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ABSTRACT

Knowledge about facts from the real world is very often uncertain, ambiguous and vague. As a result, the inference mechanism based on such facts generates uncertain and vague conclusions. In this paper we describe a formal model of knowledge representation for uncertain and vague domains. The model is based on the theory of high-level fuzzy Petri Nets (FPNs), and a fuzzy inheritance procedure that uses the dynamical properties of a FPN is proposed. The upper-time complexity of the proposed inheritance algorithm is O(nm), where n is the number of places (concepts) and m is the number of transitions (relations) in the scheme. An illustrative example of the inheritance procedure is presented. 

1. INTRODUCTION

The crucial component of an intelligent (knowledge-based) agent is its knowledge base [1]. Informally, a knowledge base is an abstract representation of a working environment or a world in which the agent (or agents) has to solve tasks. It contains collections of facts and objects (in an abstract sense); spatial and temporal relations between facts or objects; descriptions of typical situations and the agent’s behaviour; the rules of the world; common-sense knowledge; heuristics and problem-solving methods and procedures; knowledge about states, the actions, motivations and goals of the agent; and knowledge about knowledge (meta-knowledge).

In many real-world tasks knowledge is based on vague, uncertain and/or fuzzy information, and agents have to deal with the information in such a form. Therefore, in order to properly represent real-world knowledge and support vague, uncertain and fuzzy-knowledge representation, reasoning, learning and decision-making, different knowledge schemes were developed [1-9, 11]. Among these knowledge schemes there is a class of schemes based on the theory of Fuzzy Petri Nets (FPNs): Looney [4] and Chen et al. [5] proposed FPNs for rule-based decision making; Scarpelli et al. [6] described a reasoning algorithm for a high-level FPN; Chen [7] introduced a Weight FPN model for rule-based systems; Li and Lara-Rosano [8] proposed a model based on an Adaptive FPN, which is implemented for knowledge inference, but it also has a learning ability; Ha et al. [12] described knowledge representation by weighted fuzzy production rules and inference with generalized FPN; Ke [13] defined an inference mechanism for G-nets; Lee et al. [14] introduced a reasoning algorithm based on possibilistic Petri Nets as a mechanism that mimics human inference; Canales et al. [15] described a method of fuzzy-knowledge learning based on an Adaptive FPN; and Guo-Yan [16] proposed a hybrid of the PN and the Fuzzy PN to support an inference procedure for the natural extension of fuzzy expert systems.

2. A KNOWLEDGE REPRESENTATION SCHEME BASED ON FUZZY PETRI NETS
2.1. A Formal Definition

The knowledge representation scheme named KRFPN (Knowledge Representation Scheme based on the Fuzzy Petri Net theory) is defined as 12-tuple:

KRFPN = (P, T, I, O, M, (, (, f, c, (, (, C),               (1)

where P, T, I, O, M, (, (, f,  and c are components of a generalized FPN, as follows:

P = {p1, p2, ... , pn} is a  finite set of places,

T = {t1, t2,  ... , tm} is a finite set of transitions, 

P ( T = (,

I: T ( P( is an input function, a mapping from transitions to bags of places,

O: T ( P( is an output function, a mapping from transitions to bags of places, 

M = (m1, m2, … , mr(, 1 ( r < (, is a set of tokens,

(: P ( ((M), is a mapping, from P to ((M), called a distribution of tokens, where ((M) denotes the power set of M. Using (0 we denote the initial distribution of tokens in the places of the FPN. 

(: P ( N is a marking, a mapping from places to non-negative integers, N. A mapping ( can be represented as an n-component vector ( = ((1, (2, ... , (n), where n is a cardinality of the set P. Obviously, ((pi) = (I, and  ((pi) denotes the number of tokens in the place pi. An initial marking is denoted by the vector (0. 

f: T ( [0, 1] is an association function, a mapping from transitions to real values between zero and one.

c: M ( [0, 1] is an association function, a mapping from tokens to real values between zero and one. 

The complete information about the token mi ( M is given by a pair (pj, c(mi)), where the first component specifies the location of the token, and the second one, its value.

