
162

Secure web applications?

Mario Konecki, Željko Hutinski, Tihomir Orehovački
Faculty of Organization and Informatics

University of Zagreb
Address: Pavlinska 2, 42 000 Varaždin, Croatia

Phone: +385 42 390 800 Fax: +385 42 213 413

E-mail: mario.konecki@foi.hr, zeljko.hutinski@foi.hr, tihomir.orehovacki@foi.hr

Abstract - Today we live in a society that we call the

information society where information has become a resource

of great value. Along with this kind of society web applications

that provide information through various services have

appeared. Web applications have been driven to the point of

very high visual appearance and services quality level but the

part that is still in the second plan is the question of web

applications security. In this paper we will point to this

problem, we will show the most common problems in web

applications security today and we will give suggestions that

can help in solving these problems. We will also present our

research data about knowledge and common practice of

companies in the matter of solving these problems.

I. INTRODUCTION

Today, there is an increasing number of web applications
in all aspects of business and education. Also, web
applications are becoming more and more important part of
any system. The systems are connecting between each other
and web applications are substituting standard desktop
information systems. Also, it has become obvious that there
are many flaws in web security [7] which result in
malicious activities in business, education and other areas.
Because of this, web applications security becomes one of
the main topics. Because of constant increase of companies
that are developing web applications, there is a need to find
out the current situation regarding security problems that
are mostly occurring as a first step to find a proper solution
and educate companies about these solutions.

II. IDENTIFYING THE MOST COMMON SECURITY

PROBLEMS

It is practically impossible to determine the main security
problems in web applications because they depend on many
factors such as particular organization of web site, specific
technologies and configurations, etc. But, even so, when
concentrating on a whole group of technologies and
applications, 10 main security problems that occur in web
applications today have been identified [2]. These
problems, along with some suggestions on how to solve
them are listed below. The words that could be used here
instead of problem are also attack, flaw or vulnerability.

A. Unvalidated Input

Web application reactions are based upon input from
HTTP request (or sometimes files) [2]. Attacker can attempt
to tamper with any part of this request. Many web
applications today don’t even have client-side input
validation. But even those applications that have this kind
of validation are not secure enough. Client-side validation
is effective and useful for users but it provides no real
protection if there is a lack of server-side input validation.
There are simple tools, even telnet, which attacker can use
to intercept HTTP request and modify it or to create his
own HTTP request. This kind of problem can be solved
only by detailed server-side validation mechanisms. This
includes proper validation of all types of input that are part
of HTTP request, including URLs, forms, cookies, query
strings, hidden fields, and parameters.

Validation algorithms should check [2]:

 Data type (number, string, …)

 Allowed length

 Allowed set of characters

 Parameter necessity

 Whether null is allowed or not

 Allowed parameter values

 etc.

B. Broken Access Control

The first thing that is important here is to know which
types of users have certain privileges and rights. There has
to be a clear access control policy [6] and documentation
about this matter. A tool that can be used here to describe
users and their roles is a role matrix [1;163]. Many
applications today have very superficial solutions to this
problem. The authorization mechanisms [1;162] are often
developed ad hoc as needed and are scattered in many
places. This kind of approach leaves plenty of room for
mistakes and flaws. This mechanisms should as well as
input validation algorithms be centralized [1;262]. Problem
that deserves to be mentioned here is also remote
administration. A detailed testing has to be performed
regarding connections security and means that are used to
ensure administrators identity.

163

Some things that are to be taken in consideration are
especially [2]:

 Web Caching – there are tools that copy entire web

sites with all of their references on users local hard

drive. Developers should use HTTP headers, Meta

Tags, and other means to ensure that sensitive pages

are not cached.

 File access restriction – all sensitive data should be

always kept on backend servers. But, there is always

some sensitive data that has to be kept locally on

web servers and this data should not be accessible to

public. Examples of such data are configuration

files, default files, some scripts, …

 Using unvalidated input to get files - using relative

addresses via unvalidated input to get files that

would not be accessible if required directly.

 Skipping access control checks – simply skipping

the page with the security check and going directly

to desired web content.

C. Broken Authentication and Session Management

Authentication means to establish the rights of an
authorized user. This aspect of secure web application is
very important but it is not enough. If user’s credentials can
be compromised due to insufficient session security then
attacker can easily steal user’s session and gain his identity.
This then can lead to attacker’s ability to view other user’s
data and to perform malicious activities under some other
identity than his own. In web application security proper
authentication and session management are crucial.

To ensure this kind of protection these aspects should be
implemented and used [2]:

 Strong passwords – system should demand more

complex passwords (longer, certain number of

certain types of characters, etc.)

