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Abstract— We propose a modification of the existing algo-
rithm for computing the one-step robust sets for the discrete-
time piecewise affine (DTPWA) systems subject to additive
polytope-bounded uncertainties. In the old algorithm the
Minkowski set difference between a union of polytopes (the so-
called P-collection) and a polytope needs to be computed, which
in turn calls twice for the computation of the set difference
between a polytope and a P-collection. These set operations
become computationally very demanding with the increasing
number of polytopes in the P-collection and thus limit the
practical applicability of the algorithm. In this paper we pro-
pose a more efficient procedure that avoids explicit evaluation
of the Minkowski set difference. Our algorithm, on average,
significantly reduces the complexity of the computation. We
illustrate this on several examples of DTPWA systems for which
the maximal robust positively invariant set is computed.

I. INTRODUCTION

Discrete-time piecewise affine (DTPWA) models [1] are

a class of hybrid models [2] that are particulary useful in

practice due to their ability to approximate dynamic behavior

of nonlinear processes arbitrarily well. A DTPWA model

comprises several affine state-update equations (dynamics)

each of which is valid in a different polyhedral part of

the state-input space. In recent years these models have

been intensively studied and very useful tools (see Multi-

Parametric Toolbox (MPT) [3]) have been developed for

the off-line optimal controller synthesis and the DTPWA

model identification. However, some of the implemented

algorithms are not yet mature and there is still much space

(and opportunity) for improving the efficiency of the overall

computations. The overall objectives are to speedup the

computation and to obtain controllers which are suitable for

practical applications.

One of the most important objectives in control practice

is to keep the output of the system close to the desired

value under the presence of constraints and process-model

discrepancies, i.e. to synthesize a robust controller for a given

model. For DTPWA models, this is from a computational

point of view a very hard task. To simplify the computation,

the uncertainty is usually modeled as an additive polytope-

bounded entry in the state-update equation. One way of

guaranteeing robustness of the closed loop system (in a

receding horizon policy) is to solve the optimal control

problem with the robust controlled invariant set [4] included

as a terminal set constraint [5]. A robust controlled invariant
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set [6] for a DTPWA system subject to polytopic disturbances

is computed in an iterative procedure. At every iteration step

the one-step robust set [7] has to be computed. Because the

computation of the one-step robust sets has a direct impact

on the efficiency of the overall computation we looked into

the ways of improving its efficiency.

Two algorithms for the computation of the one-step robust

sets for a given set of (target) states Ω are reported in the

literature. One algorithm is based on projections and set

differences [8], [9] and the other is based on the Minkowski

set (Pontryagin) differences [6], [10]. The algorithm based

on projections allows the disturbance to be state-input depen-

dent, while the algorithm based on Minkowski set differences

is tailored for the additive polytope-bounded uncertainty. We

consider the case when Ω is given as a union of a finite num-

ber of non-overlapping polyhedra, i.e. Ω is a P-collection.

Such set shapes generally arise in the computation of robust

controlled/positively invariant sets for PWA systems when

the initial set for iterations is a polyhedron. Although both

proposed algorithms for obtaining one-step robust sets can be

compactly formulated, in the higher dimensional state-space

the underlying computation grows rapidly with the increasing

number of polyhedra in the P-collection Ω.

The main aim of this paper is to make those computations

more efficient with a new approach in computing the one-step

robust sets. Our method is based on the algorithm reported

in [10] that uses the Minkowski set difference to obtain

the appropriate target set for the one-step set computation

of the nominal (non-perturbed) system. In [10] the authors

show that in such a way computed one-step set is the same

as the one-step robust set. In our algorithm the appropriate

target set is not explicitly computed. It is rather presented

through the so-called admissible set (in which the state can

be) and forbidden set (in which the state must not be).

The one-step sets are then computed for both admissible

and forbidden sets and the set difference between them is

computed for each dynamic, thus producing the one-step

robust set. A comparative complexity analysis is performed

for both methods which shows that in the worst-case they

have the same complexity. However, we give arguments to

explain superiority of our approach in practice (as confirmed

in examples of computation of the maximal robust positively

invariant sets for randomly generated DTPWA systems).

