
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

DIPLOMA THESIS num. 1683

Collocation extraction measures

for text mining applications

Saša Petrović

Zagreb, September 2007



This diploma thesis was written at Department of Electronics,

Microelectronics, Computer and Intelligent Systems, Faculty of Electrical

Engineering and Computing, University of Zagreb, Croatia, and at Institut de

recherche en informatique et systèmes aléatoires (IRISA), Université de Rennes 1,

Rennes, France, during INRIA internship from April 12 to June 12, 2007.



Contents

Contents i

List of Figures iii

List of Tables iv

List of Examples v

Acknowledgments vi

I Collocation Extraction 1

1 Introduction 2

1.1 What are collocations and what have they done for me lately? . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Corpus Preprocessing 7

2.1 Obtaining Word n-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Lemmatisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Counting and POS Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Association Measures 10

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Definitions for Digrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Extending Association Measures . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Heuristic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Evaluation 22

4.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Obtaining Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



Contents ii

5 Results 33

5.1 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Digrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Trigrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Tetragrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion of the First Part 49

II Application in Text Mining 51

7 Letter n-grams 52

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Applications of Letter n-grams . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Correspondence Analysis 55

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Applications of Correspondence Analysis . . . . . . . . . . . . . . . . 56
8.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Implementation in Orange 69

9.1 Text Preprocessing in Orange . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 Visual Programming with Widgets . . . . . . . . . . . . . . . . . . . . . 76

10 Comparison of Text Features for Correspondence Analysis 83

10.1 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Conclusion of the Second Part 95

Abstract 97

Bibliography 98



List of Figures

5.1 Digram results for NN corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Digram results for Vjesnik corpus . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Digram results for Hrcak corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Digram results for Time corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Trigram results for NN corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Trigram results for Vjesnik corpus . . . . . . . . . . . . . . . . . . . . . . . . 41
5.7 Trigram results for Hrcak corpus . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Trigram results for Time corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9 Tetragram results for NN corpus . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Tetragram results for Vjesnik corpus . . . . . . . . . . . . . . . . . . . . . . . 44
5.11 Tetragram results for Hrcak corpus . . . . . . . . . . . . . . . . . . . . . . . . 44
5.12 Tetragram results for Time corpus . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Biplot showing employee types and smoker categories . . . . . . . . . 68

9.1 Text tab in Orange containing widgets for text preprocessing . . . . . 76
9.2 TextFile widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Preprocess widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.4 Bag of words widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.5 Letter n-gram widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.6 Word n-gram widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.7 Feature selection widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.1 Separation of four categories using word digrams . . . . . . . . . . . . . 89
10.2 Sports cluster as separated by using word digrams . . . . . . . . . . . . 90
10.3 Separation of domestic and foregin policy using word digrams . . . 91
10.4 Plots for two different languages using words . . . . . . . . . . . . . . . . 92
10.5 Plots for two different languages using word digrams . . . . . . . . . . 93

iii



List of Tables

4.1 Basic type statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Basic token statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Zipf distribution of n-grams in the four corpora . . . . . . . . . . . . . . 26

5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Best extension patterns for trigrams and tetragrams . . . . . . . . . . . 47

8.1 Decomposition of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 Incidence of smoking amongst five different types of staff . . . . . . . 66

10.1 Results for different text features on the English part of corpus . . . 86
10.2 Results for different text features on the Croatian part of corpus . . 86

iv



List of Examples

5.1 Number of n-grams above the last positive example . . . . . . . . . . . 35
5.2 Unequal treating of POS patterns . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.1 Correspondence analysis of smoker data . . . . . . . . . . . . . . . . . . . 65
9.1 Adding words as features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Adding letter n-grams as features for text . . . . . . . . . . . . . . . . . . . 73

v



Acknowledgments

The work presented in this thesis would never be completed without the help
of many people. First of all, I would like to thank my advisor, prof. Bojana Dal-
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CHAPTER 1

Introduction

In the beginning was the Word,
and the Word was with God, and
the Word was God

Bible

Natural language processing (NLP) is a scientific discipline combining the
fields of artificial intelligence and linguistics. It studies the problems of auto-
mated generation and understanding of natural human languages and uses
linguistic knowledge, namely grammars, to solve these problems. Statisti-

cal NLP is a specific approach to natural language processing, which uses
stochastic, probabilistic, and statistical methods to resolve some of the diffi-
culties traditional NLP suffers from. For example, longer sentences are highly
ambiguous when processed with realistic grammars, yielding thousands or
millions of possible analyses. The disambiguation in statistical NLP is carried
out with the use of machine learning algorithms and large corpora. Text min-

ing is a subfield of data mining, which is, as NLP, a subfield of artificial intel-
ligence. Text mining is an interdisciplinary field, combining fields like infor-

mation retrieval, machine learning, statistics, and computational linguistics.
Typical text mining tasks include text categorization, text clustering, concep-
t/entity extraction, production of granular taxonomies, sentiment analysis,
document summarization, and entity relation modeling. Collocation extrac-

tion is one of many tasks in statistical NLP, and it involves finding interesting
word combinations, collocations, in large corpora. Collocation extraction will
be the topic of the first part of this thesis. The second part of the thesis will de-
scribe the application of collocations on one text mining task—visualization
of a corpora. The goal of this visualization will be to find clusters of docu-
ments that talk about similar topics.