 Number of login check – system should number and

log unsuccessful login attempts, block logging after

certain number of attempts, perform analysis and

permanently lock login from certain IP address after

certain conditions are fulfilled.

 Password change control – user should be asked to

enter both his old and new password when changing

the password. This will prevent one to steal

someone’s session and to change the password

without knowing the old one.

 Secure password storage – all passwords that are

stored should be encrypted or hashed (can’t be

reversed). Passwords mustn’t be hard coded.

 Credentials in transit and session protection – some

sort of protection should be used, such as SSL, to

protect entire session or login transaction. Just

hashing the password isn’t sufficient because

attacker can intercept this form of password and

send it again and gain access to the system never

knowing the plaintext password.

 Browser caching – developer should never design

application to sent authentication or session

information via GET, rather via POST method

[1;165]. Also all authentication pages should

prevent caching so that the user can’t simply load

cached page in order to get into web application.

 Authentication for each application part – each

application component should authenticate itself to

other components unless there isn’t a strong reason

for authentication to be implicit. Attacker could find

a weakness in one component of web application

and then gain access to other components if

authentication is implicit in all of web components.

D. Cross Site Scripting - XSS

Cross Site Scripting (XSS) [3] occurs when attacker uses

web application to send malicious code (usually JavaScript)

to a different end user. The end user’s browser then

executes this script because it has come from a trusted

source.

There are many things that can be result of this kind of

attack [2]:

 Accessing the cookie

 Accessing and stealing session

 Rewriting the content of a HTML page

 Attacking the end user’s computer

 etc.

XSS attacks can be divided into 2 categories [2]:

 Stored attacks

 Reflected attacks

Stored attacks – in this case malicious code is
permanently stored on target server (in a database, web
page, log, etc.). Some user sends request for some of that
information and malicious code is executed because it came
from a trusted source and because user has requested it
himself.

Reflected attacks – in this case injected code is reflected
off the web server (in an error message, search result, or any
response that includes some or all of the input sent to the
server as a part of the request). This kind of attack is
brought to user via email, forum messages, etc. User is in
this case tricked into clicking on a suspicious link and then
malicious code travels to a vulnerable web server which
reflects it back to end user’s browser which executes the
code because it has come from a trusted server. An example
of this kind of attacks is clicking on a suspicious link in a
web forum or on a link that is a part of e-mail that is
spoofed [3]. Then malicious code is executed as if it came
from a trusted source and if there are some active sessions
there is a possibility of stealing user credentials, or harming
user’s computer.

One mean of preventing this kind of attacks is to perform
detailed control on all headers, queries, forms filed, etc. in

164

the sense of controlling that it has values that are expected
rather that trying to filter malicious code (there are too
many encodings, and types of active content to do this
properly without flaws). Another thing that can be done
here is to encode all characters (<, >, &, ;, etc. [3]) that are
used in JavaScript using HTML encoding.

E. Buffer Overflow

Buffer overflow is the most common flaw/attack. It is not
easy to find this kind of flaw and even if it is found, it is
very hard to exploit it. The most common attack is to crash
down web application or cause application to produce
incorrect results. Typical attack of this kind is to send
input to an application that is then stored in a stack buffer
that is too small. This result is that call stack is overwritten
along with the function’s return pointer [2]. Then the
pointer is set so that it points to the malicious code that is
sent by attacker. Code that is most vulnerable to this type
of attack is code that uses external data, services or
properties.

F. Injection Flaws

This attack refers to injection of malicious code to web
application. Web application then executes this code on
database (sql queries), operating system (system calls),
external programs (shell commands or command injection
attack [5]), etc. Every usage of interpreter of any kind is a
potential danger to web application security. Malicious
code is usually sent to web application via HTTP request,
embedded in parameters that are sent. A simple example of
this kind of flaw is a simple guestbook where user can
write some own comments. If one writes some JavaScript in
this comment field it will execute in a browser when the
comment is viewed. A most common injection is sql
injection where attacker seeks parameters that are sent and
form sql query and then insert a part of sql that will execute
and reveal some information or do some damage to stored
data. A way to protect web application against this kind of
attack is to carefully validate all inputs, to validate input
and form sql queries in stored procedures [4] or functions
rather that trough parameters directly [1;218], to avoid shell
commands (using libraries that provide similar functionality
instead), etc.