The paper is structured as follows. In Section II we

introduce basic definitions and describe some of the set

operations that are used for the computation of the one-step

robust sets for DTPWA systems. In Section III we revise the

existing algorithm for the one-step robust set computation
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from [10] and analyze its computational bottlenecks, while

in Section IV we introduce our modified algorithm and

compare its worst-case complexity with the algorithm from

[10]. Finally, in Section V we compare performances of both

algorithms when computing the maximal robust positively in-

variant set for several randomly generated DTPWA systems.

II. BASIC DEFINITIONS AND SET OPERATIONS

In this section we introduce the notation and define some

set operations used throughout the paper.

A hyperplane, open half-space and closed half-space are

sets of the form {x ∈ R
n| hT x = k}, {x ∈ R

n| hT x < k}
and {x ∈ R

n| hT x ≤ k}, respectively, where h ∈ R
n,

k ∈ R. A set A that can be described as an intersection of a

finite number of half-spaces is called polyhedron. A bounded

and closed polyhedron is called polytope. Throughout this

paper a polytope A will be described in the so-called H-

representation

A = {x| HAx ≤ KA},

where each row of HAx ≤ KA, with HA ∈ R
m×n and

KA ∈ R
m, defines a single closed half-space (also known

as constraints). We say that the polytope A is in its minimal

representation if none of the constraints in HA and KA are

redundant (i.e. removal of any of them from HA and KA

would change the polytope). A P-collection is a union of a

finite number of polytopes.

Let A ⊆ R
n and B ⊆ R

n be two sets. The set complement

of A is a set Ac := {x ∈ R
n| x /∈ A}, set intersection A ∩

B := {x ∈ R
n| x ∈ A, x ∈ B}, set difference A\B := {x ∈

A| x /∈ B}, Minkowski set addition A⊕ B := {x + y| x ∈
A, y ∈ B} and Minkowski set (Pontryagin) difference A⊖
B := {x ∈ R

n| x+y ∈ A, ∀y ∈ B}. If 0 ∈ B, then A⊖B =
{x ∈ A| x+y ∈ A, ∀y ∈ B}. The set of interior points of A
is denoted with int(A). The convex hull of a set A, denoted

with convh(A), is the smallest convex set that contains all

the elements of A. The envelope of a P-collection P , env(P),
is a polyhedron obtained by collecting (i.e. intersecting) all

half-spaces Hi from polyhedra that define P for which Hc
i ∩

P = ∅. From definitions it follows that convh(P) ⊆ env(P).
For the set C ⊆ R

n × R
m the projection of C onto R

n is

proj
Rn(C) = {x ∈ R

n|∃u ∈ R
m : [xT uT ]T ∈ C}.

A. Set Difference With Polyhedral Sets

In the following section it will be shown that the set dif-

ference computation between a polytope and a P-collection

plays an important role in the overall complexity of the one-

step robust set computation. We briefly investigate complex-

ity of a set difference computation between a polytope A
and a P-collection B :=

⋃NB

i=1
Bi in R

n for the set difference

algorithm reported in [11] and currently used in MPT [3].

Let

A = {x ∈ R
n| HAx ≤ KA},

and

Bi = {x ∈ R
n| HBi

x ≤ KBi
}, i = 1, . . . , NB .

be the minimal H-representations of the polytopes involved.

Without loss of generality we can assume that Bi ⊆ A, for

all i = 1, . . . , NB . By borrowing the notation from [11], [3]

all inequalities from Bi that split A in two full-dimensional

sets are called active constraints. For the case when Bi ⊆ A
active constraints are all those constraints that define Bi and

do not participate in H-representation of A. Let c be the total

number of active constraints. An upper bound on the worst-

case complexity of computing A\B is (for more details see

[11])

O1

(

(

c

NB

)NB

)

, (1)

while the number of regions that describe the set difference

is bounded by

n
∑

i=1

(

c
i

)

∼ O2(c
n). (2)

B. Minkowski Set Difference With Polyhedral Sets

In [10] the authors describe a procedure for computing

the Minkowski set difference between a P-collection P and

a polytope Q, R = P ⊖Q, that follows the general relation

R = [Pc ⊕ (−Q)]c [6]. We repeat the main steps of that

procedure in the following algorithm.

