
IMUNES Based Distributed Network Emulator

Z. Puljiz and M. Mikuc
Faculty of Electrical Engineering and Computing/Department of Telecommunications, Zagreb, Croatia

zrinka.puljiz@fer.hr miljenko.mikuc@fer.hr

Abstract— In this paper we describe a new version of our
distributed network emulator that extends an existing kernel
level emulator called IMUNES. IMUNES is based on a
lightweight virtual machine concept and performs zero copying
when packets traverse through the emulated topology. It works
on a modified FreeBSD kernel and enables emulated nodes to
use the standard UNIX applications. The main strengths of this
tool are scalability, performance and high fidelity. We are
developing a distributed network simulation to further increase
the scalability by allowing parts of emulation to be deployed
across a peer-to-peer emulator cluster. The decentralized
management of the emulator cluster improves availability and
robustness of the system. We provide support for a multi-user
and multi-experiment environment to maximize the benefit
from newly increased resources.

Distributed emulation, scalability, clustering

1. INTRODUCTION
In network emulations the demands for resources are rising

with the complexity of the emulated network. The resources
available on only one machine are imposing the limit on
scalability. As a result of dealing with this problem many
powerful network emulators are designed as distributed
systems [1], [9] and [11].

IMUNES is a network emulator that offers high scalability,
performance and fidelity. Designing a distributed emulator
based on IMUNES pushes the limits of scalability even
further. IMUNES is a topology specification, management
and GUI application. Core of IMUNES network emulation
facility are kernel level lightweight virtual machines available
in modified FreeBSD kernel. Distributing the simulation
based on IMUNES implies the separation of topology
specification and GUI application from the management
utility, and extending management utility to provide the
support for distributed simulations.

Our distributed simulator works on a cluster and fulfills the
following:

• Improved scalability – this is the most important
demand. We expect the scalability to improve
proportionally to the number of distributed hosts.

• Improved robustness – the state of the cluster is kept
up-to-date on each host in the cluster. Even in the
case of a failure of any host in the cluster the state of
the cluster remains available and accurate.

• Improved utilization – all the available resources of
the cluster should be used in an efficient manner.
This means allowing more than one person to use the

cluster, and to emulate more than one topology at a
time.

• Improved portability – allowing user operating on
some other OS, to use the IMUNES emulation
capabilities.

• Keeping the performance – we are preserving the
simulation properties even in the case when the
simulation is distributed among the hosts in the
cluster.

• Improved availability – we are providing remote
access to the cluster.

We have studied the centralized architecture that is used in
some other distributed emulators [1] and [11], but in the end
we decided to go for a peer-to-peer cluster. Our goal is to
show that the proposed distributed network emulator is a
powerful tool for simulation of large networks.

For distributing the topology we used standard graph
partitioning methods also used graph partitioning methods like
in [13].

The rest of this article is organized as follows: in the second
section we give an introduction to IMUNES, its building
blocks, kernel structures and the properties. The distributed
architecture in presented in the third section. In the fourth
section are the results and the conclusion, whereas the future
work is described in fifth section. Related work is presented in
the last, sixth section.

2. RELATED WORK
Many existing network emulators are designed as

distributed systems. This is partially because the network
emulation is very resource demanding so the need for higher
scalability provoked design of the distributed emulators that
provide more resources and the new resources can easily be
acquired.

The architecture of ModelNet [9] consists of highly
connected router core and edge nodes. In the smallest variant
of the cluster the user needs at least two machines; one for a
core router and one for an edge node. ModelNet is used for
emulating internet like topologies through the set of pipes.
The virtual machines that are the sources and the sinks of the
ModelNet traffic are implemented in user space and reside on
the edge nodes. The packets going from one host to another
are using routes calculated in advance so no IP level routing is
present, nor is dynamic routing available. IMUNES offers the
traffic shaping ability as well, providing the same zero
copying for the packet when it traverses the network but it
also gives the opportunity for per hop and dynamic routing.

 PlanetLab [1] also uses kernel level virtual machines. The
management and slice authority (slice is a part of PlanetLab
resources assigned to one experiment) are currently
centralized and bind together, and on our distributed emulator
management utility is distributed among all the cluster nodes.
The IMUNES cluster concept currently is designed to operate
only on a local network, where as PlanetLab does not have
that kind of restriction. IMUNES offers private standard
network variables for each emulated node, whereas PlanetLab
nodes use raw sockets bind to certain ports for network
virtualization. On each node in PlanetLab only one VM per
user per experiment can be allocated.