2



1.1. What are collocations and what have they done for me lately? 3

1.1 What are collocations and what have they

done for me lately?

A collocation is “an expression consisting of two or more words that corre-
spond to some conventional way of saying things” [32]. Even though the pre-
vious definition gives some insight into what a collocation is, it fails to give
a precise and formal definition of the term collocation that could be used in
real applications. Closely related to the term collocation is the term word n-
gram, which denotes any sequence of n words. A word n-gram consisting of
two words is called a digram, word n-gram consisting of three words is called
a trigram and a word n-gram consisting of four words is called a tetragram.
In the first part of the thesis, for simplicity reasons, instead of writing “word
n-gram”, the term “n-gram” will be used.

Over the years, many authors tried to give a definition of a collocation, but
even today there does not exist a widely accepted one. Various definitions
range from identifying collocations with idioms, to saying that a collocation
is just a set of words occuring together more often than by chance. However,
there are three criteria which most collocations satisfy [32]:

• Non-compositionality means that the meaning of the whole colloca-
tion is more than a sum of meanings of the words forming it.

• Non-substitutability means that we cannot substitute a word in a col-
location with another word having similar or even same meaning.

• Non-modifiability means that we cannot freely modify the collocation
with additional lexical material or put the collocation through some
grammatical transformations. This criteria is especially true for idioms.

The definition of collocation adopted here lies somewhere in between. By a
notion of collocation four different types (subclasses) of collocations will be
considered. The first one coincides with the definition of an open compound

(compound noun) in [46]. An open compound is defined as an uninterrupted
sequence of words that generally function as a single constituent in a sen-
tence (e.g., stock market, foreign exchange, etc.). The second and third types
of collocations covered here are proper nouns (proper names) and terminolog-

ical expressions. The latter usually refers to concepts and objects in technical
domains (e.g., monolythic integrated circuit). The fourth type of collocation
is somewhat less idiomatic and more compositional than an open compound
and it involved sequences of words often occuring together interrupted by a
preposition or a conjunction, and describing similar concepts (e.g., sport and

recreation, guns and ammunition, etc.). We should note here that all these
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types of collocations are uninterrupted and short-span, unlike long-span col-
locations used in [55].

There are many possible applications of collocations [32]: finding multi-
ple word combinations in text for indexing purposes in information retrieval,
automatic language generation, word sense disambiguation in multilingual
lexicography, improving text categorisation systems, etc. These applications
will be discussed further in the next section.

The motivation behind the whole process of extracting collocations de-
scribed here was improvement of the document indexing system CADIS [30].
This system was initially developed for indexing documents in Croatian, so
that is why, in this work, more weight is given to extracting collocations from
Croatian corpora. The reason for adopting the definition of a collocation men-
tioned above now becomes apparent. All four mentioned types of colloca-
tions are very useful for indexing purposes—the first three types are known to
bare useful information about content of a document, while the fourth type
adopted here was found very useful for indexing performed by human ex-
perts. The focus of this work is to filter out non-collocations that could not
otherwise be filtered out by POS tags and frequency alone. It is hoped that the
extracted collocations will help improve the indexing system [30] by serving as
a complement to the traditional bag-of-words representation of a document.
For example, if the word foreign appears 10 times in some document, one can
tell very little about the topic (content) of the document. But, if the colloca-
tion foreign exchange appears 10 times in some document, the document is
probably about economics or money in general, while if the collocation for-

eign student appears frequently, the document is probably about education.

1.2 Related Work

There are a lot of papers that deal with the problem of collocation extraction,
but the lack of a widely accepted definition of a collocation leads to a great di-
versity in used measures and evaluation tehniques, depending on the purpose
of collocation extraction. Smadja and McKeown [46] use collocation extrac-
tion for the purpose of language generation, so they seek to capture longer
collocations and especially idioms in order to improve their system. They use
a lot of statistical data (word frequencies, deviation, distances, strength, etc.)
to accomplish the task. On the other hand, Goldman and Wehrli [20] use their
system FipsCo for terminology extraction, so they rely on a very powerful syn-
tactic parser. Unlike both of them, Wu and Chang [58] set out to extract col-
locations from a bilingual aligned corpus, and for this they use a number of
preprocessing steps in combination with the log-likelihood ratio and a word
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alignment algorithm, while Vechtomova [55] uses long-span collocations for
query expansion in information retrieval.

