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Abstract. The paper focuses mainly on the identification of the crane electromechanical system 
where hanging load is transferred from one to another place, in the some limited storage area. For 
this purpose, Artificial Neural Network (ANN) based identification is used. Authors investigate the 
ANN learning problems and the identification accuracy. The comparison between an ANN 
identification method and an identification based on the Least Square (LS) estimation method has 
been done. Experimental verification is made on the scaled laboratory model of the planar gantry 
crane electromechanical system, (SPG-Single Pendulum Gantry).  
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1. INTRODUCTION 

In modern industrial systems, gantry cranes are widely 
used for the heavy loads transfer. When the fast and time 
optimal load positioning is needed, a high acceleration rate 
can cause considerable load swinging and consequently 
negative influence on the control and safety performances. 
In this case, apart from the load position control, a load 
swing angle should be undoubtedly controlled too. For an 
associated control problem solving, conventional solutions 
based on the linear mathematical model are used, such as 
linear state feedback controllers designed by Pole 
Placement (PP) or Linear Quadratic (LQ) optimal method 
[1, 2].  However, conventional control solutions can’t solve 
the problems related to the system nonlinearities (e.g. a 
positioning error introduced by the static friction and 
backlash) causing a significant load positioning error and 
consecutively a performance deterioration. Generally, linear 
model derived from nonlinear differential equations, is 
efficient only in the system operating point, i.e. in the 
linearization point. If the linear controller can not keep the 
system in this point for any reason, systems performances 
deteriorate. In this connection, either advanced control 
strategy (nonlinear, adaptive, etc.) or intelligent control 
methods (neural, fuzzy, GA) are used for system 
performances improvement.  

Nonlinear mathematical model, in any form used (as an 
artificial neural network, fuzzy logic, in the form of 
nonlinear differential equations, in the form based on the 
tensor product transformation etc) can be used for different 
tasks: for the system trajectory calculation [3], modeling of 
electromechanical systems [4-6], as well as for controller 
design [5-10]. However, as for the linear system, a main 
problem is to find accurate values of the model parameters, 
which also can be time variant.  

This paper investigates neural network based system 
model identification. The system identification is motivated 
by two reasons. First is determination of the accurate gantry 
system mathematical model, intended to be used for the 
investigation of the system friction model. Second reason is 

the use of the ANN directly as a control block replacing the 
inverse dynamics of the plant. 

Authors also investigate problems related to the neural 
network learning, such as impact of the test function and 
model structure on the estimation accuracy. 
In the section 2 mathematical equations of the motions are 
presented while in the section 3 the main principle of the 
neural based identification is given. Simulation and 
experimental results (with experimental model description) 
are presented in the section 4 , 5 and 6. 

2. MATHEMATICAL EQUATIONS OF THE 
MOTION 

The single pendulum gantry mounted on the linear cart is 
presented in the Fig.1.  

 0>α&

α

cM

pM

py

tx

px

cx

0>cF
x

y

 
Fig. 1: Single pendulum gantry crane system 

 
When facing the cart, a positive direction of the cart 

motion is to the right and a positive sense of the pendulum 
rotation is defined as counter clockwise. Also, the zero 
angle, corresponds to a suspended pendulum vertical rest 
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down position. Single pendulum gantry can be presented as 
a system with one input u (motor voltage), and two outputs: 
α (pendulum angle) and xc (cart position). Mathematical 
equations of the motion can be defined via Lagrange 

equations using a total potential and kinetic energy, [2]. 
Nonlinear equations of the motion are presented in (1) and 
(2). After linearization around pendulum angle α=0, linear 
equations of the motion (3) and (4) has been derived.   
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TABLE I 
SINGLE PENDULUM GANTRY PARAMETERS 

 

Parameters Description 

Beq=5.4 [Nms/rad] equivalent viscous damping coefficient as 
seen at the motor pinion 

Bp=0.0024 [Nms/rad] viscous damping coefficient as seen at the 
pendulum axis 

ηg=1 planetary gearbox efficiency 
ηm=1 motor efficiency 
g=9.81 [m/s2] gravitational constant of earth 
Ip= 0.0078838 [kgm2] pendulum moment of inertia 
Jm= 3.9001e-007 
[kgm2] rotor moment of inertia 

