Interaction-Free Ion-Photon Gates (Milan, May 17, 2007)

Mladen Pavičić

pavicic@grad.hr ; Web: http://m3k.grad.hr/pavicic
University of Zagreb

Early Interaction-Free Experiments

Ancient Ideas: Renninger (1960), Dicke (1981), Pavičić (1986): "Whenever we fail to detect interference we know that something is there."

Early Interaction-Free Experiments

Ancient Ideas: Renninger (1960), Dicke (1981), Pavičić (1986): "Whenever we fail to detect interference we know that something is there." E.g., Pavičić (1986):

Early Interaction-Free Experiments

Ancient Ideas: Renninger (1960), Dicke (1981), Pavičić (1986): "Whenever we fail to detect interference we know that something is there." E.g., Pavičić (1986):

1993 enter Elitzur and Vaidman and say:

Early Interaction-Free Experiments

Ancient Ideas: Renninger (1960), Dicke (1981), Pavičić (1986): "Whenever we fail to detect interference we know that something is there." E.g., Pavičić (1986):

1993 enter Elitzur and Vaidman and say:
"Measurements might be useful"

Ring Resonator

Harry Paul \& Pavičić (Berlin, 1996)

Ring Resonator

Harry Paul \& Pavičić (Berlin, 1996) Matteo was also there at the time

Ring Resonator

Harry Paul \& Pavičić (Berlin, 1996) Matteo was also there at the time

Ring Resonator

Harry Paul \& Pavičić (Berlin, 1996) Matteo was also there at the time

Let us calculate what we get at D_{r} :

Interference

Reflected portion of the incoming beam:

$$
-B_{0}=-A \sqrt{R}
$$

Interference

Reflected portion of the incoming beam:

$$
-B_{0}=-A \sqrt{R}
$$

After a full round-trip this joins it:

$$
B_{1}=A \sqrt{1-R} \sqrt{R} \sqrt{1-R} e^{i \psi}
$$

Interference

Reflected portion of the incoming beam:

$$
-B_{0}=-A \sqrt{R}
$$

After a full round-trip this joins it:

$$
B_{1}=A \sqrt{1-R} \sqrt{R} \sqrt{1-R} e^{i \psi}
$$

"All" round trips: interference (a geometric progression) - the total amplitude $\left(D_{r}\right)$:

$$
B=\sum_{i=0}^{\infty} B_{i}=-A \sqrt{R} \frac{1-e^{i \psi}}{1-R e^{i \psi}}
$$

Resonator Int.-Free Experiments

$\psi=\left(\omega-\omega_{\text {res }}\right) T$ - phase per round-trip (r-t); ω
— incoming frequency; T - r-t time; $\omega_{\text {res }}$ — resonance frequency $(\lambda / 2=L / k, L r-t$ length $)$

Resonator Int.-Free Experiments

$\psi=\left(\omega-\omega_{\text {res }}\right) T$ - phase per round-trip (r-t); ω
— incoming frequency; T — r-t time; $\omega_{\text {res }}$ resonance frequency $(\lambda / 2=L / k, L r$-t length $)$ So, $\omega=\omega_{\text {res }} \Rightarrow B=0$

Resonator Int.-Free Experiments

$\psi=\left(\omega-\omega_{\text {res }}\right) T$ - phase per round-trip (r-t); ω — incoming frequency; T — r-t time; $\omega_{\text {res }}$ resonance frequency $(\lambda / 2=L / k, L r-t$ length $)$ So, $\omega=\omega_{\text {res }} \Rightarrow B=0$

(b)

ABS

Classical Efficiency

The efficiency of the suppression of the reflection into D_{r} when there is no object in the resonator; ρ is the measure of losses

Let object be atom

${ }^{87} \mathrm{Rb}$ has closed shells up to $4 p$ and an electron in ground state $5 s(\mathbf{J}=\mathbf{L}+\mathbf{S})$; We consider only one excited state: $5 p_{1 / 2}$.

Let object be atom

${ }^{87} \mathrm{Rb}$ has closed shells up to $4 p$ and an electron in ground state $5 s(\mathbf{J}=\mathbf{L}+\mathbf{S})$; We consider only one excited state: $5 p_{1 / 2}$.
Total nuclear ang. mom. K and J give the total ang. mom. of the atom: $\mathbf{F}=\mathbf{J}+\mathbf{K}$.

