laboratory test bench using 
Matlab/Simulink and Real Time Works. The controller 
performance is compared in simulation and 
experimentally with the performance of the state feedback 
Pole Placement (PP) based controller.  

 
 

I. INTRODUCTION 
 

As well as translational gantry cranes, rotational gantry 
cranes are widely used for the heavy loads transfer in the 
modern industrial systems. The problem faced in load 
transfer is similar as in translational crane type, 
considering negative influence of the crane acceleration 
required for the motion. Any fast ramp in reference 
position causes an undesirable load swing, having negative 
consequences on the system control and safety 
performances.   

For the load transfer time minimization, in order to 
achieve more control efficiency, besides a fast load 
positioning the arm position and the swing of the 
suspended load should be controlled as well. This 
conflicting control demand can be solved with the state 
feedback linear controller designed according to the linear 
quadratic optimum criteria. This design technique is 
imposed as a logical solution and it is used by several 
authors for the similar control tasks.  

For an associated control problem solving, most 
solutions are based on the linearized mathematical model. 
Typical control approach is adaptive (gain-scheduling 
logic with optimal controllers used by Corriga, Giua and 
Usai in [1]), optimal (Wang and Surgenor in [2]) or robust 
(G. Bartolini et al. in [3]), applied on the similar type of the 
electromechanical system.  

Because of the crane system complexity and the fact that 
linearized mathematical model mostly doesn’t represent 
real system good enough, some authors used fuzzy 
controller, [4]-[6]. Controller based on fuzzy logic can 
solve an undesirable effects caused by the system 
nonlinearities (e.g. static friction), [4]. From the real world 
applications point of view, the drawbacks can be in the 

large calculation time of the controller output caused by 
the number of controlled variables. This problem is 
reduced by applying Sugeno type fuzzy controller, but it 
is not completely solved. However, it is shown in [4] that 
for the four state variables necessarily to use (in this case 
those variables are arm and swing angle and theirs 
derivatives), four inputs and one output scaling gains 
have to be defined. In order to solve this problem, it is 
proposed to use LQ control gains as base for the fuzzy 
scaling coefficients determination. That is the reason to 
apply LQ optimisation technique based on the linearized 
mathematical model using well defined tools under 
Matlab/Simulink environment. This is first step which can 
be used after for the complex nonlinear controller design 
capable to handle with the systems nonlinearities in the 
real world application.  

In this paper state feedback controller based on the LQ 
optimisation technique is realized. Using linearized 
mathematical model of the rotary electromechanical 
system, LQ controller is designed, simulated and 
experimentally verified on the laboratory test bench. The 
results are compared with the state feedback pole 
placement controller, in simulation and experimentally.  

 
II. MATHEMATICAL MODEL OF ROTARY 

PENDULUM GANTRY SYSTEM   
 

The rotary pendulum gantry model is presented in the 
Fig. 1. In comparison with the real industrial rotary crane 
(e.g. tower crane or boom crane), there are the following 
simplifications: 
• Model doesn't include load hoisting drive, which 

means that rope length change will not be considered 
• Load is represented with a lumped pendulum mass    
• One degree of freedom is blocked compared to the  

real industrial crane; only planar gantry rotary motion 
is possible and load is moving in curved (round) 
plane (on cylinder sheat, defined by the length of the 
arm and pendulum length) 

According to that, representing the real load, the tip of the 
pendulum is moving in steady state, without pendulum 
swinging, on the circle with radius defined with the 
length of the arm, Fig.1. In transient condition 
(acceleration, deceleration, disturbance,..) pendulum will 
swing in the plane π, which represents one instant of the 
movement where swinging  is  happening. This swinging 
plane is tangential to the plane assigned by "pendulum 
motion without swinging" plane (it is cylinder sheat with 
the base defined by the arm length).  
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Fig. 1: Rotary Gantry Crane Model 
   
The zero swing angle corresponds to a suspended 
pendulum in the vertical rest down position. 
Electromechanical system presented in the schematic in 
Fig 1. and in the real world  (Fig 8), is a system with one 
input u (motor voltage), and two outputs: α (pendulum 
angle) and θ (arm position, angle). Mathematical equations 
of the motion can be defined via Lagrange equations using 
a total potential and kinetic energy,  
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Here L is Lagrangian defined as difference between total 
kinetic and potential energy (L=Ek-Ep), Tm is motor torque 
and Beq is equivalent viscous damping coefficient 
according to Table 1. Solving equation (1) and (2) and 
linearizing around α=0 (cos α= 1 and sin α = α), yields   
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where unknown coefficients are defined in (5), 
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For obtained linear state space system in general form 
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equation (6) can be transformed, using (3) and (4), in  
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and equation (6) in  
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Substituting the parameters of the rotary electro-
mechanical system from Table 1, and equation (5) to (8), 
follows the state space model of the rotary 
electromechanical system 
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TABLE I 