Kg= 3.71 planetary gearbox gear ratio 
Km= 0.0076776 back electro-motive force (EMF) constant 
Kt= 0.007683 motor torque constant 

lp=0.3302 [m] pendulum length from pivot to center of 
gravity 

Mc= 1.0731 [kg] lumped mass of the cart system, including 
the rotor inertia 

Mp= 0.23 [kg] pendulum mass 
Rm= 2.6 [Ω] motor armature resistance 
rmp= 0.00635 [m] motor pinion radius 

3. SYSTEM IDENTIFICATION USING NEURAL 
NETWORKS 

Two structures of the system models were investigated, 
Nonlinear AutoRegressive model with eXogenous inputs 
(NARX) and Nonlinear Output Error (NOE), [11, 12]. The 
main goal is to correctly identify the NARX model of the 
process. For the model output prediction, in the case of 
NARX structure, the real system output has to be measured. 
Basically, the NARX structure gives one ahead output 
prediction. On the contrary, the NOE structure calculates a 
model output, based on its last output and system input 
(control signal), so there is no need for the output signal 
measurement. Drawback is that NOE structure output 
feedback can cause instability. Neural network parameters 
are estimated using a Modified Levenberg-Marquardt 
(MLM) learning algorithm with and without regularization. 
Although this learning algorithm is designed for the NARX 
neural networks, with a careful selection of the test signal 
this algorithm can also be used for the NOE structure. But it 
should be emphasized that the NOE structure is used only 
as a validation criteria for the NARX structure. Hereinafter 
these two estimator structures will be noted as NARX_NN 
and NOE_NN estimators. A system identification for the 
two different system outputs was made; for the pendulum 
tip position and pendulum tip velocity. This is because the 
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model output type has considerable impact on the 
identification accuracy. These two models will be noted in 
the paper as the pendulum position and the pendulum 
velocity model.  

MultiLayer Perceptron (MLP) two layer neural networks 
were chosen for the system identification, where the hidden 
layer uses a tansig and the output layer purelin activation 
function, [13]. Since only one output value is estimated all 
NN in the article have one neuron in the output layer. 

System identifications are performed in simulations 
(section 4) and on the experimental setup (section 6). 
Identification results are compared with the LS estimator. 
Design of the LS estimator is not a subject of this paper, it 
is explained in [14].  
 

4. SIMULATION RESULTS 

In the simulation, neural network was used for the nonlinear 
gantry model identification (equation (1),(2)), Fig.2. 
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Fig.2. Simulation model of the SPG 

According to the simulation results and following the 
parsimony principle, only one neuron in the hidden layer is 
enough for the proper system identification, because the 
nonlinearity effect is small. The simulation model, although 
nonlinear, for small swinging angles can be considered as 
linear one. This rises an important question: Why we should 
use the NN for identification of a process with a low 
“amount” of nonlinearity? The answer is simple. The real 
process has a nonlinearity expressed in the nonlinear 
friction. To simplify the NN learning task, from the NN 
network is first asked to learn the almost linear process (the 
simulation model). Then, the coefficients obtained with this 
simulation are set as initial learning conditions when the 
NN network should learn the real process. Doing that, one 
can compare the LS estimator with the NN identification on 
a linear process too; it might be interesting as well.  
For the identification accuracy is crucial to apply the test 
signal which will excite all system modes. Usually Band 
Limited White Noise Signal (BLWNS) or Pseudo Random 
Binary Signal (PRBS) based test signal are used. However, 
experimental results here confirmed that these signal give 
good results but not to the extent necessary. This is because 
these signals excite all frequencies and not only system 
modes. This in turn results in an identification surface 
whose global minimum is harder to find then the 
identification surface generated with the test signal that 
excites only system modes. Different types of the test signal 
are investigated and for the signals presented in the Fig.3 a) 
and b) best identification results are achieved. Test signal in 

the Fig.3.a) is used for the pendulum velocity and signal in 
the Fig.3.b) for the pendulum position model identification. 
For the comparison, system is identified with LS estimator 
and results are compared with neural estimators. 

  
a) b) 