NetBed [11] is designed as a large cluster of PC-s running
FreeBSD or Linux operating systems for emulating large
complex networks. The experiment is deployed using
geographically distributed machines and links. WLAN links
that can not be emulated by real links are emulated using
dummynet traffic shapers. It has the centralized management
utility.

3. IMUNES

3.1 Operating system support
IMUNES uses GUI for topology specification. For

emulation, IMUNES provides a management utility that is
responsible for mapping from GUI level object to kernel level
objects. The kernel level objects used for emulation are virtual
machines and netgraph nodes [5]. The virtual machine (VM)
support is implemented in kernel space, unlike the support
presented in [10]. The drawback of user level VM support is
that for each emulated packet the user space network emulator
has to pass the packet to the kernel by performing data
copying and context switching, and the good side is the
increased portability since a user level VM would work on
heterogeneous operating systems. Our support for VM-s is
implemented as a modification of a kernel and offers the full
functionality of standard FreeBSD system. This modification
does not degrade the working speed of the hosting FreeBSD
system [14]. Virtual machines are interconnected in kernel
space, so the packet traverses the network topology entirely in
kernel space (Figure 1.). Passing the packet form one virtual
machine to another is based on pointer forwarding and thus
provides zero copying.

Virtual machines used in IMUNES are based on the
clonable network stack and are accessible through the vimage
utility. A clonable network stack is used to create a new
network stack for each new virtual machine. This means that
each VM has private network resources like routing table,
network interfaces, network sockets, etc. Each VM also has a
group of associated user space processes (BSD jail [2]),
private CPU scheduling parameters and CPU usage
accounting.

Vimage utility is used for crating and managing the virtual
machines, while for connecting VMs we use the netgraph
interconnection framework [5]. The netgraph nodes work in
the kernel space just below the device drivers and just above
the link layer processing. IMUNES management utility is

used for mapping the user specified topology to the virtual
machines and netgraph nodes.

Figure 1. a) Traditional virtualization model (packet going from VM#1

to VM#2 is copied from user space to kernel space and vice versa) b)
Lightweight virtualization model (Pointer to the packet is passed from

VM#1 to VM#2)

3.2 IMUNES topology
IMUNES uses a GUI for drawing and viewing the desired

network topology. The topology in IMUNES consists of two
basic units: nodes and links. Nodes can exist independently,
whereas links always connect two different nodes.

Nodes are further classified into link layer nodes and
network layer nodes.

Link layer nodes are LAN switch, hub and physical
interface and they provide just link layer functionality
(passing the packet or dropping a packet). They are not
implemented as virtual machines; they are just netgraph
nodes.

Network layer nodes are the ones capable of network layer
processing, and they are the nodes that are implemented in
kernel as virtual machines. The IMUNES network layer nodes
are host, PC and router. Network layer nodes have their own

instance of TCP/IP stack and they provide the full
functionality of FreeBSD system. The difference between
network layer nodes is in the booting process. The Host and
PC do not forward packets and the routes are static, whereas
the router is capable of packet forwarding using the routes
obtained by dynamic routing protocols available through
quagga [7] or xorp [12]. The Host normally starts standard
network services, via inetd, unlike the PC. On virtual network
layer nodes a UNIX shell can be opened and any available
application can be started (Figure 2.).

Figure 2. Standard UNIX shell opened for network layer nodes

In IMUNES GUI only one link between any two nodes can
be created. By default they present Ethernet type links, but
support for serial links is also available. All links are
presumed to be full duplex. Links are mapped to netgraph
nodes as well as link layer nodes. The mapping between the
topology and the appropriate kernel structures can be seen on
the Figure 3.

Apart from just creating nodes and links in IMUNES, their
properties can also be changed through the GUI. In this way
we can emulate a network in which some nodes start DNS
services and others start web severs, some links have high
BER and some links have low bandwidth. The availability of
standard network applications in IMUNES nodes and the
network emulation provides a way for IMUNES to be used as
a replacement for a general purpose testbed.

3.3 IMUNES properties
IMUNES is an acronym from an Integrated Multiprotocol

Network Emulator/Simulator. Multi-protocol part of the
IMUNES name is justified by the support for emulation of
IPv4 and IPv6 traffic (in early stages even IPX) and the
support for diverse routing protocols including the support for
multicast routing using xorp [12].