Parameters of the rotational crane model 

Parameters Description 
lp=0,3302 [m] Length to pendulum's center of mass 
m= 0,105 [kg] Pendulum mass 
r= 0,127 [m] Rotating arm length 
Jeq= 0.002 [kgm2] Equivalent moment inertia of the load 
Jm= 3.87e-7 [kgm2] Motor moment of inertia 
Beq=0,004 [Nms/rad] Equivalent viscous damping coefficient  
Kt= 0.00767 [Nm/A] Motor torque constant 
Km= 0.00767 [Vs/rad] Back-emf constant 
Rm= 2.6 [Ω] Motor armature resistance 
Kg= 70  Planetary gearbox gear ratio 
ηm=0,69 Motor efficiency  
ηg=0,9 Gearbox efficiency 
g=9.81 [m/s2] Gravitational constant of earth 

 
 

III. STATE FEEDBACK CONTROLLER DESIGN 
BASED ON LQR TECHNIQUE 

 
State feedback controller is a simple controller suitable 

to handle high order systems, Fig.2. It allows the designer 
to locate the closed-loop poles of the system wherever 
they are needed. This method assumes that the state 
variables are measurable and are available for feedback.   

 
Fig. 2. State feedback controller based on the LQ optimisation 

technique  
 
This controller is relatively easy to implement. Let (5) is 
expressed in discrete general form as 

)()()1( kkk BuAxx +=+ ,    (11) 
where x(k) is n-state vector, u(k) is r-control vector, A is 
nxn non-singular matrix and B is nxr matrix. According 
to the Fig.2, the relationship of the feedback control u(k) 
to state x(k) for the pole-placement method applied to the 
linear system in discrete form is.  
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For the linear quadratic (LQ) case, control vector K in 

(12) is chosen as optimal vector. In the next few lines, just 
the main steps for optimal LQ gains determination will be 
presented. When the term optimal is involved in the 
control design it means that value of a function, chosen as 
the performance index or cost function, should be 
minimized (or maximized). In the rotary electromechanical 
system presented, the fixed finite final time quadratic 
performance index (13) is chosen to make the system 
behave in desired fashion    
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Here Q, S and R are nxn, rxr and nxn positive definite or 
positive semidefinite symmetric matrices respectively. 
These matrices are selected to weight the relative 
importance of the performance measures caused by the 
state vector x(k), the final state x(N) and  control vector 
u(k) for k=0, 1, 2,..N-1. N is the number of time steps.  

Now, control vector K in (12) should be designed in the 
optimal way, minimizing performance index (13). This 
indicates on iterative process of changing vector K in 
order to minimize (13), before process begins. Formally, 
one can take K as K(k) rxn time-varying feedback matrix, 
but it is only in the process of performance index 
minimization, executing off line.   

One of many different ways to solve (13) is concept of 
Lagrangian multipliers. On the base of detailed procedure 
described in [5], Riccati equation for solving S(k) is 
derived   
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and should be solved backward from k=N to k=0. Also, 
optimal control vector can be derived as  
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Let for the simplicity set input r =0, which means that 
system starts in t=0 from some state x(0)≠0 reaching the 
final position x(0)=0 in N steps, Fig.2. Then from (12) and 
(15) controller gains matrix can be calculated as 
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Once the state matrix A, control matrix B, and weighting 
matrices Q, R and S are known, the time-varying 
controller gains matrix K(k) may be predetermined off-
line. This is important from the real world application 
point of view. For a given set of Q, R and S weighting 
matrices, Linear Quadratic Regulator (LQR) control is 
optimal and unique. However, more than one starting set 
of matrices will result specifications to be satisfied, and 
any of such set of matrices will be acceptable as optimal 
problem solution. Therefore, from this point of view, the 
solution of this problem is not unique. Formally, it means 
that any initial choice of weighting matrices used in (13) as 
symmetric and positive definite or positive semidefinite, is 
acceptable. 
However, a set of specifications in the form of maximum 
magnitudes for each state variable (arm and pendulum 
angle), control variable (motor voltage) and state variables 

at the final time (reference arm position) must be imposed 
in the system. In each off-line LQ controller gains session 
(K(k) calculation), states and control physical limitations 
have to be checked. The calculation must be repeated 
with different Q, R and S matrices as long as all 
specifications are satisfied or becomes evident that can 
not all be satisfied at the same time. Using some 
techniques like Bryson’s method, will often speed up the 
design process by requiring a fewer iterations to reach the 
final design, [5]. With Bryson’s method, the diagonal 
elements of the weighting matrices are the reciprocals of 
the squares of the maximum allowed magnitudes for the 
states, final state and control variables. Other elements are 
zero.  
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This method for initializing weighting matrices shows 
faster convergence to an acceptable design than some 
other methods (e.g. identity matrices). The corrections of 
the coefficients of matrix Q in iterative procedure is done 
by following expression 
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In the similar way, (20) can be applied for coefficients 
correction of R and S matrices too.  