Fig.3. Test signals used in simulation, 
a) for pendulum velocity and b) for pendulum position 

model 

4.1. Pendulum velocity model 

Criterion function value over epochs for pendulum velocity 
model identification is presented in the Fig.4. 
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Fig.4. Criterion function over epochs for pendulum velocity 

model identification 
 
After aprox. 40 epochs, MLM algorithm learning ability 
starts to decrease. In spite of this, identification results are 
quite good because criterion function has very small values 
indicating that the learning algorithm is near the global 
minimum. 
Result of the identification for the pendulum velocity model 
with the NARX structure is presented in Fig.5.a) and with 
the NOE structure in Fig.5.b). These results are compared 
with the results of the LS estimation in Fig.5.c). It can be 
noticed that identification procedures, even for the NOE 
structure, give good results. Careful selection of the test 
signal gives good results for the NOE structure even with 
the MLM learning algorithm. 

4.2. Pendulum position model 

In the Fig.6. identification results for the pendulum position 
model are presented. Fig.6.a) presents results for the 
NARX, Fig.6.b) for the NOE structure and Fig 6.c) for the 
LS estimator. A deterioration of the NOE_NN estimator 
performance compared to the NARX_NN or LS estimator 
can be noticed. Comparing Fig.5.b) and Fig.6.b) it is also 
clear that pendulum velocity model is more appropriate for 
identification because it gives better identification results in 
the NOE structure. This is expected because the velocity 
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model regression vector is 6 dimensional. The position 
model regression vector is 8 dimensional, which means that 
the space where the learning algorithm has to find the 
minimum is 2 dimensions higher. In other words, the 
learning algorithm has a tougher job here. NN have more 
parameters to estimate than the LS estimator. On one hand 
more parameters means more model flexibility, but on the 
other hand the learning task becomes more complex and 
difficult. The LS estimator gives the transfer function which 
relates the pendulum tip position and the control voltage in 
the z-domain as 
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The same transfer function can be obtained form equation 
(3) using the ZOH transformation. That means the process 
estimation with LS estimator has been performed correctly. 
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 a)     b)    c) 

Fig.5. Simulation results for the pendulum velocity model identification, a) NARX_NN, b)NOE_NN, c) LS estimator 
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 a)     b)    c) 

Fig.6. Simulation results for the pendulum position model identification, a) NARX_NN, b) NOE_NN, c) LS estimator 
 

5. SINGLE PENDULUM GANTRY 
EXPERIMENTAL SETUP 

Experimental tests have been performed on the scaled 
laboratory model of the planar gantry crane 
electromechanical system, (SPG-Single Pendulum Gantry). 
The experimental model of a SPG consists of two basic 
parts: cart with pendulum and digital control system 
implemented on the personal computer with AD interface, 
[1,6,10,15].  

The cart is driven by DC servo motor by the rack and 
pinion mechanical interface, Fig.7. Driving motor, two 
encoders and additional weight are placed on the cart. 
Encoders are used for the cart position and the pendulum 
angle measurement, and additional weight is used to ensure 
better cart fitting to the pinion on the rack. The cart position 
resolution is 22.75 μm, the swing angle resolution is 0.0015 
rad. and available cart distance (the length of the rack) is 1 
m (maximum). 

Digital control system consists of a personal computer 
(PC), data acquisition board (DAC), terminal board and 
power supply with amplifier unit (UPM).Terminal unit is 
connected to DAC board supplied with 16 differential 14 bit 
analogue inputs, 4 analogue 12 bit outputs, 6 optical 
encoder inputs, 48 programmable digital inputs. Universal 

power module (UPM) with +/-15V, 3A has amplifier for 
electromechanical plant's actuators (DC motors). This 
laboratory system use microprocessor of personal computer 
(PC) for simulation and software development as well as for 
real-time control. Control algorithm, designed and 
simulated in MATLAB/Simulink environment, use 
graphically oriented software interface for real-time code 
generation. This application oriented code is running under 
the same PC.  