G. Improper Error Handling

There are many typical errors than can occur while
working with web applications. Improper error handling
results in messages that occur in browser and reveal
technical and implementation details that can help potential
attacker to find flaws in the system. There should be a well
organized policy for error handling. All errors have to be
processed and a proper message must be presented to users.
Even if this is the case, some messages can again reveal too
much. For example if user tries to access a file that is
restricted a message that occurs should be “File does not
exist” rather than “Access to this file is denied” because the
message reveals that the file really exist and that is
something a web application user should not now [2].

H. Insecure Storage

When storing information many web applications use
some sort of cryptographic algorithm. But there are a lot of
mistakes that developer do here. For example: usage of a
weak cryptographic algorithm, similar random patterns,
attempt to use a new algorithm, etc [2]. Some of algorithms
that are used today can be very easily decoded. For example
.htaccess protection that is still used for administrators and
identification on many web pages uses base64 [1;134]
algorithm that can be decoded using a variety of tools
available on the web. So if attacker can catch an encrypted
password he can easily find out the plaintext password and
enter the site. The best protection is to store a minimum of
information as possible and to use well tested and proven
algorithms there where it is absolutely necessary.

I. Application Denial of Service

This kind of flaw refers to attack that consumes all of
web application resources [1;92] such as database
connections, bandwidth, disk storage, CPU, etc. This
causes the application to crash if it doesn’t handle this kind
of error properly or application locks and becomes
unavailable to other users. There is also possibility for
attacker to steal legitimate user’s username and then to
send invalid passwords until the user’s account is blocked
or he could also cause the user to get a huge number of
email messages with his password because attacker has
requested it again and again using legitimate user’s
username. This kind of flaw is very hard to overcome. It is
not possible to identify user just upon IP address because it
is not possible to distinguish whether repeated IP address
means that there is an attacker or the legitimate user is just
reloading the page [2]. The best way to protect against this
kind of attack is to limit resources for authenticated users
to a minimum and to avoid unauthenticated users access to
any resources that are not absolutely necessary.

J. Insecure Configuration Management

Web application, as well as database, are located on a
web server and web application uses services and resources
that server provides (disk storage, messaging, etc.). If this
server is not configured properly the whole effort to
produce a well designed and secure web application is
futile.

There are a number of lacks that can occur here [2]:

 Old version of software without new security

patches

 Default credentials

 Default accounts

 Improper permissions policy

 Unnecessary services active

 Accessible administrators functions

Using simple scanning tools attacker is able to find these
flaws. To prevent this, a well described configuration
policy has to be established and a regular maintenance

165

(applying new patches, reading security reports, etc.) has to
be performed.

III. RELATIONS BETWEEN SECURITY PROBLEMS

Some of these problems are connected and they affect
each other. A table that shows these dependencies is shown
in Table 1.

TABLE I

Dependencies between security problems

Security flaw Main dependencies

Unvalidated Input - Cross Site Scripting (XSS)

- Buffer Overflow

- Injection Flaws

Broken Acces Control

- Unvalidated Input

- Broken Authentication and

- Session Management

- Cross Site Scripting (XSS)

- Buffer Overflow

- Injection Flaws

- Improper Error Handling

- Insecure Storage

- Application Denial of -

Service

- Insecure Configuration -

Management

Broken Authentication and

Session Management

- Unvalidated Input

- Broken Authentication and

Session Management

- Cross Site Scripting (XSS)

- Buffer Overflow

- Injection Flaws

- Improper Error Handling

- Insecure Storage

- Application Denial of

Service

- Insecure Configuration

Management

Cross Site Scripting (XSS) - Buffer Overflow

- Injection Flaws

- Improper Error Handling

- Insecure Storage

- Application Denial of

Service

Injection Flaws - Broken Access Control

- Broken Authentication and

Session Management

- Insecure Storage

- Improper Error Handling

- Application Denial of

Service

Improper Error Handling - Insecure Application

Insecure Storage - Broken Access Control

- Broken Authentication and

Session Management

Application Denial of Service - Insecure Application

Insecure Configuration

Management

- Insecure Storage

- Application Denial of

Service

IV. PRELIMINARY RESEARCH OF THE CURRENT

SECURITY CONDITION

In order to find out the current situation regarding web

applications security a preliminary research has been

conducted. Participants in this research were small and

medium-size companies whose main field of interest is

programming and web applications development. The list of

companies that were included in this research was formed

using several sources.

Sources that were used are:

 CD Business Croatia Fall 2006

 Republic of Croatia - Central Bureau of Statistics

 Croatian Chamber of Economy

 Yellow pages

 Google search results

First we got the list of all companies that are classified

under Primary Business Activity Code (according to CBS)

K 72 (Computer and related activities). Then we visited and

examined web pages of all companies from the list and

formed a new list of those companies whose primary or

secondary business was web development. This procedure

was necessary because detailed classification of K 72 group

didn’t give very good results as many companies which

develop web applications didn’t register under right

Primary Business Activity Code.