In order to compare AMs, a framework for evaluating them is needed. Un-
fortunately, there doesn’t exist a method for evaluating AMs on which a ma-
jority of authors agree so there are a number of different approaches used by
different authors. For example, Smadja [46] employs the skills of a profes-
sional lexicographer to manually tag n-grams as either collocations or non-
collocations, Thanopoulos et al. [52] and Pearce [39] use WordNet [19] as a
gold standard, while Evert and Krenn [17] use a small random sample of the
entire set of candidates for comparison. Somewhere in between lies the ap-
proach taken by da Silva and Lopes [45]. They have manually inspected sev-
eral hundred randomly selected n-grams from the set returned by each of the
tested measures, tagged them as collocations or non-collocations and com-
puted precision based on that. Each of these methods has its advantages
and its problems—Smadja’s approach gives a very accurate value for preci-
sion and recall but on the other hand takes very long, Thanopoulos’ method
is faster but, as he states “WordNet is both impure and incomplete regarding
non-compositional collocations”, while Evert’s method is the fastest one and
good for ranking AMs, but one can only estimate true recall and precision for
an AM. The confidence intervals for the estimate will then depend on the size
of the random sample. With the method used by da Silva and Lopes it is im-
possible to compute recall so they use the total number of multi-word units
extracted by each measure as an indirect measure of it. Method of evalua-
tion adopted here is similar to Evert’s and will be thouroughly described in
section 4.

The work undertaken in the first part of this thesis is actually an extension
of work done by Petrović et al. [41]. In [41], a basic framework for the ex-
periments was established and experiments were run on the Narodne Novine
corpus, for digrams and trigrams. Here, the experiments are extended to three
more corpora, and also to tetragrams. In addition, the work done here on ex-
tending the association measures is completely new.
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First part of the thesis is organized as follows:

Chapter 2 describes a formal approach to corpus preprocessing.

Chapter 3 gives an introduction to the used association measures, their pos-
sible extensions for trigrams and tetragrams, and also proposes some
heuristic ways of extending them.

Chapter 4 describes the datasets and the approach to evaluation in more de-
tail.

Chapter 5 gives the results and discusses them, while

Chapter 6 outlines the possible future work and concludes the first part.

The second part has the following structure:

Chapter 7 explains what are letter n-grams and where they are used.

Chapter 8 gives the mathematics behind correspondence analysis, the tool
used to visualize the corpora.

Chapter 9 describes how the different text preprocessing methods are imple-
mented in a data mining software called Orange, and also how to use
them.

Chapter 10 compares how the different text features perform on the task of
visualizing the corpora in order to find if some of the features are better
than others for this.

Chapter 11 concludes the second part.



CHAPTER 2

Corpus Preprocessing

Words are more treacherous and
powerful than we think

Jean Paul Sartre

Collocations are extracted according to their ranking with respect to an asso-
ciation measure. These measures are based on raw frequencies of words and
sequences of words (n-grams) in corpus, which are obtained by preprocess-
ing the corpus. In this context, preprocessing the corpus means tokenization,
lemmatization, and POS tagging of the words in the corpus, and counting how
many times each word and n-gram appears in the corpus.

In this chapter, preprocessing of the corpus will be formalised, which is
not usually done in literature. The reason for including this formalisation,
taken from [41], is that it enables later definition of extensions for association
measures.

2.1 Obtaining Word n-grams

Definition 2.1. Let W be a set of words and P be a set of punctuation symbols,

and W∩P=∅. The corpus C is represented as a sequence of tokens, i.e., words

and punctuation symbols, of finite length k :

C= (t1, t2, . . . , tk )∈ (W∪P)k . (2.1)

Let W+ =
⋃∞

n=1 Wn be the set of all word sequences. An n-gram is a sequence of

words, defined as an n-tuple (w1, w2, . . . , wn )∈W+.

From now on, instead of (w1, w2 . . . , wn ), we will write w1w2 · · ·wn as a
shorthand.

7



2.2. Lemmatisation 8

Each occurence of an n-gram can be represented by a tuple (w1 · · ·wn , i )∈

W+×N, where i ∈ N is the position of the n-gram in C. Let S be the set of all
n-gram occurences in corpus C, defined as follows:

S=
n

(w1 · · ·wn , i )∈W+×N :

(i ≤ k −n +1) ∧

(1≤ j ≤ n )(w j = t i+j−1)
o

.

(2.2)

Note that n-grams from S do not cross sentence boundaries set by the punc-
tation symbols from P. There are exceptions to this rule: when a word and
a punctuation following it form an abbreviation, then the punctuation is ig-
nored. The corpus C is preprocessed to reflect this before obtaining n-grams.

2.2 Lemmatisation

Words of an n-gram occur in sentences in inflected forms, resulting in various
forms of a single n-gram. In order to conflate these forms to a single n-gram,
each word has to be lemmatised, i.e., a lemma for a given inflected form has to
be found. The context of the word is not taken into account, which sometimes
leads to ambiguous lemmatisation. Let lm : W→ ℘(W) be the lemmatisation
function mapping each word into a set of ambiguous lemmas, where ℘ is the
powerset operator. If a word w ∈ W cannot be lemmatised for any reason,
then lm(w ) =w .

Another linguistic information obtained by lemmatisation is the word’s
part-of-speech (POS). In this work, the following four parts-of-speech are con-
sidered: nouns (N), adjectives (A), verbs (V) and stopwords (X). Of these four,
stopwords deserve some additional attention. Stopwords are words that ap-
pear very frequently in written or spoken natural language communication,
so they are sometimes regarded as signal noise in the channel (when viewed
through Shannon’s model of information [44]). In many text mining applica-
tions, stopwords are first filtered out before doing any other text processing.
Here, stopwords include prepositions, conjunctions, numbers, and pronouns.
Let POS = {‘N’,‘A’,‘V’,‘X’} be the set of corresponding POS tags. Let function
pos : W→℘(POS) associate to each word a set of ambiguous POS tags. If word
w ∈W cannot be lemmatised, then its POS is unknown and is set to POS, i.e.,
pos(w ) = POS. Let POS+ =

⋃∞

n=1 POSn be the set all POS tag sequences, called
POS patterns.
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2.3 Counting and POS Filtering

Let f : W+→N0 be a function associating to each n-gram its frequency in the
corpus C. It is defined as follows:

f (w1 · · ·wn ) =

�
�
�

n

(w ′
1 · · ·w

′
n

, i )∈ S :

(1≤ j ≤ n )(lm(w j )∩ lm(w ′
j ) 6=∅)
o�
�
�.