Let object be atom

${ }^{87} \mathrm{Rb}$ has closed shells up to $4 p$ and an electron in ground state $5 s(\mathbf{J}=\mathbf{L}+\mathbf{S})$; We consider only one excited state: $5 p_{1 / 2}$.
Total nuclear ang. mom. K and J give the total ang. mom. of the atom: $\mathbf{F}=\mathbf{J}+\mathbf{K}$.
${ }^{87} \mathrm{Rb}$ has $K=3 / 2$, and its $j=1 / 2$ ground states are split by hyperfine interaction into doublets with $F=K \pm j=3 / 2 \pm 1 / 2=2,1$.

Let object be atom

${ }^{87} \mathrm{Rb}$ has closed shells up to $4 p$ and an electron in ground state $5 s(\mathbf{J}=\mathbf{L}+\mathbf{S})$; We consider only one excited state: $5 p_{1 / 2}$.
Total nuclear ang. mom. K and J give the total ang. mom. of the atom: $\mathbf{F}=\mathbf{J}+\mathbf{K}$.
${ }^{87} \mathrm{Rb}$ has $K=3 / 2$, and its $j=1 / 2$ ground states are split by hyperfine interaction into doublets with $F=K \pm j=3 / 2 \pm 1 / 2=2,1$.
External magnetic field B splits the levels into magnetic Zeeman sublevels:
$m=-F,-F+1, \ldots, F$.

Atom vs. photon

To excite and deexcite electrons between $m= \pm 1$ and $m=0$ we must use circularly polarized photons with $j_{p}=1$ and $m_{j_{p}}= \pm 1$

Atom vs. photon

To excite and deexcite electrons between $m= \pm 1$ and $m=0$ we must use circularly polarized photons with $j_{p}=1$ and $m_{j_{p}}= \pm 1$

When an atom receives angular momentum of a photon, the following selection rules must be met:

$$
\Delta l= \pm 1, \quad \Delta m=m_{j_{p}}= \pm 1
$$

Atom vs. photon

To excite and deexcite electrons between $m= \pm 1$ and $m=0$ we must use circularly polarized photons with $j_{p}=1$ and $m_{j_{p}}= \pm 1$

When an atom receives angular momentum of a photon, the following selection rules must be met:

$$
\Delta l= \pm 1, \quad \Delta m=m_{j_{p}}= \pm 1
$$

When a photon is emitted, the same selection rules must be observed.

Atom vs. photon (ctnd.)

By solving Schrödinger equation for our three-level system

$$
\hat{H}|\Psi\rangle=i \hbar \frac{\partial|\Psi\rangle}{\partial t}
$$

Atom vs. photon (ctnd.)

By solving Schrödinger equation for our three-level system

$$
\hat{H}|\Psi\rangle=i \hbar \frac{\partial|\Psi\rangle}{\partial t}
$$

we arrive at the Hamiltonian

$$
\hat{H}=\frac{\hbar}{2}\left[\begin{array}{ccc}
0 & \Omega_{1}(t) & 0 \\
\Omega_{1}(t) & 2 \Delta & \Omega_{2}(t) \\
0 & \Omega_{2}(t) & 0
\end{array}\right]
$$

Ω_{1} and Ω_{2} are Rabi frequencies

Excited state drops out

One of the eigenstates of the Hamiltonian is

$$
\left|\Psi^{0}\right\rangle=\frac{1}{\sqrt{\Omega_{1}^{2}(t)+\Omega_{2}^{2}(t)}}\left(\Omega_{2}(t)\left|g_{1}\right\rangle-\Omega_{1}(t)\left|g_{2}\right\rangle\right)
$$

Excited state drops out

One of the eigenstates of the Hamiltonian is

$$
\left|\Psi^{0}\right\rangle=\frac{1}{\sqrt{\Omega_{1}^{2}(t)+\Omega_{2}^{2}(t)}}\left(\Omega_{2}(t)\left|g_{1}\right\rangle-\Omega_{1}(t)\left|g_{2}\right\rangle\right)
$$

It depends only on "dark states" $\left|g_{1}\right\rangle$ and $\left|g_{2}\right\rangle$