 Research data has been collected using web

questionnaire. Questions were formed in such a way to give

information about developer’s knowledge about main

security problems, their experience in dealing with main

security problems and their awareness about importance of

web applications security. The questionnaire was active for

2 weeks. When questionnaire was activated, a notification

email was sent to all companies. After one week another

email with was sent in which we expressed gratitude to all

that have filled up the questionnaire and we asked all those

that didn’t fill up the questionnaire to do so by the end of

the week. After 2 weeks the questionnaire was deactivated.

After analysis of collected data several conclusions were

formed. Programmers are aware that the question of web

application security and users privacy is of great

importance and that the lack of security policy

implementation can lead to serious consequences (Figure

2). Also, programmers are convinced that they are taking

every step that is necessary during their web application

development to protect the users (Figure 3). But, as can be

seen in Figure 1, programmers have not been dealing with

the most common security threats many times and they

don’t have much experience in solving these problems.

Based upon this, it can be said that programmers still don’t

take care of web application security as well as they should

and that they rarely take proper preventive precautions in

order to ensure web applications security and web

applications users privacy. Further research will be focused

on detailed analysis of current state in Croatia regarding

web application security as well as on finding out which

actions are needed in development and administration in

order to increase security and quality of web applications.

166

Figure 1. Solving security problems frequency

Developer's awareness of security and privacy importance

less important

7%
 mostly

important

12%

 completely

important

81%

Figure 2. Developer’s awareness of security and privacy
importance

Figure 3. Developer’s assurance in their products
security

IV. CONCLUSION

In this paper we have pointed out to security problems
that are mostly occurring. We have also presented
preliminary research results about the current condition
regarding web application security in Croatia. From these
data we can conclude that although the question of web
applications security is obviously of great importance, it is
greatly undermined by developers. Developers are aware of
this question but have little practical knowledge and
experience in solving these problems. In our further work
we will conduct a more detailed research and try to give
solutions for these security issues.

REFERENCES

 [1] Scambray, J., Shema, M., Sima, C., Hacking exposed

web applications, 2nd Edn., McGraw-Hill/Osborne

Media, 2006.

 [2] OWASP - Open Web Application Security Project - the

open application security community, Top Ten Project,

http://www.owasp.org/index.php/OWASP_Top_Ten_Project

 [3] Morgan, D., Web Injection Attacks, Network

Security, vol.2006, no.3, March 2006, pp. 8-10.,

Elsevier, UK.

 [4] Morgan, D., Web Injection Attacks, Network

Security, vol.2006, no.4, April 2006, pp. 4-5.,

Elsevier, UK.

 [5] Zhendong, S., Wassermann, G., The essence of

command injection attacks in Web applications,

SIGPLAN Notices, vol.41, no.1, Jan. 2006, pp. 372-

382., ACM, USA.

 [6] Thuraisingham B., Clifton C., Gupta A., Bertino E.,

Ferrari E., Directions for Web and e-commerce

applications security., Proceedings Tenth IEEE

International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises. WET

ICE 2001 . IEEE Comput. Soc. 2001, pp. 200-204.

Los Alamitos, CA, USA.

 [7] Scott D., Sharp R., Specifying and enforcing

application-level Web security policies, IEEE

Transactions on Knowledge & Data Engineering.

15(4):771-783, 2003 Jul-Aug.

Developer's assurance in their products security

32%

48%

15% 5%

completely secure
mostly secure
neither secure nor insecure
mostly insecure

Solving security problems frequency

0% 20% 40% 60% 80% 100%

Unvalidated Input

Broken Access Control

Broken Authentication and
Session Management

Cross Site Scripting

Buffer Overflow

Injection Flaws

Improper Error Handling

Insecure Storage

Application Denial of Service

Insecure Configuration
Management

Security problems

Solving frequency

never
1 or 2 times
3 or 4 times
5 times

or more

http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJKKHDCLK00D&Search+Link=%22Thuraisingham+B%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJKKHDCLK00D&Search+Link=%22Clifton+C%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJKKHDCLK00D&Search+Link=%22Gupta+A%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJKKHDCLK00D&Search+Link=%22Bertino+E%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJKKHDCLK00D&Search+Link=%22Ferrari+E%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJOOCLELK00D&Search+Link=%22Scott+D%22.au.
http://gateway.ut.ovid.com/gw1/ovidweb.cgi?S=IDNJHKJOOCLELK00D&Search+Link=%22Sharp+R%22.au.