(2.3)

Due to lemmatisation, the obtained frequency is insensitive to n-gram inflec-
tion.

Only n-grams of the appropriate POS patterns will be considered colloca-
tion candidates. Therefore, there is a need for a function that filters out all
n-grams that do not conform to those patterns.

Definition 2.2. Let POS f ⊆ POS+ be the set of allowable POS patterns defining

the POS filter. An n-gram w1w2 · · ·wn is said to pass the POS filter iff:

POS f ∩

n∏

j=1

pos(w j ) 6=∅, (2.4)

where Π denotes the Cartesian product.



CHAPTER 3

Association Measures

You shall know a word by the
company it keeps

John Firth

Association measures (AMs) are used to indicate the strength of association
of two words. Note that we say “two words” because all AMs are originally
defined for digrams [32], so all existing measures for n-grams where n > 2 are
basically proposed extensions of digram measures. Choosing the appropriate
association measure is crucial to the whole process of extracting collocations,
because we use this measure to say whether or not an n-gram is a collocation.

The work done on proposing various AMs and on comparing them be pre-
sented in section 3.1, after which the basic definitions for some of them will
be given in section 3.2. Section 3.3 gives a formalisation of the process of ex-
tending AMs, while some heuristic ways of extending AMs are proposed in the
last section.

3.1 Introduction

Association measures used in the literature can roughly be divided into four
categories:

• Sorting by pure frequencies—this is the most simple measure where
each n-gram gets a score equal to its frequency in the corpus

• Hypotesis testing measures—these are measures that test the null hy-

potesis which states that there is no association between the words be-
yond chance occurences. They work by computing the probability p

10



3.1. Introduction 11

that the event would occur if H0 were true, and then reject H0 if p is too
low (using a certain significance level). Most commonly used hypotesis
testing measures are t -test, likelihood ratios, and Pearson’s chi-square
test.

• Information theoretic measures—a typical representative of this class
is the mutual information measure. Mutual information tells us how
much does the information we have about the occurence of one word
at position i + 1 increase if we are provided with information about the
occurence of another word at position i .

• Heuristic measures—various authors have tried to define their own mea-
sures of collocation strength, and a lot of measures have been taken
from other fields, such as biology. Neither of these have a strong formal
background, but they all express the idea that two words are more likely
to be collocations the more they appear together, and the less they ap-
pear without each other. Examples of these measures are the Kulczinsky
coefficient, the Ochiai coefficient, the Fager and McGowan coefficient,
the Dice coefficient, the Yule coefficient, etc. For a more comprehen-
sive list of these measures along with their formulas, interested reader
should refer to [38, pp. 170–171].

A very comprehensive list of 84 association measures can be found in [40].
There are also some interesting ways of extracting collocations using more
than AMs and POS information. Pearce [39] uses the fact that collocations
are non-compositional so he takes advantage of synonym information from
WordNet to see if a candidate digram satisfies this property. For example,
from the digram emotional baggage he constructs the digram emotional lug-

gage substituting baggage with its synonym luggage. He proceeds to count
the number of times this new digram occurs in the corpus, and if there is no
significant difference between the occurence of the two variants, then the di-
gram cannot be a collocation as it is obviously compositional. Another inter-
esting way of extracting collocations is given in [40]. There, the author tries
to combine results of several AMs in order to judge if an n-gram is a colloca-
tion. Values of different AMs are seen as features of each n-gram, and together
with a set of manually extracted collocations and non-collocations (the train-
ing set), the task of extracting collocations becomes the task of classifications
into two classes using some machine learning algorithm.

When comparing AMs, we first have to decide on which measures to put
on the test. For example, Evert and Krenn [17] compared t -score, frequency,
log-likelihood and chi-square, while Thanopoulos et al. [52] compared t -score,
mutual information, chi-square and log-likelihood. In this thesis comparison
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following measures were used: frequency, mutual information, log-likelihood,
chi-square and Dice coefficient. The reason for including Dice coefficient
while leaving out t -score lies in the fact that t -score is very similar in nature
to log-likelihood and chi-square (it is a hypotesis testing measure), while the
Dice coefficient is one of many proposed heuristic measures which have no
formal background, and has been found to work well in some cases (for ex-
ample in retrieving bilingual word pairs from a parallel corpus, see [33]).

Definitions for the mentioned measures will now be given, along with some
of their properties.

3.2 Definitions for Digrams

In this section, association measures found in the literature will be described.
All of them are defined for digrams.