Algorithm 1 ([10]): Minkowski set difference, R = P⊖
Q

1) R1 = convh(P) (or R1 = env(P));

2) R2 = R1 ⊖Q;

3) R3 = R1 \ P;

4) R4 = R3 ⊕ (−Q);

5) R = R2 \ R4.

Note that the Minkowski set difference operation in step

2 of Algorithm 1 is not problematic, since both R1 and

Q are polytopes and the Minkowski difference between

two polytopes can be easily computed [3]. Note also that

in the implementation of Algorithm 1 in [3] at all steps

only closures of sets are computed. Since the set difference

operation (such as the one in step 3 of Algorithm 1) in

general generates sets that are neither open nor closed this

may lead to the loss (or superfluous generation) of some

lower-dimensional sets from the set R.

In Algorithm 1 the set difference calculation between a

polytope and a P-collection is carried out twice (step 3 and

step 5). In most cases1 these are the most time consuming

parts of Algorithm 1. The set difference in step 5 of Algo-

rithm 1 in particular can be extremely time consuming since

the P-collection R4 is already a successor of a set difference

operation in step 3 (see (1)–(2)).

1That is in those applications where vertex enumeration of the polytopes
occuring within the Minkowski set addition is not problematic.
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III. THE ONE-STEP ROBUST SETS FOR DTPWA SYSTEMS

WITH POLYTOPIC UNCERTAINTIES

A DTPWA model with polytope-bounded uncertainty is

x+ = Aix + Biu + fi + w
if [ x

u ] ∈ Di, i = 1, . . . , s ,
(3)

where x ∈ R
n is the model state, x+ is the successor state,

u ∈ R
m is the control input, {Di}

s
i=1 is a non-overlapping

polyhedral partition of the state-input space R
n+m, Di =

{
[

xT uT
]T

∈ R
n+m| Hix + Liu ≤ Ki}, and w ∈ W ⊂ R

p

is the uncertainty with polytope W that contains the origin.

Note that constraints on states and inputs may be included in

the descriptions of all Di. Equation (3) is compactly denoted

with

x+ = f(x, u, w). (4)

If the control law is an a-priori fixed PWA function over

polyhedra [11] we consider the DTPWA model of the closed-

loop control system with the bounded uncertainty

x+ = Acl
i x + f cl

i + w if x ∈ Dcl
i , (5)

where {Dcl
i }

scl

i=1 is a non-overlapping polyhedral partition of

the state space, Dcl
i = {x ∈ R

n| Hcl
i x ≤ Kcl

i } . We write

(5) in a more compact form

x+ = f cl(x,w). (6)

Let Ω ⊂ R
n be a set represented with a non-overlapping

P-collection. For the mapping f the one-step robustly con-

trollable set of Ω in the space of interest X ⊆ R
n is defined

as

pre(Ω, f)X , {x ∈ X|∃u, f(x, u, w) ∈ Ω ∀w ∈ W}. (7)

For the mapping f cl the one-step robust pre-set of Ω in the

space of interest X ⊆ R
n is defined as

pre(Ω, f cl)X , {x ∈ X|f cl(x,w) ∈ Ω ∀w ∈ W}. (8)

For the following exposition we also define the (nominal)

one-step sets. A (nominal) one-step controllable set of Ω for

f in the space of interest X is

pre(Ω, f)0
X

, {x ∈ X|∃u, f(x, u, 0) ∈ Ω} =
⋃s

i=1
{x ∈ X|∃u, [xT uT ]T ∈ Di, Aix + Biu + fi ∈ Ω},

(9)

while the (nominal) one-step pre-set of Ω for f cl in the space

of interest X is

pre(Ω, f cl)0
X

, {x ∈ X|f cl(x, 0) ∈ Ω} =
⋃scl

i=1
{x ∈ X ∩ Dcl

i | Acl
i x + f cl

i ∈ Ω}.
(10)

Note that in this paper we use the term one-step robust

set when we want to refer both to the one-step robustly

controllable set and to the one-step robust pre-set. Similarly

a term one-step set denotes both one-step controllable set

and one-step pre-set.

We focus on the algorithms proposed in [10] for com-

puting the one-step robustly controllable set of Ω and f
(Algorithm 5.1. in [10]), and computing the one-step robust

pre-set of Ω and f cl (Algorithm 4.1 in [10]), which is also

the current implementation in the MPT [3].