The bijective function (: P ( D maps a set of places onto a set of concepts D. The set of concepts D consists of the formal objects used for representing objects and facts from the agent’s world. The elements from D = D1 ( D2 ( D3 are as follows: elements that denote classes or categories of objects and represent higher levels of abstraction (D1), elements corresponding to individual objects as instances of the classes (D2) and those elements representing the intrinsic properties of the concepts or values of these properties (D3). 

The surjective function (: T ( ( associates a description of the relationship among facts and objects to every transition ti ( T; i = 1, 2, ... , m, where m is a cardinality of a set T. The set ( = (1 ( (2 ( (3 consists of elements corresponding to the relationships between the concepts used for partial ordering of the set of concepts ((1), the elements used to specify the types of properties to which values from subset D3 are assigned ((2), and the elements corresponding to the relationships between the concepts, but not used for hierarchical structuring ((3). For example, elements from (3 may be used to specify the spatial relations among the objects. The functions ( and ( give a semantic interpretation to the scheme. The semantic interpretation requires the introduction of a set of contradictions C that contains elements corresponding to relations from ( that mutually contradict each other, for example, is_a and is_not_a. Also, there are elements in the set D that are mutually contradictory if they are inherited for the same concept or object. For example, the object cannot simultaneously inherit properties such as "Quadruped" and "Biped". Both types of contradictions should be explicitly expressed in the KRFPN scheme.

Formally, a set of contradictions C is a set of pairs of mutually contradictory relations and/or concepts: C = {((i, (j), ... ,  ((r, (s), (dk, dn), ... , (dl, dm)}, were (u; u = i, j, ..., r, s are from the set (, and dw; w = k, n, ...,l, m  are from the set D.

The inverse function (-1: D ( P, and the generalized inverse function (-1: ( ( (; ( ( T are defined in the KRFPN scheme. 
The KRFPN knowledge scheme can be graphically represented in a similar way to Petri nets: circles represent the places, while bars are used for the transitions. The relationships from places to transitions and from transitions to places are represented by directed arcs. Each arc is directed from an element of one set (P or T) to an element of another set (T or P). The relationships between the elements from P and T are specified by the input and output functions I and O, respectively. The tokens in the KRFPN are represented by labelled dots:



         c(mi)



             ( .

Denoting the places by elements of D, the transitions by elements of ( and the values of the association function by f, the graphical representation of a knowledge base designed by the KRFPN is obtained. 
Tokens give dynamical properties to the KRFPN, and they are used to define its execution, i.e., by firing an enabled transition tj, tokens are removed from its input places (elements in I(tj)). Simultaneously, new tokens are created and distributed to its output places (elements of O(tj)). In the KRFPN, a transition tj is enabled if each of its input places has at least as many tokens in it as arcs from the place to the transition and if the values of the tokens c(ml), l = 1, 2, ... exceed a threshold value ( ( [0, 1]. The number of tokens at the input and output places of the fired transition is changed in accordance with the basic definition of the original PN [10]. The new token value in the output place is obtained as c(ml).f(ti), where c(ml) is the value of the token at the input place pj ( I(ti) and f(ti) is the degree of truth of the relation assigned to the transition ti ( T. Figure 1 illustrates the firing of the enabled transition of the KRFPN. The inheritance, as an inference procedure defined for the KRFPN, uses the dynamical properties of the KRFPN.
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Fig. 1. Firing an enabled transition.

2.2. Selection of values f(ti) and (
A human’s knowledge about facts from the real word is very often uncertain, ambiguous and vague. The inference mechanism based on such facts, as well as the human interpretation of such facts and conclusions, generates uncertain and vague conclusions. There are many different approaches to representing knowledge in uncertain domains, such as belief networks (Bayesian or probabilistic networks) [1], qualitative probabilistic networks, rule-based methods for uncertain reasoning, schemes based on the Dempster-Shafer theory [19], fuzzy logic and the fuzzy Petri net theory. In our approach we have used the last of these, in which the uncertainty and confidence related to the facts, concepts and the relationships between them are expressed by means of the values of f(ti), ti( T, and c(mi), mi (M,  association functions. For example, the value of the function f, as well as the value of the function c, can be expressed by truth scales and by their corresponding numerical intervals depicted in Table I [5]. The threshold value ( ( [0, 1] defines the “sensitivity” of the scheme during the inference procedures. By using different values for (, the user can specify different degrees of truth for inherited concept’s properties.