Pointwise mutual information∗ (PMI) [8] is a measure that comes from the
field of information theory, and is given by the formula:

I(x , y ) = log2

P(x y )

P(x )P(y )
, (3.1)

where x and y are words and P(x ), P(y ), P(x y ) are probabilities of occurence
of words x , y , and digram x y , respectively. Those probabilities are approx-
imated by relative frequencies of the words or digrams in the corpus. Since
PMI favors rare events (see, for example, [32, §5.4]), sometimes the following
formula is used:

I′(x , y ) = log2

f (x y )P(x y )

P(x )P(y )
. (3.2)

Introducing a bias toward more frequent word pairs usually shows better per-
formance than using (3.1) (see, for example [54], [38, pp. 171–172]). For other
work on PMI, see [9–11, 51].

The Dice coefficient [14] is defined as:

DICE(x , y ) =
2 f (x y )

f (x )+ f (y )
, (3.3)

where f (x ), f (y ), f (x y ) are frequencies of words x , y and digram x y , re-
spectivley. The Dice coefficient is sometimes considered superior to infor-
mation theoretic measures, especially in translating using a bilingual aligned
corpus [32].

∗The definition of mutual information used here is more common in corpus linguistic
than in information theory, where the definition of average mutual information is usually
used.
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The chi-square measure is defined as:

χ2 =
∑

i ,j

(Oi j −Ei j )
2

Ei j

, (3.4)

where Oi j and Ei j are observed and expected frequencies in a contingency
table [32].

The log-likelihood ratio (LL) [38] (entropy version) is defined as:

G2 =
∑

i ,j

Oi j log
Oi j

Ei j

. (3.5)

Log-likelihood is a widely used measure for extracting collocations, often
giving very good results. Dunning [15] introduced the measure, using it for de-
tecting composite terms and for the determination of domain-specific terms.
McInees [34] gives many possible ways of extending this measure and coma-
pares them. Log-likelihood is often used in exatracting collocations, see for
example [17] and [52].

3.3 Extending Association Measures

In the previous section basic AMs for extracting collocations were defined.
Since all of them are defined for digrams, AMs need to be extended in some
way to make them suitable for extracting trigrams and tetragrams (or even
generalize the measures for extracting arbitrary long collocations).

Although some work on extending AMs has been done (see, for example,
[4, 34, 45]), so far authors have either concentrated on extending only one
measure in more ways or on extending more measures, but in the same way.
For example, da Silva and Lopes [45] use fair dispersion point normalization

as a method of extending φ2, log-likelihood, Dice coefficient, and PMI, but
this technique only treats n-grams of n > 2 as pseudo-digrams. Their idea is
to break the n-gram into two parts, thus treating it as a pseudo-digram. How-
ever, there is no single break point—the n-gram is broken on every possible
breaking point and the measure is then computed for each of these combina-
tions. The average of all these values is then taken as the value of the chosen
AM for the particular n-gram.

On the other hand, McIness [34]uses several models for extracing n-grams,
but applies them only to log-likelihood.

A totally different approach was used by Kita et al. [27]. They used their
cost criterion which depends both on the absolute frequency of collocations
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and on their length in words. For a candidate n-gram a , they define the re-
duced cost of a , denoted by K(a ), as:

K(a ) = (|a | −1)( f (a )− f (b )),

where b is a n+1-gram which a is a subset of (e.g., a could be “in spite” and b

could be “in spite of”) and f (.) is the frequency of the given n-gram. The col-
location candidate a starts as a digram and is then expanded by appending
new words. The n-gram a ′ for which K(a ′) has the highest value is then taken
as a collocation. For example, we could start with the digram “in spite”. That
is then expanded with the word “of”, which almost always follows it, yielding
a greater reduced cost than the initial digram. Trigram “in spite of” is then
expanded by, e.g., the word “everything” which was found to follow it some-
times. Since the freqency of “in spite of everything” is rather low as “in spite
of” can be followed by a number of fairly likely possibilities, the reduced cost
function has its greatest value for “in spite of”, indicating that this is the most
likely candidate for a full collocation. This approach will not be covered here.

In order to compare the extensions, a formal framework for extensions of
AMs will first be given.

Definition 3.1. Let W+ be the set of all n-grams, andF a set of AMs for digrams

defiend asF = {g |g : W2→R}, where g is a function that takes a digram as an

argument and returns a real number. An extension pattern (EP)∗ is a function

G which takes as arguments an AM g , n-gram length, and an n-gram w1 · · ·wn

and returns the value of the extension of g for n-gram w1 · · ·wn :

G :F ×N×W+→R, (3.6)

where N is the set of natural numbers.

When defining how the value of the extension of g is computed, g i will
be used to denote the natural extension of g for an n-gram of length i . The
natural extension g i is a function that takes i arguments and returns a real
number, i.e., g i : Wi →R. Note that even though g 2 = g , g will be used on the
left side of the equations, and g 2 will be used on the right hand side. Natural
extensions of PMI and Dice coefficient are as follows:

In (w1, . . . , wn ) = log2

P(w1 · · ·wn )
n∏

i=1

P(w i )

, (3.7)

∗Note that this is just a fancy name for extension of an AM.