Algorithm 2 ([10]): One-step robustly controllable set

1) Ω+ = Ω ⊖W
2) pre(Ω, f)X = pre(Ω+, f)0

X

Problem of finding the nominal one-step controllable set

in step 2 of the algorithm is in most cases of negligible

computational complexity compared to the step 1 where

the Minkowski set difference needs to be computed. Step 2

takes only several Linear Programs (LP) and one projection

computation.

Algorithm 3 ([10]): One-step robust pre-set

1) Ω+ = Ω ⊖W
2) pre(Ω, f cl)X = pre(Ω+, f cl)0

X

Remark 1: Note that the resulting P-collection obtained

in step 2 of Algorithm 3 is non-overlapping, while the P-

collection obtained at step 2 of Algorithm 2 may in general

contain overlaps which possibly need to be eliminated for

simplification of further computations with the obtained set.

IV. EFFICIENT COMPUTATION OF THE ONE-STEP

ROBUST SETS

Since Minkowski set difference between a P-collection

and a polytope is computationally demanding, we propose

a procedure to avoid its explicit computation, aiming at

the simplification of the computationally demanding set

differentiation in step 5 of Algorithm 1.

For the Minkowski set difference P ⊖ Q, where P is

a P-collection and Q a polytope we define an admissible

polytope Pa and a forbidden P-collection Pf such that

P ⊖Q = Pa \Pf . Sets Pa and Pf are obtained by running

steps 1-4 of Algorithm 1. The proposed procedure for one-

step robustly controllable set computation is given in the

following algorithm.

Algorithm 4: One-step robustly controllable set

1) run steps 1–4 of Algorithm 1 for computing Ω ⊖W .

Let Ωa = R2, Ωf = R4 =
⋃Nf

j=1
Ωf

j ,

where Ωa and Ωf
j , j = 1, . . . , Nf are polytopes with

the property

Ωa \ Ωf = Ω ⊖W; (11)

2) for each dynamics i = 1, . . . , s compute
Ωa+

xu,i = {[xT uT ]T ∈ Di|
x ∈ X, Aix + Biu + fi ∈ Ωa},

Ωf+

xu,i,j = {[xT uT ]T ∈ Di|

x ∈ X, Aix + Biu + fi ∈ Ωf
j },

j = 1, . . . , Nf ,

Ωf+

xu,i =
⋃Nf

j=1
Ωf

xu,i,j ;
3) for each dynamics i = 1, . . . , s compute

Ψxu,i = Ωa+
xu,i \ Ωf+

xu,i (12)

to finally obtain

Ψxu =

s
⋃

i=1

Ψxu,i (13)

Ψ = proj
Rn Ψxu (14)
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In the following lemma we prove that the results of Algo-

rithm 2 and Algorithm 4 are the same.

Lemma 1:

Ψ = pre(Ω, f)X. (15)

Proof: Since regions Di do not intersect, polytope Ωa+
xu,i

does not intersect Ωf+

xu,j for i 6= j and the following holds:

Ψxu =

s
⋃

i=1

Ωa+
xu,i \ Ωf+

xu,i =

s
⋃

i=1

Ωa+
xu,i \

s
⋃

i=1

Ωf+

xu,i.

From respective definitions we see that

⋃s

i=1
Ωa+

xu,i \
⋃s

i=1
Ωf+

xu,i =

{[xT uT ]T | x ∈ X, f(x, u, 0) ∈ Ωa}\
\{[xT uT ]T | x ∈ X, f(x, u, 0) ∈ Ωf} =
{[xT uT ]T | x ∈ X, f(x, u, 0) ∈ Ωa \ Ωf} =
{[xT uT ]T | x ∈ X, f(x, u, 0) ∈ Ω+}.

Ψ = proj
Rn(Ψxu) =

{x ∈ X| ∃u f(x, u, 0) ∈ Ω+} = pre(Ω, f)X.

2

Analogously we pose the algorithm for computation of the

one-step robust pre-set.