 
IV. SIMULATION RESULTS 

 
System performances with the LQ controller, applied on 
the rotary single pendulum gantry electromechanical 
system, are tested in the simulation, Fig.3.  

Model is realized in Matlab/Simulink environment, 
and prepared also for the real-time running, according to 
the simulation schematic shown in the Fig.3.  Because the 
system is SIMO type, control variable is scalar and then 
according to (13) matrix R is scalar too. The matrix Q is 
dimension of 4x4, which means that first diagonal 
element Q(1,1) corresponds to the first state variable (arm 
angle) in state vector x=[θ α dθ/dt dα/dt]T

=[x1 x2 x3 x4]T
, 

second  element Q(2,2) corresponds to the pendulum 
angle, etc. There is no rule to set coefficients of Q matrix; 



it is a matter of designer's requirements. The large value of 
Q relative 

  
Fig.3. Experimental (upper) and simulation (lower) model. 
  
to R forces state variables x to rapidly reduce from its 
initial states. Also, the final state of x will be very low for 
a large SN weighting matrix (it is set to 100). This leads to 
the high control gain and quickly reaching of the steady 
state values. When the values of Q and R interchanged, the 
performance index (13) is now placing more emphasise on 
keeping the magnitude of the control signal u small, than 
on making the magnitude of the state variable small. Now, 
the value of control gain K becomes smaller and 
consequently control signal u and state variables will not 
be driven towards the origin as rapidly.  
The constraints (CNS) on the state variables and the 
control signal are set as  
 CNS=[15*π/180,    5*π/18,0     4*π,     4*π,     4.9],     
(21) 
which correspond to θ, α, dθ/dt, dα/dt and u respectively. 
According to the Bryson's method described, Q and R 
matrices are determined from (17)-(20) and LQ gains K 
from (16) as 

14.5903 0 0 0
0 44.9860 0 0

; 0.0416
0 0 0 0
0 0 0 0

Q
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R =   (22) 

[ ]18.7166 21.4887 2.8692 -3.4549K = .   (23) 

 

Fig.4. Arm angle, load (pendulum) angle and motor 
voltage for matrices Q and R coefficients (22) and 
controller gains (23) with initial arm angle disturbance of 
15°. 
According to (22) and (23), system response on 
disturbance θdist=15° is shown in Fig.4. 
The response is very fast inside the constraints set (21). 
The response on the arm angle step reference of θref=15° 
is presented in Fig.5.  

 

arm angle 

motor voltage 

 load angle 

Time  [s] 

Fig.5. Arm angle, load (pendulum) angle and motor 
voltage for matrices coefficients (22) and controller gains 
(23) with arm angle step reference of 15°.  

The simulation results in Fig.5. show that constraint of 
the arm angle in (21) is accessed. System is "too fast", 
which doesn’t mean that is not good! One way to fix that 
is to placing more emphasise on the first state variable (θ 
) in state vector, changing coefficient Q(1,1)=q11 or 
changing other diagonal coefficients in matrix Q. Just for 
the test, it is taken identity matrix Q (all diagonal 
coefficients of matrix as 1). In that case, calculation for 
the optimal controller gains K gives  

[ ]4.9000 33.3842 4.8032 0.8581K = ,  (24) 

with matrix R unchanged, as in (22).  
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Fig.6. Arm angle, load (pendulum) angle and motor 
voltage for Q identity matrix, R matrix (22) and controller 
gains (24) with initial arm angle disturbance of 15°. 

 
Fig.7. Arm angle, load (pendulum) angle and motor 
voltage for Q identity matrix, R matrix (22) and controller 
gains (24) with arm angle step reference of 15°. 
 
From these two simulation tests, one can conclude that the 
first simulation (Fig.4. and 5.) gives the better control 
performance even though the arm angle constraint is 
reached. Second simulation session (Fig.6. and 7.) gives 
slow arm angle response with the smaller load (pendulum) 
swinging. From the application point of view, one has to 
think here also in "optimal" way. That means, if there are 
enough manoeuvring space around the crane and fast load 
positioning is requested, the first solution would be 
acceptable even the swing is higher than in the second case 
(but still inside the constraints (21)). Of course, there can 
be solutions between presented two. It is necessary to 
change matrices R and Q and in iterative procedures, 
analysed in this section, find acceptable solution.  
 