3.3. Extending Association Measures 15

DICEn (w1, . . . , wn ) =
n f (w1 · · ·wn )

n∑

i=1

f (w i )

, (3.8)

where P(.) and f (.) have the same meaning as in the previous section.
Since log-likelihood and chi-square work with contingency tables, their

formula for natural extension remains unchanged for n-grams of any length,
only the dimensions of the table change.

In terms of definition 3.1, da Silva’s fair dispersion point normalization for
a tetragram could be written as:

G(g , 4, w1w2w3w4) =
g 2(w1, w2w3w4)+ g 2(w1w2, w3w4)+ g 2(w1w2w3, w4)

3

Since theoretically there are infinitely many possible EPs, we have to de-
cide on a subset of them to use with the given AMs. Following is a list of EPs
used here for extracting trigrams and tetragrams. The list was made from ex-
tensions already found in literature and from some new EPs suggested here
for the first time. Not that the subscript of G in the following equations does
not have the same function as the subscript in g —this subscript is used only
to enumerate the different patterns, not to indicate how many arguments G
takes.

G1(g , n , w1 · · ·wn ) = g n (w1, . . . , wn ) (3.9)

It is obvious that G1 is nothing more than the natural extension of the AM,
treating all words in an n-gram equally.

G2(g , n , w1 · · ·wn ) =
g 2(w1, w2 · · ·wn )+ g 2(w1 · · ·wn−1, wn )

2
(3.10)

Pattern two computes the average of the strength of the inital word and
final (n − 1)-gram, and initial (n − 1)-gram and final word. This is just one of
the ways an n-gram can be broken into a digram. For example, in the tetra-
gram weapon of mass destruction, this pattern would observe how strongly
weapon and of mass destruction are correlated, and how strongly weapon of

mass and destruction are correlated. The rationale behind this pattern is that
at least one of the two word-trigram combinations should be strongly associ-
ated, giving the tetragram a high score. In this example, the trigram weapon

of mass will almost always be followed by the word destruction in the corpus,
giving the tetragram a high score. However, the word weapon appears with
many other word (and hence, trigrams), so association of weapon and of mass

destruction is very weak. This pattern was used by Tadić and Šojat [51].
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G3(g , n , w1 · · ·wn ) =
g 2(w1 · · ·w bn/2c, w dn/2e · · ·wn )+ g 2(w1 · · ·w bn/2+1c, w dn/2+1e · · ·wn )

2
(3.11)

Pattern three also tries to break up the n-gram into a digram, only in the
middle. For example, weapon of mass destruction is broken into weapon of

and mass destruction. Comparing patterns two and three with da Silva’s fair
dispersion point normalization, it is obvious that these two patterns are just
some of the addends in his formula.

G4(g , n , w1 · · ·wn ) =
1

n −1

n−1∑

i=1

g 2(w i , w i+1) (3.12)

Pattern four is interesting in that it is not concerned with the n-gram as
a whole, but it rather tries to compute the strength of each digram that is
a substring of the n-gram in question and guess the strength of the n-gram
based on that. For example, to compute the strength of the tetragram weapon

of mass destruction, this pattern would compute the strength of the digrams
weapon of, of mass, and mass destruction. This example also shows us the
greatest weakness of this pattern—some of the digrams constituating the n-
gram need not be collocations for themselves, so they will normally recive a
low score (weapon of and of mass in this example), reducing the score for the
whole n-gram.

G5(g , n , w1 · · ·wn ) = g 2(w1 · · ·wn−1, w2 · · ·wn ) (3.13)

Pattern five looks at the inital and final (n − 1)-gram in the n-gram. In
this example, that means it would look at the strength of association between
weapon of mass and of mass destruction.

G6(g , n , w1 · · ·wn ) =
1
�n

2

�

n∑

i=1

n∑

j>i

g 2(w i , w j ) (3.14)

Pattern six was used by Boulis [5]. It is similar to pattern four, only differ-
ence is that this pattern takes all possible word pairings (respecting the order
of words) that appear in the n-gram. That means that this pattern would also
look at the digrams weapon mass, weapon destruction, and of destruction in
addition to those already mentioned for pattern four.

G7(g , n , w1 · · ·wn ) = g n−1(w1w2, w2w3, . . . , wn−1wn ) (3.15)

Finally, pattern seven treats an n-gram as an (n − 1)-gram consisting of
all consecutive digrams. That means that in weapon of mass destruction the
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digrams weapon of, of mass, and mass destruction are treated as parts of the
trigram whose frequency in the corpus is the frequency of weapon of mass

destruction, while the frequencies of the words of this new trigram are the
frequencies of the mentioned digrams. This pattern is first suggested here.

It is also interesting to note that the presented way of extending n-grams is
in some ways very smilar to the work done in [34, §4.1]. For example, pattern
one corresponds to her model 1, pattern two is a combination of models 7 and
13, and pattern three corresponds to model 2.