Algorithm 5: One-step robust pre-set

1) execute step 1 of Algorithm 4

2) for each dynamics i = 1, . . . , scl compute

Ωa+
i = {x ∈ Dcl

i ∩ X | Acl
i x + f cl

i ∈ Ωa}, (16)

Ωf+

i,j = {x ∈ Dcl
i ∩X | Acl

i x+f cl
i ∈ Ωf

j }, j = 1, . . . , Nf

(17)

Ωf+

i =

Nf

⋃

j=1

Ωf+

i,j ; (18)

3) for each dynamics i = 1, . . . , scl compute

Ξi = Ωa+
i \ Ωf+

i (19)

to finally obtain

Ξ =
scl

⋃

i=1

Ξi; (20)

Similarly as before we can show that the following holds.

Lemma 2:

Ξ = pre(Ω, f cl)X. (21)

Proof: Analogous to the proof of Lemma 1.

Now, let us compare the computational complexities of

Algorithm 3 and Algorithm 5. Here the comparison is

analogous, but somewhat simpler than between Algorithm

2 and Algorithm 4. Given Ω and W , both algorithms

enter Algorithm 1 for Minkowski set difference calculation.

Algorithm 3 passes all the steps 1-5 to compute Ω ⊖ W
while Algorithm 5 computes Ωa in step 2 and Ωf in step 4

of Algorithm 1.

Consider now the situation after step 4 of Algorithm 1

when Ωa and Ωf are computed. Until that moment, both

algorithms run identically and after it they discourse. Ωa is

a polytope, and Ωf a P-collection consisting of polytopes

Ωf
j , j = 1, . . . , Nf , all the polytopes are in the minimal

representation:

Ωa = {x| HΩax ≤ KΩa}, (22)

Ωf
j = {x| H

Ω
f
j

x ≤ K
Ω

f
j

}. (23)

For the set difference Ωa \ Ωf suppose that there are c
active constraints among those defining Ωf

j . The worst-

case complexity of the set difference algorithm in step 5

of Algorithm 1 is thus O1

(

(

c
Nf

)Nf
)

. Moreover, in the

worst case the number of polytopes in the resulting P-

collection Ω ⊖ W = Ωa \ Ωf is proportional to cn, where

n is the dimension of the state-space. Finally, to compute

the set pre(Ω, f cl)X, one needs to find the nominal one-

step pre-set for Ω ⊖W which is generally not problematic,

but still the number of polyhedra in Ω ⊖ W could be

large and complicate the computation. Thus, the worst-case

computational complexity of Algorithm 3 after the proposed

and the existing algorithm discourse is

O1

(

( c

Nf

)Nf)

+ sclO3 (cn) , (24)

where O3(a) denotes the complexity of computation of the

nominal one-step pre-set of a polyhedra for an affine model.

After finishing step 4 of Algorithm 1, the proposed al-

gorithm proceeds directly to compute the nominal one-step

pre-sets Ωa+ and Ωf+ . According to (16) and (17), for

each dynamics i polytopes Ωa+
i and Ωf+

i,j , j = 1, . . . , Nf

are computed at the cost of O3(N
f + 1) number of LPs:

Ωa+
i =

{

x|

[

Hcl
i

HΩaAcl
i

]

x ≤

[

Kcl
i

KΩa − HΩaf cl
i

]}

,

Ωf+

i,j =

{

x|

[

Hcl
i

H
Ω

f
j

Acl
i

]

x ≤

[

Kcl
i

K
Ω

f
j

− H
Ω

f
j

f cl
i

]}

,

Ωf+

i =
⋃Nf

j=1
Ωf+

i,j ,

and the set pre(Ω, f cl)X is according to Lemma 1:

pre(Ω, f cl)X =
scl

⋃

i=1

Ωa+
i \ Ωf+

i . (25)

In the new algorithm after the discourse scl polytope–P-

collection set differences need to be computed to finally

obtain pre(Ω, f cl)X as their union. It is trivial to show that

for the number of full-dimensional Ωf+

i,j , Nf+

i , the following

holds:

Nf+

i ≤ Nf , ∀i. (26)

For the number of active constraints in the i-th set difference

of (25), ci, the following lemma holds for each i.
Lemma 3:

ci ≤ c. (27)