 
 

Fig. 7. Single pendulum gantry laboratory model 
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6. EXPERIMENTAL VERIFICATION  

From the simulation results can be concluded that LS 
estimator gives, in overall, the best results for the system 
identification. However, in the real system a big influence 
of unmodelled nonlinearities can be expected, so LS 
estimator performance could be deteriorated. The largest 
influence on the system performance has the nonlinear 
friction presented in simulation and modeled as linear 
(viscous) friction. Backlash is so small in the real system 
and it couldn’t be identified with the sample time of 0,06 s. 
Lower sampling rates are not advisable because the system 
possesses measurement noise. In this case neural network 
identification should give better performance compared to 
the LS estimator. Because of the nonlinearities, a number of 
the network hidden layer neurons should be reviewed. 

For the identification of the pendulum velocity model, six 
neurons in the hidden layer are used, and for the pendulum 
position model only three neurons in the hidden layer are 
used. The number of neurons in the hidden layer was 
determined experimentally. In both cases the simulation 
model of the process can be used to set up initial 
coefficients of the NN. If this is done, the NN learning 
algorithm has a much simpler task, it has to learn only the 
nonlinear components of the process. Better generalization 
of such NN is also expected. The model order can also be 
estimated using the linear model. The linear model order 
regression dimensions are 6 and 8. In order to acknowledge 
the nonlinear friction these dimensions can be increased to 
8 and 10. Experimental results show that this in not 
necessary. The learning algorithm uses regularization which 

reduces the order of the model, if it is selected to big. But, 
as stated, the regularization did not have a considerable 
influence, because the model order are optimally chosen by 
experimentation. 

Like in simulation, selection of the test signal is 
important for the identification accuracy. Experimental 
testing showed that the best results are achieved for the test 
signals presented in the Fig.8. Experimental results are 
presented in Fig.9 and Fig 10. For the both models the 
results with NOE structure are not suitable. Only the results 
obtained with NARX neural network track the real system 
output. A reason for that is the nonlinearity which can not 
be identified with LS estimator, or in the case of the 
NOE_NN structure, unmatched learning algorithm. Poor 
results with the NOE structure are predictable because the 
NOE_NN is intended only as validation criteria for the 
NARX_NN. Also experimental results confirmed that in the 
case of neural network identification pendulum velocity 
model is more suitable to use. 

 
a) b) 

Fig.8. Test signals used in experimental verification, 
a) for pendulum velocity and b) for pendulum position model 
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Fig.9. Experimental results for the pendulum velocity model identification, a) NARX_NN, b) NOE_NN, c) LS estimator 
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a)     b)    c) 

Fig.10. Experimental results for the pendulum position model identification, a) NARX_NN, b) NOE_NN, c) LS estimator 
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7. CONCLUSION  

Using artificial neural network, the identification of the 
planar gantry electromechanical crane model has been 
successfully done.  Two neural network estimator structures 
are compared; NOE and NARX. The identification of the 
two different models for different outputs is performed too, 
and the identification results of the neural network 
estimation are compared with the results obtained with the 
LS estimator.  

The simulation testing showed identification accuracy 
dependence on the test signals profiles. The simulation 
results shows that both types of the neural network 
estimators give good results in comparison with the LS 
estimator.  

For the experimental testing, number of neurons in 
hidden layer has to be increased due to the system 
nonlinearities (mainly friction, backlash can be neglected in 
this specific experiment). The experimental results confirm 
that the LS estimator can not estimate system nonlinearities.  

Poor results with the NOE structure are predictable 
because the applied learning algorithm is mainly design for 
NARX structure. From this reason, the NOE_NN is 
intended only as validation criteria for the NARX_NN. To 
obtain better results an appropriate NOE (on-line) learning 
algorithm must be applied. However, this implicates neural 
network stability problems and also problems related to the 
algorithm complexity (real world implementation 
problems). 

Identification of the nonlinear friction was done with the 
NARX_NN. Though results obtained with the NARX 
structure shows good performance, the well known 
drawback of the NARX estimator is the need for the system 
output measurement. If the linear model of the process 
exists, a method for simplifying the learning task is 
suggested. 

The simulation and experimental results indicate that in 
the case of the neural network estimators, pendulum 
velocity model is more suitable to be used. 
In the future work the obtained results will be used to 
implement the inverse dynamic ANN controller for the 
electromechanical system described in this paper. 
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