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Abstract— In this paper we describe a new version of our 
distributed network emulator that extends an existing kernel 
level emulator called IMUNES. IMUNES is based on a 
lightweight virtual machine concept and performs zero copying 
when packets traverse through the emulated topology. It works 
on a modified FreeBSD kernel and enables emulated nodes to 
use the standard UNIX applications. The main strengths of this 
tool are scalability, performance and high fidelity. We are 
developing a distributed network simulation to further increase 
the scalability by allowing parts of emulation to be deployed 
across a peer-to-peer emulator cluster. The decentralized 
management of the emulator cluster improves availability and 
robustness of the system. We provide support for a multi-user 
and multi-experiment environment to maximize the benefit 
from newly increased resources.  

Distributed emulation, scalability, clustering 

1. INTRODUCTION 
In network emulations the demands for resources are rising 

with the complexity of the emulated network. The resources 
available on only one machine are imposing the limit on 
scalability. As a result of dealing with this problem many 
powerful network emulators are designed as distributed 
systems [1], [9] and [11].  

IMUNES is a network emulator that offers high scalability, 
performance and fidelity. Designing a distributed emulator 
based on IMUNES pushes the limits of scalability even 
further. IMUNES is a topology specification, management 
and GUI application. Core of IMUNES network emulation 
facility are kernel level lightweight virtual machines available 
in modified FreeBSD kernel. Distributing the simulation 
based on IMUNES implies the separation of topology 
specification and GUI application from the management 
utility, and extending management utility to provide the 
support for distributed simulations. 

Our distributed simulator works on a cluster and fulfills the 
following: 

• Improved scalability – this is the most important 
demand. We expect the scalability to improve 
proportionally to the number of distributed hosts. 

• Improved robustness – the state of the cluster is kept 
up-to-date on each host in the cluster. Even in the 
case of a failure of any host in the cluster the state of 
the cluster remains available and accurate. 

• Improved utilization – all the available resources of 
the cluster should be used in an efficient manner. 
This means allowing more than one person to use the 

cluster, and to emulate more than one topology at a 
time.  

• Improved portability – allowing user operating on 
some other OS, to use the IMUNES emulation 
capabilities. 

• Keeping the performance – we are preserving the 
simulation properties even in the case when the 
simulation is distributed among the hosts in the 
cluster. 

• Improved availability – we are providing remote 
access to the cluster. 

We have studied the centralized architecture that is used in 
some other distributed emulators [1] and [11], but in the end 
we decided to go for a peer-to-peer cluster. Our goal is to 
show that the proposed distributed network emulator is a 
powerful tool for simulation of large networks. 

For distributing the topology we used standard graph 
partitioning methods also used graph partitioning methods like 
in [13]. 

The rest of this article is organized as follows: in the second 
section we give an introduction to IMUNES, its building 
blocks, kernel structures and the properties. The distributed 
architecture in presented in the third section. In the fourth 
section are the results and the conclusion, whereas the future 
work is described in fifth section. Related work is presented in 
the last, sixth section.  

2. RELATED WORK 
Many existing network emulators are designed as 

distributed systems. This is partially because the network 
emulation is very resource demanding so the need for higher 
scalability provoked design of the distributed emulators that 
provide more resources and the new resources can easily be 
acquired.  

The architecture of ModelNet [9] consists of highly 
connected router core and edge nodes. In the smallest variant 
of the cluster the user needs at least two machines; one for a 
core router and one for an edge node. ModelNet is used for 
emulating internet like topologies through the set of pipes. 
The virtual machines that are the sources and the sinks of the 
ModelNet traffic are implemented in user space and reside on 
the edge nodes. The packets going from one host to another 
are using routes calculated in advance so no IP level routing is 
present, nor is dynamic routing available. IMUNES offers the 
traffic shaping ability as well, providing the same zero 
copying for the packet when it traverses the network but it 
also gives the opportunity for per hop and dynamic routing.  



 PlanetLab [1] also uses kernel level virtual machines. The 
management and slice authority (slice is a part of PlanetLab 
resources assigned to one experiment) are currently 
centralized and bind together, and on our distributed emulator 
management utility is distributed among all the cluster nodes. 
The IMUNES cluster concept currently is designed to operate 
only on a local network, where as PlanetLab does not have 
that kind of restriction. IMUNES offers private standard 
network variables for each emulated node, whereas PlanetLab 
nodes use raw sockets bind to certain ports for network 
virtualization. On each node in PlanetLab only one VM per 
user per experiment can be allocated. 