Excited state drops out

One of the eigenstates of the Hamiltonian is

$$
\left|\Psi^{0}\right\rangle=\frac{1}{\sqrt{\Omega_{1}^{2}(t)+\Omega_{2}^{2}(t)}}\left(\Omega_{2}(t)\left|g_{1}\right\rangle-\Omega_{1}(t)\left|g_{2}\right\rangle\right)
$$

It depends only on "dark states" $\left|g_{1}\right\rangle$ and $\left|g_{2}\right\rangle$
We can use this to obtain a direct transfer of electrons from $\left|g_{1}\right\rangle$ to $\left|g_{2}\right\rangle$ without either emitting or absorbing photons on the part of atom in the following way-Stimulated Raman adiabatic passage (STIRAP).

STIRAP

Experimentally, let photons be laser beams.

STIRAP

Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser before switching on and off the first one.

STIRAP

Experimentally, let photons be laser beams.
Now, let us switch on and off the second laser before switching on and off the first one.

This can be described by

$$
\begin{array}{ll}
\left|\left\langle g_{1} \mid \Psi^{0}\right\rangle\right|^{2}=1 & \text { for } \quad t \rightarrow-\infty \\
\left|\left\langle g_{2} \mid \Psi^{0}\right\rangle\right|^{2}=1 & \text { for } \quad t \rightarrow+\infty
\end{array}
$$

Adiabatic complete population transfer $\left|g_{1}\right\rangle \rightarrow\left|g_{2}\right\rangle$ is STIRAP:

STIRAP $\left|g_{1}\right\rangle \leftrightarrow\left|g_{2}\right\rangle$

Interaction-free "excitation"

A left-hand circularly polarized photon could excite an atom from its ground state $\left|g_{1}\right\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon could excite the atom from $\left|g_{2}\right\rangle$ to $|e\rangle$.

Interaction-free "excitation"

A left-hand circularly polarized photon could excite an atom from its ground state $\left|g_{1}\right\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon could excite the atom from $\left|g_{2}\right\rangle$ to $|e\rangle$.

So an L-photon will "see" the atom in $\left|g_{1}\right\rangle$ but will not "see" it when it is in $\left|g_{2}\right\rangle$. With an R-photon, the opposite is true.

Interaction-free "excitation"

A left-hand circularly polarized photon could excite an atom from its ground state $\left|g_{1}\right\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon could excite the atom from $\left|g_{2}\right\rangle$ to $|e\rangle$.

So an L-photon will "see" the atom in $\left|g_{1}\right\rangle$ but will not "see" it when it is in $\left|g_{2}\right\rangle$. With an R-photon, the opposite is true.

We can induce a change of the atom from $\left|g_{1}\right\rangle$ to $\left|g_{2}\right\rangle$ and back by a STIRAP process, with two additional external laser beams

State notation

We feed our resonator with $+45^{\circ}$ and -45° linearly polarized photons.

In front of an atom we place a quarter-wave plate (QWP) to turn a 45°-photon into an R-photon and a -45°-photon into an L-photon.

Behind the atom we place a half-wave plate (HWP) to change the direction of the circular polarization and then another QWP to transform the polarization back into the original linear polarization.

State notation (ctnd.)

We denote the atom states as follows:

$$
|0\rangle=\left|g_{1}\right\rangle, \quad|1\rangle=\left|g_{2}\right\rangle
$$

They are control states; atom is control qubit.
We denote the photon states as follows:

$$
|0\rangle=\left|45^{\circ}\right\rangle, \quad|1\rangle=\left|-45^{\circ}\right\rangle
$$

They are target states; photons are target qubits.
For example, $|01\rangle$ means that the atom is in state $\left|g_{1}\right\rangle$ and the photon is polarized along -45°.

Interaction-free CNOT gate

(a) The atom is in state $\left|g_{1}\right\rangle$ and can absorb $|1\rangle$; (b) The atom is in state $\left|g_{2}\right\rangle$ and can absorb $|0\rangle$;

$$
|00\rangle \rightarrow|00\rangle,|01\rangle \rightarrow|01\rangle,|10\rangle \rightarrow|11\rangle,|11\rangle \rightarrow|10\rangle
$$