When applying these patterns to trigrams, we get the following instances:

G1(g , 3, w1w2w3) = g 3(w1, w2, w3) (3.16)

G2(g , 3, w1w2w3) =G3(g , 3, w1w2w3) =
g 2(w1, w2w3)+ g 2(w1w2, w3)

2
(3.17)

G4(g , 3, w1w2w3) =
g 2(w1, w2)+ g 2(w2, w3)

2
(3.18)

G5(g , 3, w1w2w3) =G7(g , 3, w1w2w3) = g 2(w1w2, w2w3) (3.19)

G6(g , 3, w1w2w3) =
g 2(w1, w2)+ g 2(w2, w3)+ g 2(w1, w3)

3
(3.20)

Note here that for trigrams pattern three has the same instance as pattern
two and that pattern seven has the same instance as pattern five.
When applying the patterns to tetragrams, we get the following instances:

G1(g , 4, w1w2w3w4) = g 4(w1, w2, w3, w4) (3.21)

G2(g , 4, w1w2w3w4) =
g 2(w1, w2w3w4)+ g 2(w1w2w3, w4)

2
(3.22)

G3(g , 4, w1w2w3w4) = g 2(w1w2, w3w4) (3.23)

G4(g , 4, w1w2w3w4) =
g 2(w1, w2)+ g 2(w2, w3)+ g 2(w3, w4)

3
(3.24)

G5(g , 4, w1w2w3w4) = g 2(w1w2w3, w2w3w4) (3.25)
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G6(g , 4, w1w2w3w4) =
g 2(w1, w2)+ g 2(w2, w3)+ g 2(w3, w4)

6
+

+
g 2(w1, w3)+ g 2(w1, w4)+ g 2(w2, w4)

6

(3.26)

G7(g , 4, w1w2w3w4) = g 3(w1w2, w2w3, w3w4) (3.27)

3.4 Heuristic Patterns

In the previous subsection we defined some general patterns for extending
any AM for n-gram of any size. However, these patterns showed poor perfor-
mance when extracting collocations in which one of the words is a stop word.
The reason is obvious—stopwords are very frequent in the corpus so the pat-
terns that treat all the words of an n-gram equally give low scores to n-grams
that have such words. To overcome this problem, heuristic patterns for tri-
grams and tetragrams are proposed here (all based on the intuition that for
different types of collocations∗ different patterns should be used). This is also
in agreement with the fact that stopwords do not carry any meaning, so they
can be viewed as a type of signal noise in communication, making it harder
to convey meaning. After filtering out the stopwords, the message becomes
clearer. Before giving the formulas for heuristic patterns, it should be noted
that that even though stopwords are not taken into account, the frequency
of the whole n-gram (including the stopword) is. For example, when we write
g 2(w1, w3), this means that n-gram w1w2w3 is treated as a digram whose word
frequencies are frequencies of w1 and w3, respectively, but the frequency of
this digram is the frequency of trigram w1w2w3. The proposed patterns are
(as a shorthand, stop(w )will denote “‘X’∈ pos(w )”):

H1(g , 3, w1w2w3) =

(

α1 g 2(w1, w3) if stop(w2),

α2 g 3(w1, w2, w3) otherwise.
(3.28)

This pattern for trigrams simply ignores the middle word if it is a stopword.
For example, in the trigram board of education, this pattern would not take
into account how often word of appears in the trigram, only how often do
words board and education appear together in the trigram board of education.

∗That is, collocations with different POS patterns.
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H1(g , 4, w1w2w3w4) =







α1 g 3(w1, w3, w4) if stop(w2),

α2 g 3(w1, w2, w4) if stop(w3),

α3 g 4(w1, w2, w3, w4) otherwise.

(3.29)

Heuristic patter one ignores only the stopwords from the n-gram. For ex-
ample, in the tetragram gallery of modern art, this pattern would look at the
strength of association between words gallery, modern, and art, while in the
tetragram holy city of jerusalem words holy, city, and jerusalem would be con-
sidered.

H2(g , 4, w1w2w3w4) =







α1 g 2(w3, w4) if stop(w2),

α2 g 2(w1, w2) if stop(w3),

α3 g 4(w1, w2, w3, w4) otherwise.

(3.30)

Heuristic pattern two not only ignores the stopwords, but, based on where
the stopword was, ignores one of the words that is not a stopword. For ex-
ample, in zakon o morskom ribarstvu (law of fishing on sea), it would take
only the words morskom and ribarstvu into consideration. The rationale be-
hind this is that the word zakon (law) is also very common, and carries little
information. Also, in the tetragram gallery of modern art, gallery is left out,
as there are many other galleries, so the word is quite common. In the case
of pravni fakultet u zagrebu (zagreb law school), this pattern would take the
words pravni and fakultet into consideration, since zagreb is the name of the
town, so any other town name (of a town that has a law school) can be put
instead of zagreb.

H3(g , 4, w1w2w3w4) =







α1 g 2(w1, w4) if stop(w2),

α2 g 2(w2, w4) if stop(w3),

α3 g 4(w1, w2, w3, w4) otherwise.

(3.31)

This pattern also ignores an additional non-stopword in the tetragram,
only that the word to be left out is chosen according to a different argument.
For example, in the tetragram gallery of modern art, words gallery and art will
be considered. Rationale behind this is that the third word is an adjective, so
it can be often substituted with another adjective to form a new collocation.
In this example, word modern could be replaced with contemporary or fine to
form new, perfectly sound collocations. In the case of the tetragram fakultet
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elektrotehnike i računarstva (faculty of electrical engineering and computing),
only the words elektrotehnike and računarstva are taken into account. The
word faculty is ignored, for the same reasons as the word zakon was ignored
in pattern two. An English example would be buddhist church of vietnam,
where the word buddhist is ignored for the same reasons as word modern in
gallery of modern art (buddhist could be, for example, replaced with catholic

or hindu to form new collocations).