NetBed [11] is designed as a large cluster of PC-s running 
FreeBSD or Linux operating systems for emulating large 
complex networks. The experiment is deployed using 
geographically distributed machines and links. WLAN links 
that can not be emulated by real links are emulated using 
dummynet traffic shapers. It has the centralized management 
utility.  

 

3. IMUNES 

3.1 Operating system support 
IMUNES uses GUI for topology specification. For 

emulation, IMUNES provides a management utility that is 
responsible for mapping from GUI level object to kernel level 
objects. The kernel level objects used for emulation are virtual 
machines and netgraph nodes [5]. The virtual machine (VM) 
support is implemented in kernel space, unlike the support 
presented in [10]. The drawback of user level VM support is 
that for each emulated packet the user space network emulator 
has to pass the packet to the kernel by performing data 
copying and context switching, and the good side is the 
increased portability since a user level VM would work on 
heterogeneous operating systems. Our support for VM-s is 
implemented as a modification of a kernel and offers the full 
functionality of standard FreeBSD system. This modification 
does not degrade the working speed of the hosting FreeBSD 
system [14]. Virtual machines are interconnected in kernel 
space, so the packet traverses the network topology entirely in 
kernel space (Figure 1. ). Passing the packet form one virtual 
machine to another is based on pointer forwarding and thus 
provides zero copying.  

Virtual machines used in IMUNES are based on the 
clonable network stack and are accessible through the vimage 
utility. A clonable network stack is used to create a new 
network stack for each new virtual machine. This means that 
each VM has private network resources like routing table, 
network interfaces, network sockets, etc. Each VM also has a 
group of associated user space processes (BSD jail [2]), 
private CPU scheduling parameters and CPU usage 
accounting.  

Vimage utility is used for crating and managing the virtual 
machines, while for connecting VMs we use the netgraph 
interconnection framework [5]. The netgraph nodes work in 
the kernel space just below the device drivers and just above 
the link layer processing. IMUNES management utility is 

used for mapping the user specified topology to the virtual 
machines and netgraph nodes. 

 

 
Figure 1.  a) Traditional virtualization model (packet going from VM#1 

to VM#2 is copied from user space to kernel space and vice versa) b) 
Lightweight virtualization model (Pointer to the packet is passed from 

VM#1 to VM#2) 

3.2 IMUNES topology 
IMUNES uses a GUI for drawing and viewing the desired 

network topology. The topology in IMUNES consists of two 
basic units: nodes and links. Nodes can exist independently, 
whereas links always connect two different nodes. 

Nodes are further classified into link layer nodes and 
network layer nodes.  

Link layer nodes are LAN switch, hub and physical 
interface and they provide just link layer functionality 
(passing the packet or dropping a packet). They are not 
implemented as virtual machines; they are just netgraph 
nodes.  

Network layer nodes are the ones capable of network layer 
processing, and they are the nodes that are implemented in 
kernel as virtual machines. The IMUNES network layer nodes 
are host, PC and router. Network layer nodes have their own 



instance of TCP/IP stack and they provide the full 
functionality of FreeBSD system. The difference between 
network layer nodes is in the booting process. The Host and 
PC do not forward packets and the routes are static, whereas 
the router is capable of packet forwarding using the routes 
obtained by dynamic routing protocols available through 
quagga [7] or xorp [12]. The Host normally starts standard 
network services, via inetd, unlike the PC. On virtual network 
layer nodes a UNIX shell can be opened and any available 
application can be started (Figure 2. ). 

 
Figure 2.  Standard UNIX shell opened for network layer nodes 

In IMUNES GUI only one link between any two nodes can 
be created. By default they present Ethernet type links, but 
support for serial links is also available. All links are 
presumed to be full duplex.  Links are mapped to netgraph 
nodes as well as link layer nodes. The mapping between the 
topology and the appropriate kernel structures can be seen on 
the Figure 3.  