Proof: Consider relations (22) and (23) defining poly-

topes Ωa and Ωf
j . Recall that all H-representations are

minimal. Without loss of generality, suppose that Ωf
j ⊆ Ωa
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(i.e. every Ωf
j is already intersected with Ωa), such that active

constraints are those constraints in Ωf
j , j = 1, . . . , Nf that

are not equal to any constraints defining Ωa. Their overall

number is c. Now consider the number of active constraints

in Ωa+
i \ Ωf+

i . Note that Ωf
j ⊆ Ωa causes

Ωf+

i,j ⊆ Ωa+
i , ∀j. (28)

In the following with [H,K] we denote the set of constraints

in Hx ≤ K. None of the constraints in [Hcl
i ,Kcl

i ] cannot be

active for Ωf+

i,j . Namely, since those constraints are common

for Ωf+

i,j and Ωa+
i , those that are redundant in describing

Ωa+
i are definitely redundant for Ωf+

i,j due to the subset

property given in (28). Following this, only those constraints

in [Hcl
i ,Kcl

i ] that enter the Ωa+
i minimal description may

enter Ωf+

i,j minimal description – none of them is thus active.

Now consider constraints in [H
Ω

f
j

Acl
i ,K

Ω
f
j

−H
Ω

f
j

f cl
i ]. For

Ωa\Ωf , c constraints among [H
Ω

f
j

,K
Ω

f
j

], j = 1, . . . , Nf , are

different compared to [HΩa ,KΩa ] (active constraints). Now,

both [HΩa ,KΩa ] and [H
Ω

f
j

,K
Ω

f
j

] are transformed using the

same transformation with Acl
i and f cl

i , and thus again exactly

c of them are different. Some of those c constraints in

[H
Ω

f
j

Acl
i ,K

Ω
f
j

−H
Ω

f
j

f cl
i ] may have become redundant mak-

ing ci drop. Additionally those constraints from [HΩa ,KΩa ]
that were equal to some constraints in [H

Ω
f
j

,K
Ω

f
j

] and

that became redundant after the transformation are definitely

redundant in [H
Ω

f+

j

,K
Ω

f+

j

] due to the subset property (28)

and thus ci cannot become larger than c. 2

The worst-case complexity of the proposed algorithm after

the discourse is

sclO3

(

Nf + 1
)

+

scl

∑

i=1

O1





(

ci

Nf+

i

)N
f+

i



 (29)

and is thus similar to the old algorithm if all ci equal c and

all Nf+

i equal Nf . Still, our motivation is that this rarely

happens, especially in computationally demanding higher-

order problems with bigger scl, since for certain dynamics i
(i) many of the regions Ωf+

i,j are empty, i.e. Ωf
j are not one-

step reachable using dynamics i making both Nf+

i and ci

drop and (ii) some active constraints in Ωf
j become redundant

after their linear transformation using Acl
i and f cl

i . The

strategy we propose has thus a ’divide-and-conquer’ nature

where the problem of finding a set difference in target sets

is moved to nominal pre-sets and divided by dynamics with

benefits in number of polytopes and active constraints in

those set differences.

Similar computational benefits may be observed in Algo-

rithm 4 compared to 2. It should only be noted that the set

differences between pre-sets are this time for the proposed

algorithm carried out in R
n+m and for the existing one in

R
n. Analogous claims on the dropping number of regions

Nf+

i and active constraints ci still hold.

V. APPLICATION TO THE ROBUST INVARIANT SET

COMPUTATION – A COMPARATIVE STUDY

The computation of the one-step robust set is the atomic

part of the iterative procedure to compute a robust invariant

set for the given DTPWA system. The computation of

maximal robust controlled invariant set inside a predefined

set X ⊂ R
n [4] for the system f given in (4) follows [10].

Algorithm 6: Maximal robust controlled invariant set

inside X

1) Ω0 = X, k = 0;

2) Ωk+1 = pre(Ωk, f)X;

3) if Ωk = Ωk+1 return Ωk, else k = k + 1 and goto 2.

For the given closed-loop DTPWA model the maximal robust

positively invariant (MRPI) set inside a presumed set X ⊂
R

n [4] for the system f cl given in (6) can be computed in

the following way.

Algorithm 7: Maximal robust positively invariant set

inside X

1) Ω0 = X, k = 0;

2) Ωk+1 = pre(Ωk, f cl)X;

3) if Ωk = Ωk+1 return Ωk, else k = k + 1 and goto 2.