The high scalability in IMUNES is achieved by using
lightweight virtual machine model that does not drain the
resources of the hosting machine [14]. The scalability is
further improved by passing the packets from one VM to
another simply by passing the packet pointer.

Figure 3.

The fidelity is increased by the fact that all virtual machines
are residing in the kernel, so passing a packet uses real system
calls that are processed in only one context switching, the one
form a user process to the kernel.

In IMUNES network layer nodes all standard UNIX
applications and FreeBSD kernel calls are available, so the
process of deploying a new network protocol tested on
IMUNES is straightforward and does not require
modifications of the code.

IMUNES is developed as open source project under GNU
license, and is available form [3].

4. DISTRIBUTED EMULATOR

4.1 Architecture of the distributed system
The architecture of the distributed emulator is presented on

the Figure 4. We have divided the IMUNES into a client part
and a cluster part of the application. The client host keeps the
client part. This part is platform independent since it is written
in Tcl/Tk [8]. The experiment deployment is made on the
cluster so that the client must know the IP address of at least
one host in the cluster, the cluster host he will communicate
with.

The cluster part is realized as a peer-to-peer cluster, where
any cluster host maintains the constant TCP sessions with all
the other hosts in the cluster.

When connecting to the cluster the client sends his user
name for authorization. If the authorization passes the user can
create a new experiment and view or modify the existing one.

Figure 4. The architecture of the distributed system

The communication between the user and the cluster can be
in clear text or encrypted. For the encryption SSH port
forwarding mechanism with key authentication is used.

Client and cluster are communicating by sending messages.
In most cases the messages represent commands from client to
server for controlling the deployed experiment. The
experiment in distributed IMUNES represents network
topology that belongs to a specific user. User can have more
than one experiment deployed at the same time. On the cluster
a check is introduced to unable the user to change experiments
belonging to others.

4.2 Cluster architecture
In the process of designing the cluster architecture we have

considered centralized and a peer-to-peer cluster. While
centralized approach would provide simpler management, it
has inherent drawback that if the central host goes down the
whole cluster goes down as well. So we decided to design our
cluster as a peer-to-peer cluster, having two TCP connections
between any two hosts in the cluster. This strong connectivity
provides an efficient way of early finding that the host is
down and it provides the way of monitoring the state of a
cluster hosts. Any two cluster hosts are connected by two TCP
connections providing a support for a bidirectional
asynchrony communication, where each cluster host uses one
dedicated connection for issuing the commands and receiving
the results and acknowledges.

All hosts in the cluster are equal and all of them have to
keep the state of the cluster. The state of the cluster constitutes
of:

• List of all hosts available in the cluster and their
loads,

• List of all the users in the cluster,
• List of all the VLAN identifiers used,
• List of all the experiments.

Each host in the cluster knows IP addresses and interface
names of all the hosts in the cluster. Host additionally keeps
the information about his client sockets used for
communication with other hosts and his own identifier.

Each user in the cluster has a defined user name, and a list
of all experiments belonging to that user. The user name must
be unique and one experiment can belong to only one user.

VLAN (IEEE 802.1Q) identifiers are used for a link
emulation that goes through the physical link. By using
VLAN-s we are restricting the cluster to operate only on local
area networks. The number of VLAN-s available on the
network is limited, so only a finite number of emulated links
can be deployed on top of the physical links. This limitation
does not represent a problem since the number of VLAN-s is
sufficient for any normal use of the cluster. The VLAN
identifiers list keeps the track of all the used VLAN-s. We
chose to use VLAN mechanism since adding a VLAN tag is
not an expensive action with respect to processor time and
memory used and adding a VLAN tag does not cause
fragmentation of Ethernet frame.

The information about experiment include the experiment
topology, the experiment starting time, the list of hosts on
which experiment parts are executed and a list of used VLAN
identifiers. Keeping the information about each experiment
provides the support for multiexperiment system. The
experiment in our distributed emulator presents a new
building block.

4.3 Distribution of an experiment
The user experiment could be deployed on only one host in

the cluster, but this would not increase the scalability. The
idea is to allow the user to create a huge experiment and
divide it so that each part of the experiment can be deployed
on different host in the cluster. Dividing of topology can be
done manually or automatically. For automate division the
standard graph partitioning algorithms available through
METIS [4] are used. This approach has been used also in
some other network emulators [13]. We have constructed a
graph from IMUNES topology in order to provide adequate
input for METIS. This topology to graph mapping and all the
preprocessing and postprocessing steps used are described in
[6]. The resulting partitions can be further refined manually.