Apart from just creating nodes and links in IMUNES, their 
properties can also be changed through the GUI. In this way 
we can emulate a network in which some nodes start DNS 
services and others start web severs, some links have high 
BER and some links have low bandwidth. The availability of 
standard network applications in IMUNES nodes and the 
network emulation provides a way for IMUNES to be used as 
a replacement for a general purpose testbed. 

3.3 IMUNES properties 
IMUNES is an acronym from an Integrated Multiprotocol 

Network Emulator/Simulator. Multi-protocol part of the 
IMUNES name is justified by the support for emulation of 
IPv4 and IPv6 traffic (in early stages even IPX) and the 
support for diverse routing protocols including the support for 
multicast routing using xorp [12].  

The high scalability in IMUNES is achieved by using 
lightweight virtual machine model that does not drain the 
resources of the hosting machine [14]. The scalability is 
further improved by passing the packets from one VM to 
another simply by passing the packet pointer.  

 
Figure 3.   

The fidelity is increased by the fact that all virtual machines 
are residing in the kernel, so passing a packet uses real system 
calls that are processed in only one context switching, the one 
form a user process to the kernel.  

In IMUNES network layer nodes all standard UNIX 
applications and FreeBSD kernel calls are available, so the 
process of deploying a new network protocol tested on 
IMUNES is straightforward and does not require 
modifications of the code. 

IMUNES is developed as open source project under GNU 
license, and is available form [3]. 

4. DISTRIBUTED EMULATOR 

4.1 Architecture of the distributed system 
The architecture of the distributed emulator is presented on 

the Figure 4. We have divided the IMUNES into a client part 
and a cluster part of the application. The client host keeps the 
client part. This part is platform independent since it is written 
in Tcl/Tk [8]. The experiment deployment is made on the 
cluster so that the client must know the IP address of at least 
one host in the cluster, the cluster host he will communicate 
with.  



The cluster part is realized as a peer-to-peer cluster, where 
any cluster host maintains the constant TCP sessions with all 
the other hosts in the cluster. 

When connecting to the cluster the client sends his user 
name for authorization. If the authorization passes the user can 
create a new experiment and view or modify the existing one.  

 
Figure 4.  The architecture of the distributed system 

The communication between the user and the cluster can be 
in clear text or encrypted. For the encryption SSH port 
forwarding mechanism with key authentication is used.  

Client and cluster are communicating by sending messages. 
In most cases the messages represent commands from client to 
server for controlling the deployed experiment. The 
experiment in distributed IMUNES represents network 
topology that belongs to a specific user. User can have more 
than one experiment deployed at the same time. On the cluster 
a check is introduced to unable the user to change experiments 
belonging to others.  

4.2 Cluster architecture 
In the process of designing the cluster architecture we have 

considered centralized and a peer-to-peer cluster. While 
centralized approach would provide simpler management, it 
has inherent drawback that if the central host goes down the 
whole cluster goes down as well. So we decided to design our 
cluster as a peer-to-peer cluster, having two TCP connections 
between any two hosts in the cluster. This strong connectivity 
provides an efficient way of early finding that the host is 
down and it provides the way of monitoring the state of a 
cluster hosts. Any two cluster hosts are connected by two TCP 
connections providing a support for a bidirectional 
asynchrony communication, where each cluster host uses one 
dedicated connection for issuing the commands and receiving 
the results and acknowledges. 

All hosts in the cluster are equal and all of them have to 
keep the state of the cluster. The state of the cluster constitutes 
of: 

• List of all hosts available in the cluster and their 
loads, 

• List of all the users in the cluster, 
• List of all the VLAN identifiers used, 
• List of all the experiments. 

Each host in the cluster knows IP addresses and interface 
names of all the hosts in the cluster. Host additionally keeps 
the information about his client sockets used for 
communication with other hosts and his own identifier. 

Each user in the cluster has a defined user name, and a list 
of all experiments belonging to that user. The user name must 
be unique and one experiment can belong to only one user.  

VLAN (IEEE 802.1Q) identifiers are used for a link 
emulation that goes through the physical link. By using 
VLAN-s we are restricting the cluster to operate only on local 
area networks. The number of VLAN-s available on the 
network is limited, so only a finite number of emulated links 
can be deployed on top of the physical links. This limitation 
does not represent a problem since the number of VLAN-s is 
sufficient for any normal use of the cluster. The VLAN 
identifiers list keeps the track of all the used VLAN-s. We 
chose to use VLAN mechanism since adding a VLAN tag is 
not an expensive action with respect to processor time and 
memory used and adding a VLAN tag does not cause 
fragmentation of Ethernet frame.  