Table I

TRUTH SCALES AND THE CORRESPONDING NUMERICAL INTERVALS [5]

	Truth scales
	Numerical intervals

	Always true
	[1.0, 1.0]

	Extremely true
	[0.95, 0.99]

	Very true
	[0.80, 0.94]

	Considerably true
	[0.65, 0.93]

	Moderately true
	[0.45, 0.64]

	More or less true
	[0.30, 0.63]

	Slightly true
	[0.10, 0.29]

	Minimally true
	[0.01, 0.09]

	Not true
	[0.0, 0.0]


Example 1

In order to illustrate the basic components of the KRFPN, a simple example of the agent’s knowledge base for a scene (Fig. 2) is introduced. Shortly, the scene may be described as follows: Fred, who is a human, is in front of the elephant Clyde. Both are mammals, but Fred is biped, while Clyde is a quadruped. The knowledge base designed by the KRFPN = (P, T, I, O, M, (, (, f, c, (, (, C), has the following components (Figure 3): P = {p1, p2, ... , p10}; T = {t1, t2, ... , t13}; I (t1) = {p1}; I(t2) = {p3}, ... ; I(t13) = {p1}; O(t1) = {p2}; O(t2) = {p4}, ... ; and O(t13) = {p9}. The set of tokens is M = (m1, m2, … , mr(, the initial distribution of tokens is (0 = {{m1}, (, ..., (}, where c(m1) = 1.0,  and ( denotes an empty set. The vector (0 = ((1, (2, ... , (10) = (1, 0, ... , 0) denotes that there is only one token in the place p1. The function f is specified as follows: f(t1) = 0.9; f(t2) = 0.9; f(t3) = 1.0; f(t4) = 1.0, ...;  
[image: image2.png]



Fig. 2. A simple scene with Fred and the elephant Clyde.
The set of tokens is M = (m1, m2, … , mr(, the initial distribution of tokens is (0 = {{m1}, (, ..., (}, where c(m1) = 1.0,  and ( denotes an empty set. The vector (0 = ((1, (2, ... , (10) = (1, 0, ... , 0) denotes that there is only one token in the place p1. The function f is specified as follows: f(t1) = 0.9; f(t2) = 0.9; f(t3) = 1.0; f(t4) = 1.0, ...; f(t12) = 0.6; and f(t13) = 0.8 (Fig. 3). f(ti), i = 1, 2, ... , m  indicates the degree of our pursuance in the truth of the relation ((ti). 

The set D = D1 ( D2 ( D3 is defined as follows: D1 = {Elephant, Human, Mammal, Biped, Quadruped}, D2 = {Fred, Clyde}, D3 = {White, Soul, Kind_hearted}. The set ( = (1 ( (2 ( (3 is {is_a, is_not_a} ( {has_colour, has_characteristic, has} ({is_in_front_of, is_behind}. 

Functions (: P ( D and (: T ( ( are (Fig. 3):


(: p1 ( Fred,

(: t1 (is_a,


(: p2 ( Human,

(: t2 ( is_a,


...


...


...


...


(: p10 ( Kind_hearted, 
(: t13 ( has.

Let C be a set of contradictions defined as C = {(is_a, is_not_a), (is_in_front, is_behind),(Quadruped, Biped)}.

For the initial distribution of tokens, (0, the following transitions are enabled: t1, t9, t11 and t13.