Partition identifier is assigned to each node in the topology.
Links that are connecting nodes in different partitions are
marked with local VLAN identifiers. The use of VLAN
identifiers is justified by the fact that different experiments
can use the same IP address space. Simple passing on to the
network the packets as they are sent from originating nodes
could cause the interference between different experiments.
By using different VLAN identifier for any link connecting
nodes simulated on different cluster hosts we have
successfully removed any possibility of interference between
different experiments.

On the distributed emulator all the nodes are deployed as
they would be on normal IMUNES. Only exceptions are the
links connecting nodes on different cluster hosts. Packets
traversing this type of links are really going through the
physical link that connects cluster hosts. The problem that
occurs is how to simulate the properties of that link, so we
used emulated links for traffic shaping on both cluster hosts.
The control of the emulated properties, like bandwidth, is
enforced before the packet leaves the cluster host and goes to
the network. The delay is uniformly distributed on both

emulated links. Shaping of the links connecting nodes
deployed on different cluster hosts is presented on Figure 5.

4.4 Properties of the distributed emulator
1) Scalability
The scalability of distributed IMUNES proportionally

increases with the number of hosts in the cluster. By
distributing the topology over the cluster we are using the
resources of all cluster hosts. In the distributed emulation the
number of kernel structures created remains the same as it
would be if the emulation was executes on one machine. The
only exceptions are links that connect nodes employed in
different cluster hosts, for this type of links we use two kernel
structures instead of just one.

The resources necessary for managing the cluster will
increase with the number of hosts in the cluster, but we do not
expect this rise to affect the emulation capabilities of the
cluster since the cluster management utility is designed as a
simple, resource undemanding application.

As a result we expect for the emulation to scale accordingly
to the number of hosts in the cluster and their cumulative
resources.

Figure 5. The traffic shaping direction of links that connect nodes deployed

on different cluster hosts.

The limit on scalability still remains since we use VLAN
identifiers that limit the cluster to be deployed only on LAN.
But viewed from other perspective the employment of the
cluster over the LAN provides faster links that increase the
emulation capacity for the links that connect virtual nodes on
different cluster hosts. It also provides easier maintenance of
the cluster.

2) Robustness
We have achieved robustness by introducing redundancy in

the system. The state of the cluster is maintained on each host
in the cluster, so when one host in the cluster goes down the
whole cluster doesn’t suffer the consequences. Since the state
of the cluster keeps the information of all the executed
experiments, after the host fails the rest of the cluster knows
which experiments, or parts of experiments are lost.

In the future we could offer the possibility of reassigning
the parts of the topology that ware executed on a host that
went down to another host or hosts in the cluster. This doesn’t
mean restoring the state of the experiment in the time of the

failure; it just means restoring the state to the initial
experiment state for that part of the experiment.

3) Utilization
When we talk about utilization we are primary thinking on

improving the usability of available resources. So we designed
a multiuser and multiexperiment support. Each user can
access the cluster for execution of his experiments. The
multiexperiment support means that different users can have
different experiments (network topologies) and that one user
can have many experiments. All this experiments can run at
the same time on the cluster. Utilization of the cluster is
further increased by the separation of client and cluster
utilities. Client side can reside on the same machine as the
cluster, but it can also be physically placed anywhere as long
as it has a network connection to the cluster.

4) Portability
The portability is increased by separating client part and a

cluster part of our distributed emulator. The client part is
platform independent and provides an opportunity for users
that do not work on modified FreeBSD kernel to use
IMUNES emulation capabilities simply by accessing the
cluster. The portability of IMUNES is currently increased by
the use of VMware images and bootable CD.

5) Performance
We are trying to keep the performance of this distributed

emulator in the same range as for IMUNES: This means
providing the same scalability on the cluster hosts, and
accurately emulating all the links that are going through the
real links. The scalability is already discussed, so let us focus
on the accurate emulation of links that connect nodes
emulated on different cluster hosts.

Links connecting nodes residing on different cluster hosts
are modeled for keeping the performance. The bandwidth
check is performed before traffic reaches the physical link
assuring that all the links that are using the same physical link
receive the promised amount of bandwidth. The compensation
for passing the emulated traffic through a real network is part
of the future work and that’s way we base our cluster on LAN.