The information about experiment include the experiment 
topology, the experiment starting time, the list of hosts on 
which experiment parts are executed and a list of used VLAN 
identifiers. Keeping the information about each experiment 
provides the support for multiexperiment system. The 
experiment in our distributed emulator presents a new 
building block. 

4.3 Distribution of an experiment 
The user experiment could be deployed on only one host in 

the cluster, but this would not increase the scalability. The 
idea is to allow the user to create a huge experiment and 
divide it so that each part of the experiment can be deployed 
on different host in the cluster. Dividing of topology can be 
done manually or automatically. For automate division the 
standard graph partitioning algorithms available through 
METIS [4] are used. This approach has been used also in 
some other network emulators [13]. We have constructed a 
graph from IMUNES topology in order to provide adequate 
input for METIS. This topology to graph mapping and all the 
preprocessing and postprocessing steps used are described in 
[6]. The resulting partitions can be further refined manually. 

Partition identifier is assigned to each node in the topology. 
Links that are connecting nodes in different partitions are 
marked with local VLAN identifiers. The use of VLAN 
identifiers is justified by the fact that different experiments 
can use the same IP address space. Simple passing on to the 
network the packets as they are sent from originating nodes 
could cause the interference between different experiments. 
By using different VLAN identifier for any link connecting 
nodes simulated on different cluster hosts we have 
successfully removed any possibility of interference between 
different experiments.  

On the distributed emulator all the nodes are deployed as 
they would be on normal IMUNES. Only exceptions are the 
links connecting nodes on different cluster hosts. Packets 
traversing this type of links are really going through the 
physical link that connects cluster hosts. The problem that 
occurs is how to simulate the properties of that link, so we 
used emulated links for traffic shaping on both cluster hosts. 
The control of the emulated properties, like bandwidth, is 
enforced before the packet leaves the cluster host and goes to 
the network. The delay is uniformly distributed on both 



emulated links. Shaping of the links connecting nodes 
deployed on different cluster hosts is presented on Figure 5.  

4.4 Properties of the distributed emulator 
1) Scalability 
The scalability of distributed IMUNES proportionally 

increases with the number of hosts in the cluster. By 
distributing the topology over the cluster we are using the 
resources of all cluster hosts. In the distributed emulation the 
number of kernel structures created remains the same as it 
would be if the emulation was executes on one machine. The 
only exceptions are links that connect nodes employed in 
different cluster hosts, for this type of links we use two kernel 
structures instead of just one. 

The resources necessary for managing the cluster will 
increase with the number of hosts in the cluster, but we do not 
expect this rise to affect the emulation capabilities of the 
cluster since the cluster management utility is designed as a 
simple, resource undemanding application.  

As a result we expect for the emulation to scale accordingly 
to the number of hosts in the cluster and their cumulative 
resources.  

 
Figure 5.  The traffic shaping direction of links that connect nodes deployed 

on different cluster hosts. 

The limit on scalability still remains since we use VLAN 
identifiers that limit the cluster to be deployed only on LAN. 
But viewed from other perspective the employment of the 
cluster over the LAN provides faster links that increase the 
emulation capacity for the links that connect virtual nodes on 
different cluster hosts. It also provides easier maintenance of 
the cluster. 

2) Robustness 
We have achieved robustness by introducing redundancy in 

the system. The state of the cluster is maintained on each host 
in the cluster, so when one host in the cluster goes down the 
whole cluster doesn’t suffer the consequences. Since the state 
of the cluster keeps the information of all the executed 
experiments, after the host fails the rest of the cluster knows 
which experiments, or parts of experiments are lost. 

In the future we could offer the possibility of reassigning 
the parts of the topology that ware executed on a host that 
went down to another host or hosts in the cluster. This doesn’t 
mean restoring the state of the experiment in the time of the 

failure; it just means restoring the state to the initial 
experiment state for that part of the experiment. 