3. FUZZY INHERITANCE

In general, inheritance is a form of reasoning that allows an agent to infer the properties of a concept on the basis of the properties of its ancestors in the network’s hierarchical structure [17]. More precisely, the inheritance can be described as the process of determining the properties of a concept di ( D, by looking up the properties that are locally attached to the
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Fig. 3. The agent’s knowledge base designed by the KRFPN.

concept di. If such local information is not available (or is insufficient), the process will continue by looking up properties attached to the concepts that lie at higher levels in the conceptual hierarchy.

The inheritance procedure in the KRFPN is based on its dynamical properties and the determination of the inheritance set of the KRFPN. The inheritance set for the KRFPN is based on concepts similar to the reachability set of the ordinary Petri nets (PNs), where the reachability relationship is the reflexive, transitive closure of the immediately reachable relationship [10]. The reachability set of the PN is graphically represented by a reachability tree.

The main differences between the inheritance set of the KRFPN and the reachability set of the PN [10] are as follows: (i) After firing all the enabled transitions for the distribution of tokens in the KRFPN, where the transitions are related to the elements in the subsets (2 and (3, the created tokens at the corresponding output places have to be frozen. Recall that the elements in (2 and (3 are used to specify the properties and the non-hierarchical structuring, respectively. A frozen token in the output place is fixed and it cannot enable a transition; (ii) An inheritance tree, as a graphical representation of the inheritance set, is bounded by k + 1 levels, where k is a predefined number of levels. Such an inheritance tree is called a k-level inheritance tree; (iii) A k-level inheritance tree has the following additional types of nodes: a k-terminal node, a frozen node, and an identical node.

A k-level inheritance tree consists of nodes (pj, c(mi)), j = 1, 2, ... , n and i = 1, 2, ... , v where n is a cardinality of the set of places P, and 0 ( v ( r, where r is a cardinality of the set of tokens M, and directed, labelled arcs. In order to simplify and make the notation uniform in the inheritance algorithm, the nodes in the tree are denoted by n-component vectors in the form ( = ((1, (2, … , (n). Each component (i ; i = 1, 2, ..., n  of ( is represented by an empty set ( for ((pi) = 0, i.e., there is no token(s) at the place pi, or by a set {c(mk), ... , c(ml), ... , c(ms)}, where c(ml) is the second component of the pair (pi, c(ml)) and represents the value of the token ml at the place pi. The number of elements in the above set is ((pi) (1. The vector ( is called the distribution vector, or simply the distribution.
The directed arcs in a k-level inheritance tree are labelled by tj ( T and f(tj), where tj denotes a fired transition and f(tj) the value of its association function f, respectively. A directed labelled arc leads from the node at the i-th level of the inheritance tree to the corresponding node at the i+1-th level; i = 1,2, ... , k-1, where k is (pre)defined as the final level of the inheritance tree.

During the creation process of the k-level inheritance tree each node is classified either as a frontier node, a terminal node ( denoted by T), a k- terminal node (k-T), a frozen node (F), an identical node (I), a duplicate node (D), or an interior node. 
Taking into account above particularities, the inheritance tree can be constructed by applying the slightly modified algorithm for reachability tree given in  [10].

The 3-level inheritance tree for the KRFPN scheme, where the token m1 is initially at the place p1, generated by the algorithm is shown in Fig. 4.

By using the components of the k-level inheritance tree: a node at the level i - 1, labelled arc, a node at the level i (successor of the node at level i - 1), the functions ( and (, and a triplet named an inheritance assertion is formed.

For example, a node (11 at the level 1, a labelled arc t4; f(t4) = 1.0, and  the successor node (21 at the level 2, and ((p2) = Human, ((t4) = is_a, and ((p5) = Mammal, define the inheritance assertion: (Human is_a Mammal). Note that the tokens are at the places p2 (for (11) and p5 (for (21).  

The strength of the assertion is defined as the value of the token at the successor node, i.e., as a product of the token value at the node at level i - 1 and the value of the association function of the corresponding transition.
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Fig. 4. The 3-level inheritance tree for the KRFPN scheme depicted in Fig. 3.

For example, the strength of the inheritance assertion (Human is_a Mammal) is 0.90 . 1.0, where 0.90 is the value of the token at place p2 (see the distribution (11; Figure 6.).