We compare the performances of the old and the proposed

method for one-step robust pre-sets computation on several

examples of the computation of the MRPI sets for au-

tonomous PWA systems subject to additive uncertainty. The

autonomous PWA system is formed in the following way.

For the randomly generated PWA system in each dynamics

an mpQP is solved to find a PWA control law [11] that

minimizes the offset of the system state from the origin at

the next sampling instant.

A. Example 1

We test the new and the existing method on the problem

of computing the MRPI set for the autonomous DTPWA

system. The computation times2 for both methods for 3
randomly generated DTPWA systems in 3D (with 72, 65 and

90 affine dynamics, respectively) are reported in Figure 1.

DTPWA systems were generated in X =
{x | ‖x‖∞ ≤ 10} box. In examples 1.1. and 1.2. the

uncertainty polytope was chosen ‖w‖∞ ≤ 0.5 and the

resulting MRPI set is an empty set. This explains why

the computation times in the last iteration for those two

examples are similar for both methods. In earlier iterations

the computational gain (speedup) of the new algorithm

is in the range from 2 to 10. In example 1.3. we use

a smaller uncertainty polytope (‖w‖∞ ≤ 0.05) and the

full-dimensional MRPI set is generated. Computational gain

through iterations in this case ranges from 10 to 50. To

get a better idea of the overall speedup for this particular

example the MRPI set is computed within 15 minutes with

the new method, while the old method requires more than

11 hours of computation.

2Pentium IV, 2.4 GHz, using MPT 2.5 with NAG LP solver within Matlab
7.1 on Windows XP.
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(a) Example 1.1.
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(b) Example 1.2.
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(c) Example 1.3.

Fig. 1. MRPI set computation times through iterations for three randomly generated 3D PWA systems.

B. Example 2

We compare two methods of the one-step robust set

computation on a 4D DTPWA system consisting of 13 affine

dynamics, with X = {x | ‖x‖∞ ≤ 10} and ‖w‖∞ ≤ 0.01.

Computation times are reported in Figure 2. The iterations

with k = 0 have similar computation times since the initial

partition X of the model is convex resulting in X⊖W being

a single polytope and Ωf = ∅. The data for the old method

are not available for k ≥ 2 because the algorithm did not

finish computation with k = 2 even after 7 days. The new

algorithm ended in about 13 minutes with k = 3, resulting

in the MRPI set consisting of 115 polytopes. Clearly, the
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Fig. 2. Computation times in Example 2.

computational benefits of the new algorithm become more

and more obvious as the problem gets more complicated,

i.e. as the state-space dimension and/or the number of affine

dynamics grow.

VI. CONCLUSION

We consider discrete-time piecewise affine (DTPWA)

systems subject to polytope-bounded uncertainty. For such

systems we propose an efficient procedure for computation

of the one-step robust sets for target sets that can be

represented as union of polytopes (P-collection). Unlike the

existing algorithm our procedure avoids explicit computation

of the Minkowski set difference between a P-collection and

a polytope – a computationally demanding task comprising

two polytope–P-collection set difference computations in

a row. The worst-case computational complexities of the

existing and the new method are comparable. However, we

show that the number of polytopes and active constraints

for the second set difference may only decrease with the

proposed method, thus making it superior in practice. The

computational benefits get more and more obvious as the

state-space dimension and/or the number of affine dynamics

in the model get higher. We illustrate this by comparing

both methods on several examples of the maximal robust

positively invariant set computation for randomly generated

DTPWA systems.
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[9] S. V. Raković, E. C. Kerrigan, D. Q. Mayne, and J. Lygeros, “Reach-
ability analysis of discrete-time systems with disturbances,” IEEE

Transactions on Automatic Control, vol. 51, no. 4, pp. 546–561, April
2006.
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[11] M. Baotić, “Optimal Control of Piecewise Affine Systems
– a Multi-parametric Approach,” Ph.D. dissertation, Automatic
Control Laboratory, Swiss Federal Institute of Technology, Zurich,
Switzerland, Physikstrasse 3, CH-8092 Zurich, Mar. 2005. [Online].
Available: http://control.ee.ethz.ch/index.cgi?page=publications

TuC06.5

1435