3) Utilization 
When we talk about utilization we are primary thinking on 

improving the usability of available resources. So we designed 
a multiuser and multiexperiment support. Each user can 
access the cluster for execution of his experiments. The 
multiexperiment support means that different users can have 
different experiments (network topologies) and that one user 
can have many experiments. All this experiments can run at 
the same time on the cluster. Utilization of the cluster is 
further increased by the separation of client and cluster 
utilities. Client side can reside on the same machine as the 
cluster, but it can also be physically placed anywhere as long 
as it has a network connection to the cluster. 

4) Portability 
The portability is increased by separating client part and a 

cluster part of our distributed emulator. The client part is 
platform independent and provides an opportunity for users 
that do not work on modified FreeBSD kernel to use 
IMUNES emulation capabilities simply by accessing the 
cluster. The portability of IMUNES is currently increased by 
the use of VMware images and bootable CD.  

5) Performance 
We are trying to keep the performance of this distributed 

emulator in the same range as for IMUNES: This means 
providing the same scalability on the cluster hosts, and 
accurately emulating all the links that are going through the 
real links. The scalability is already discussed, so let us focus 
on the accurate emulation of links that connect nodes 
emulated on different cluster hosts.   

Links connecting nodes residing on different cluster hosts 
are modeled for keeping the performance. The bandwidth 
check is performed before traffic reaches the physical link 
assuring that all the links that are using the same physical link 
receive the promised amount of bandwidth. The compensation 
for passing the emulated traffic through a real network is part 
of the future work and that’s way we base our cluster on LAN.  

6) Availability 
Compared to centralized management peer-to-peer cluster 

offers higher availability. The four aspects of availability are 
improved. First, the user can connect to any host in the cluster 
to execute his experiments. Second, for a cluster to fail all the 
hosts in the cluster must fail, so the availability of the cluster 
is higher than the availability of just one host. Third, all the 
resources of all the hosts in the cluster are available for use. 
Separating client from the cluster is the last aspect of higher 
availability; the cluster is available to the user even when user 
works on different operating system. 

5. RESULTS AND CONCLUSION 
By implementing and testing the prototype of distributed 

emulator based on IMUNES we have received the following 
results. We have tested the cluster by creating one large 
experiment with N nodes that was deployed on one machine 
and on the cluster with two machines. The obtained results are 
presented on Figure 6. From graph we can see that on the two 
machine cluster the time for deployment of the experiment 



reduces by the factor of two. This factor of time reduction is 
proportional to the number of cluster hosts. The deployment 
time fluctuations visible on graph are the result of the 
deployment of the cluster over two machines that ware not 
connected on the dedicated network, so the other traffic was 
also present. These fluctuations have the value around one 
second. The improvement of scalability is also visible, since 
on one machine we could employ 1024 IMUNES nodes, 
whereas on the cluster we have deployed 2048 IMUNES 
nodes.  

In the table presented on Figure 7. we see the results of ping 
tested on live network, on standard IMUNES and on our 
distributed emulator. As we can see from the results the 
distribution of the experiment does not reduce the 
performance of IMUNES.  

The time of deployment of experiment in distributed 
IMUNES as a function of number of nodes
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Figure 6.  Test of distributed emulator scalability and performance 

 Packet size 
 64KB 1480KB 
Testbed 0,278ms 1,302ms 
IMUNES 0,252ms 1,284ms 
Distributed emulator 0,253ms 1,287ms 

Figure 7.  The results of Ping 

All tests ware conducted on the commodity PCs, one with 
Celeron operating on 3GHz with 1GB of RAM and the other 
was Pentium P4 on 3,2GHz with 2GB of RAM. 

The described concept of distributed network emulator is 
designed to satisfy the demands of scalability, availability, 
robustness, efficiency, portability and performance. This work 
is the work in progress any many things are currently hard 
coded, but we believe that in the future this concept will 
provide a stable, manageable and scalable distributed 
emulator. 

6. FUTURE WORK 
The future development would primarily deal with the user 

management since this part is currently hard coded. The 
cluster we developed and tested is a static cluster with hard 
coded members, but in the future we expect to develop a new 
version of the cluster that would support dynamical joining 
and leaving of the cluster hosts. We plan to implement 
additional support to provide an option for a cluster to operate 

on geographically distributed locations and in this way to 
further improve scalability.  
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