The inheritance paths, starting from the root node of the inheritance tree and finishing at the leaves of the tree (terminal node, k-terminal node, frozen node, identical node, duplicate node), represent sequences of the inheritance assertions. An inheritance path is interpreted as the conjunction of the inheritance assertions in which the redundant concepts connected by AND are omitted. The strength of an inheritance path is defined by the value of the token at the node that is a leaf of the inheritance tree.

For example, the inheritance path defined from the root node (0 to the leaf node of the tree (22 (see Fig. 4) is: Fred is_a Human AND is_a Biped. The strength of the inheritance path is 0.72.

In network-based knowledge representation schemes there is the well-known problem of the conflicting multiple inheritance [18].

The problem of the conflicting multiple inheritance in the KRFPN scheme is expressed as follows: Two inheritance paths, represented by sequences of the inheritance assertion, are in conflict if the same concept inherits the mutually contradictory elements from D, i.e., dk and dn, where (dk, dn)( C, C is a set of contradictions. Also, two inheritance paths are in conflict if the same concept inherits the concept/property ((pk) ( D, but in one inheritance path it inherits the concept/property by means of ((tr) ( (, and in another by means of ((ts) ( (, where ((tr) = (r, ((ts) = (s, and ((r, (s) ( C.

To resolve the situations involving conflicting multiple inheritance in the KRFPN scheme we used Touretzky's principle of inferential distance ordering [18]: In the situation of conflicting multiple inheritance, a concept inherits the property of the nearer individual (concept) or class. “Nearer” is defined as follows: Concept or class A is “nearer” to class B than to class C if A has an inheritance path through B to C. In many cases the inferential distance ordering fails and reports an ambiguity (for example, see the well-known Quaker's problem [18]) because it is based on a measure of “between-ness”. In such situations, in the KRFPN scheme, the concept inherits the property for which one can find the more direct inheritance path, i.e., the shorter path. If two or more inheritance paths have the same length the concept inherits property that corresponds to more strength in the inheritance path.

4. INHERITANCE ALGORITHM

The inheritance algorithm for the KRFPN is presented as follows:

Input: A concept of interest di ( D, the depth of the inheritance k; 0( k <(, and (.

Output: The properties of the concept di ( D, obtained by looking up the properties locally attached to the concept di, and the properties attached to the concepts that lie at higher levels in the conceptual hierarchy. The properties are expressed by means of semantic interpretations of the inheritance paths.
Step 1. For a given concept of interest di ( D, by using the inverse function (-1, find the corresponding place pk:




(-1: di ( pk.

If  di ( D stop the algorithm and send the message: “di is an unknown  concept”.

Step 2. Define the initial marking (0 = ((1, (2, ... ,  (n), where for j = 1, 2, ... , n
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Step 3. Define the initial distribution of tokens (0 = (0 = ( (, (, (, ... {(pj, c(m1)}, ... , (, () and set c(m1) = 1.0;

Step 4. For the initial distribution of tokens (0 = (0 construct k levels of the inheritance tree.

Step 5. By using the elements of the inheritance tree: a node at level i – 1, a labelled arc, a corresponding node at level i, and the functions ( and (, form the inheritance assertions. 

Step 6. Find the inheritance paths, starting from the root node of the inheritance tree and finishing at the leaves of the inheritance tree. Determine the strengths of each inheritance path.

Step 7. If there are situations involving conflict due to the conflicting multiple inheritance use the inferential distance ordering concept or (if that fails) make a decision on the basis of the more direct inheritance path. If two or more inheritance paths have the same length the 

concept inherits the property that corresponds to the stronger path. On the basis of the above criteria, remove the inheritance assertion that is the source of conflict and all the inheritance assertions that follow it. 

Example 2

For the knowledge base represented in Fig. 3. infer the properties of the concept Fred (with the depth of inheritance k = 3) and ( = 0.1. 

A set of contradictions C = {(is_a, is_not_a), (is_in_front, is_behind_of), (Biped, Quadruped)}.