6) Availability
Compared to centralized management peer-to-peer cluster

offers higher availability. The four aspects of availability are
improved. First, the user can connect to any host in the cluster
to execute his experiments. Second, for a cluster to fail all the
hosts in the cluster must fail, so the availability of the cluster
is higher than the availability of just one host. Third, all the
resources of all the hosts in the cluster are available for use.
Separating client from the cluster is the last aspect of higher
availability; the cluster is available to the user even when user
works on different operating system.

5. RESULTS AND CONCLUSION
By implementing and testing the prototype of distributed

emulator based on IMUNES we have received the following
results. We have tested the cluster by creating one large
experiment with N nodes that was deployed on one machine
and on the cluster with two machines. The obtained results are
presented on Figure 6. From graph we can see that on the two
machine cluster the time for deployment of the experiment

reduces by the factor of two. This factor of time reduction is
proportional to the number of cluster hosts. The deployment
time fluctuations visible on graph are the result of the
deployment of the cluster over two machines that ware not
connected on the dedicated network, so the other traffic was
also present. These fluctuations have the value around one
second. The improvement of scalability is also visible, since
on one machine we could employ 1024 IMUNES nodes,
whereas on the cluster we have deployed 2048 IMUNES
nodes.

In the table presented on Figure 7. we see the results of ping
tested on live network, on standard IMUNES and on our
distributed emulator. As we can see from the results the
distribution of the experiment does not reduce the
performance of IMUNES.

The time of deployment of experiment in distributed
IMUNES as a function of number of nodes

0,1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2028

N - number of nodes

t -
 ti

m
e

in
 s

ec
on

ds

single machine
cluster with two machines

Figure 6. Test of distributed emulator scalability and performance

 Packet size
 64KB 1480KB
Testbed 0,278ms 1,302ms
IMUNES 0,252ms 1,284ms
Distributed emulator 0,253ms 1,287ms

Figure 7. The results of Ping

All tests ware conducted on the commodity PCs, one with
Celeron operating on 3GHz with 1GB of RAM and the other
was Pentium P4 on 3,2GHz with 2GB of RAM.

The described concept of distributed network emulator is
designed to satisfy the demands of scalability, availability,
robustness, efficiency, portability and performance. This work
is the work in progress any many things are currently hard
coded, but we believe that in the future this concept will
provide a stable, manageable and scalable distributed
emulator.

6. FUTURE WORK
The future development would primarily deal with the user

management since this part is currently hard coded. The
cluster we developed and tested is a static cluster with hard
coded members, but in the future we expect to develop a new
version of the cluster that would support dynamical joining
and leaving of the cluster hosts. We plan to implement
additional support to provide an option for a cluster to operate

on geographically distributed locations and in this way to
further improve scalability.

REFERENCES
[1] Bavier, A., Browman, M., Chun, B., Culler, D., Karlin, S., Muir, S.,

Peterson, L., Roscoe, T., Spalink, T., Wawrzoniak, M. Operating
System Support for Planetary-Scale Network Services, Proceedings of
the 1st USENIX/ACM Symposium on Networked Systems Design and
Implementation, 2004.

[2] FreeBSD jail
 http://docs.freebsd.org/44doc/papers/jail/jail.html

[3] IMUNES download site
http://imunes.net

[4] Karypis, G., Kumar, V. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Jurnal of Scientific Computing,
20(1):359-392, 1998.

[5] Netgraph framework
http://people.freebsd.org/~julian/netgraph.html

[6] Puljiz, Z., Mikuc. M. Clustering Network Simulation: Graph
Partitioning approach, Proc. of ConTEL, 2005.

[7] Quagga
http://www.quagga.net/

[8] Tcl/Tk programming language
http://www.tcl.tk

[9] Vahdat, A., Yocum, K., Walsh, K. et al. Scalability and Accuracy in a
Large-Scale Network Emulator. Proc. of OSDI, 2002.

[10] VMware
http://www.vmware.com

[11] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold,
M., Hibler, M., Barb, C., Joglekar, A. An Integrated Experimental
Environment for Distributed Systems and Networks

[12] XORP project
http://www.xorp.org/

[13] Yocum K., Eade, E., Degesys, J., Becker, D., Chase, J., Vahdat, A.
Toward Scaling Network Emulation using Topology Partitioning. in
Proceedings of the International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems,
(MASCOTS). 2003.

[14] M. Zec, M., Mikuc, Operating System Support for Integrated Network
Emulation in IMUNES, Proceedings of the 1st Workshop on Operating
System and Architectural Support for the on demand IT InfraStructure /
ASPLOS-XI, 2004.