V. ROTARY PENDULUM GANTRY EXPERIMENTAL 

SETUP 
 
Experimental tests have been made on 

electromechanical model of a rotary pendulum gantry, 
which has three basic parts: rotary base with the DC motor 
driven arm with the pendulum, AD interface and digital 

control system implemented on the personal computer, 
Fig.8.Laboratory system use microprocessor of personal 
computer (PC) for the simulation and software 
development as well as for the real-time control. Control 
algorithm, designed and simulated in MATLAB/Simulink 
environment, uses graphically oriented software interface 
for the real-time code generation. This application 
oriented code is running in the real time under the same 
PC as for simulation. Details about experimental test 
bench can be found in [8]. 

 motor voltage 

 load angle 

arm angle 

Time  [s] 

In Fig.9.a) and 9.b) simulation and experimental results 
are compared for arm angle step reference of 25°. The 
matrices Q and R are identical for the simulation and the 
real time experiment. One can see a few differences. 
Firstly, arm position response has overshot in simulation; 
it seems faster then in real time experiment and, as a 
consequence, settling time in simulation is considerably 
smaller. Secondly, steady state error in simulation is zero, 
but in the experiment this error is cca 8%! In the first case 
these differences are taken from the simplified 
(linearized) model used in simulation. Due the 
linearization, model is acceptable only for small load 
angle (small swinging). For the second case, critical 
phase is arm positioning because of unmodeled static 
friction which unavoidably results in the steady state 
positioning error. 

 
Fig. 8. Rotary Crane laboratory model 
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motor voltage 

 load angle 

arm angle 

Time [s] 
   a)       b) 
Fig.9. LQR based controller: Simulation a) and experimental responses (arm angle, motor voltage, load angle), b) for  Q(1,1)= 5.2525, 

Q(2,2)= 131.3123, Q(3,3)= 0.0063, Q(4,4)= 0.0063, R= 0.0416, under arm angle step reference of 25° 

 

 motor voltage 

 load angle 

arm angle 

Time  [s] Fig.10. 

 load angle  motor voltage 

arm angle 

Fig.11. Time  [s] 

     
Fig.10. PP based controller: Experimental responses (arm angle, motor voltage, load angle) for the same parameter as in Fig.9.b). The 
Comparison LQR-PP controller. Step arm angle reference of 25°.  
Fig.11. LQR based controller: Experimental responses (arm angle, motor voltage, load angle) for matrices coefficients (22) and 
controller gains (23), same parameter as in Fig.4. and 5. Step arm angle reference of 25°. NO load angle control. 
 
This analyze confirm Fig.10, where pole placement (PP) 
based state feedback controller is designed only for 
comparison with LQ controller. The latter is designed with 
control requirements on transient response settling time of 
1,5 s and overshoot 2%. These requirements were fulfilled 
only in the simulation, but in experiment on the rotary 
electromechanical gantry drive, settling time about 2,5s 
without overshoot and steady state error about 8% were 
accomplished. More or less, experimental results for the 
PP and LQ based state feedback controller are practically 
identical, see Fig. 9.b).and Fig.10. In both cases steady 
state error is to high and this problem can be solved using 
either integrator (not enough good solution), or some of 
control technique such as tensor product transformation 
based modelling, proposed in [6,7] Fig.11. undoubtedly 
presents that without load (swing) angle control, crane 
control task can not be performed effectively; load 
swinging is too high for the accurate load positioning.  
 

VII. CONCLUSION  
 

For the real time application, state feedback LQ optimal 
controller is designed, simulated in Matlab/Simulink and 

experimentally verified on the laboratory test bench. This 
model is scaled and simplified model of a real industrial 
rotary crane.   

LQ optimal design for the state feedback controller 
request iterative 'off line' procedure for controller gains 
calculation, minimizing selected performance index, taking 
into account all states and control systems constraints, as 
well as weighting matrices Q, R and S. One set of these 
matrices guaranties a unique solution for the optimal 
controller gains, but some other set can also result 
predefined specifications to be satisfied.  The comparison 
of simulated and experimental results in Fig.9.a) and 9.b), 
show different transient response; smaller overshoot, long 
settling time and large steady state error of experimental 
response vs. simulation. These unsatisfactory experimental 
results are practically same for the PP controller too, 
Fig.10. The logical explanation is that the linear controllers 
cannot perform crane control task effectively as nonlinear 
controllers can do.   

Although the optimality between crane arm positioning 
and load swinging is just what the cranes "desperately" 
need, LQ optimisation technique cannot handle problems 
like the unavailability of accurate linear model, static 
friction compensation, and other system's nonlinearities. 



The nonlinear industrial crane system require definitely 
nonlinear control and in this respect LQ controller can 
serve as a base controller for supporting main nonlinear 
controller in order to fulfil control task in satisfactory 
manner. The example of such LQR application is 
presented in [4]. 
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