Input: Fred (D, k = 3, ( = 0.1.

Step 1.

 (-1: Fred ( p1

Step 2. The initial marking is (0 = (1, 0, 0, 0, 0, 0, 0, 0)

Step 3. The initial distribution of tokens is (0 = (0 = ({(p1, c(m1)}, (, (, (, ..., ... , (, () and  c(m1) = 1.0;

Step 4. The inheritance tree is shown in Fig. 6.

Step 5. The inheritance assertions are (see Fig. 6):

Level 1:
Fred is_a Human; (((p1) ((t1) ((p2)); (strength = 0.90) 

Fred is_in_front  Clyde; (((p1) ((t9) ((p3)); (strength = 0.90) 

Fred has_characteristic Kind_hearted;  (((p1) ((t11) ((p10)); (strength = 0.50) 

Fred has  Soul; (((p1) ((t13) ((p9)); (strength = 0.80)

Level 2: 

Human is_a Mammal; (((p2) ((t4) ((p5)); (strength = 0.9) 

Human is_a Biped;  (((p2) ((t5) ((p6)); (strength = 0.72) 

Human is_not_a Quadruped; (((p2) ((t6) ((p7)); (strength = 0.9)

Level 3: 

Mammal is_a Quadruped; (((p5) ((t7) ((p7)); (strength = 0.72) 

Step 6. The inheritance paths and their interpretations are:

(i) Fred is_a Human AND is_a Mammal AND is_a   Quadruped; (0.72)
(ii) Fred is_a Human AND is_a Biped; (0.72)
(iii) Fred is_a Human AND is_not_a Quadruped;(0.90)

(iv) Fred is_in_front Clyde; (0.90)

(v)  Fred has a  Soul; (0.80)
(vi) Fred has_characteristic Kind_hearted; (0.50)

Step 7. According to the elements of the set of contradictions C and the definition of the contradiction, the inheritance paths (i) and (ii) generate contradictions because (Biped, Quadruped) ( C. The paths (i) and (iii) introduce a conflicting multiple inheritance due to (is_a, is_not_a) ( C. There is an ambiguity about the above inheritance paths: Is Fred a quadruped or a not? 

To resolve the above ambiguity we can determine whether the inheritance path (iii) is more direct than the path (i). The inheritance path (i) is a path from the concept Fred through the concepts Human and Mammal to the concept Quadruped, simultaneously there is the inheritance sub-path Human is_a_not Quadruped.

The result of resolving the conflict situation on the basis of the more direct inheritance path is:

Fred is_a Human AND is_a Mammal; (0.90)
Fred is_a Human AND is_a Biped; (0.72)
Fred is_a Human AND is_not_a Quadruped; (0.90)
Fred is_in_front Clyde;(0.90)
Fred has  Soul; (0.80)
Fred has_characteristic Kind_hearted; (0.50).
Therefore, the inheritance process resulted in the following statements: Fred is a human and a biped, he has a soul, and he is kind hearted. 

The strength attached to each inheritance path has to be interpreted as the confidence of the statement. With reference to Table I, for instance, the statement: Fred is_a Human AND is_a Mammal; (0.90) is interpreted as very true, while the statement Fred has_characteristic Kind_hearted; (0.50) is interpreted as moderately true.

5. CONCLUSION
An original fuzzy inheritance procedure for the knowledge-representation scheme KRFPN based on the Fuzzy Petri Net (FPN) theory is proposed.  The inheritance uses a k-level inheritance tree, which is generated on the basis of the dynamical properties of the FPN, i.e., on firing-enabled transitions and changing the values of the tokens according to the association function f that specifies the degree of assurance for the relation assigned to the transitions. The very important properties of the inheritance algorithm are that the k-level inheritance tree is finite and that the upper bound of the time complexity of the fuzzy inheritance algorithm is O(nm), where n is the number of places and m is the number of transitions. These allow the efficient execution of the inheritance procedure. Adaptation of the knowledge-representation scheme KRFPN for time-varying fuzzy knowledge and spatio-temporal reasoning are our future directions.
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