H4(g , 4, w1w2w3w4) =







α1 g 2(w1, w3w4) if stop(w2),

α2 g 2(w1w2, w4) if stop(w3),

α3 g 4(w1, w2, w3, w4) otherwise.

(3.32)

Heuristic pattern four takes all non-stopwords into account, but unlike
pattern one, it treats adjacent words as digrams. For example, in the already
mentioned tetragram weapon of mass destruction, this pattern will look how
strongly the word weapon is associated to the digram mass destruction. In the
tetragram holy city of jerusalem, digram holy city and word jerusalem would
be taken into account. In Croatian, for example, in the tetragram centar za so-

cijalnu skrb (center for social welfare) word centar and digram socijalnu skrb

would be inspected for proof of strong association, while in the tetragram no-

belova nagrada za mir (nobel prize for peace), digram nobelova nagrada and
word mir would be considered.

The parameters α1,α2, α3, and α4 are chosen so the maximum of the case
function they are multiplying is equal to 1. In short, they are used for normal-
izing the AM scores for different case functions to make them comparable.
For example, α1 in equation (3.32) could be written as

α1 =
1

max
(w1w4)∈W2

g (w1, w4)
,

where W is the set of words (see chapter 2 for more).
This way, all the cases of the heuristic pattern are given equal weight—

there is no bias toward collocations with or without stop words. The differ-
ence between these heuristics is the treatment of the non-stopwords—in the
first case they are all treated the same, while in other two cases we try to find
two words in the tetragram that bare the most information, i.e., we try to find
a digram that best represents the tetragram. Note that in (3.32) and (3.35) di-
grams before or after the stopword are treated as a single constituent.

When dealing with English, second and third words in a collocation of four
words can both be stopwords (e.g., state of the union), while this is not possi-
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ble in Croatian. Therefore, heuristic patterns for tetragrams had to be modi-
fied for English in order to deal with this type of collocations. For English, the
following patterns were used:

H2′(g , 4, w1w2w3w4) =











α1 g 2(w1, w4) if stop(w2)∧ stop(w3),

α2 g 2(w3, w4) if stop(w3)∧¬stop(w2),

α3 g 2(w1, w2) if stop(w2)∧¬stop(w3),

α4 g 4(w1, w2, w3, w4) otherwise.

(3.33)

H3′(g , 4, w1w2w3w4) =











α1 g 2(w1, w4) if stop(w2)∧ stop(w3),

α2 g 2(w1, w4) if stop(w2)∧¬stop(w3),

α3 g 2(w2, w4) if stop(w3)∧¬stop(w2),

α4 g 4(w1, w2, w3, w4) otherwise.

(3.34)

H4′(g , 4, w1w2w3w4) =











α1 g 2(w1, w4) if stop(w2)∧ stop(w3),

α2 g 2(w1, w3w4) if stop(w2)∧¬stop(w3),

α3 g 2(w1w2, w4) if stop(w3)∧¬stop(w2),

α4 g 4(w1, w2, w3, w4) otherwise.

(3.35)



CHAPTER 4

Evaluation

Picture is worth a thousand
words

NN

In this chapter the approach used for evaluating the performance of a partic-
ular AM-EP combination will be described. This will enable the comparison
of not only different AMs, but also different EPs and their (in)dependance of
AMs.

First, in section 4.1 the corpora on which the performance is evaluated will
be described. Section 4.2 will introduce random samples and describe how
they are used to evaluate the performance of AMs, along with all the prob-
lems and advantages this kind of evaluation carries. Last section presents the
algorithm used to obtain the numerical results that are shown as graphs in the
next chapter.

4.1 Corpora

Four text corpora were used for the task of collocation extraction: Vjesnik,
Narodne novine, Hrcak and Time. The first three are in Croatian language
while the last one is in English. Following is a brief description of each cor-
pus, while a basic statistics for all of them is given in tables 4.2 and 4.1.

Vjesnik [56] is a corpus of Croatian newspaper articles. The particular
subset of Vjesnik used here is a part of Croatian National Corpus [50], It com-
prised of articles from different topics (culture, sports, daily news, economy,
local news and foreign affairs), all published between 2000 and 2003. This
corpus was chosen as a typical representative of a newspaper corpus.

22
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Narodne novine [37] are an official gazette of the Republic of Croatia. This
is a corpus of legal documents—various laws, legal acts, etc. The documents
in the corpus were written by the parliament of Republic of Croatia and are
thus good representatives of legislative writing style.

Another corpus in Croatian language is Hrcak—corpus of scientific texts
in Croatian. The texts from Hrcak corpus can be obtained from [24]. The doc-
uments in the corpus are all from different scientific journals (from different
areas of research) and represent typical scientific writing style.

For a corpus in English, articles from the journal Time [53] were chosen.
This corpus is intended to be the english counterpart of Vjesnik—all the down-
loaded articles are from different topics which are very similar to those in Vjes-
nik.

Note here that the three Croatian corpora differ in writing styles, not only
in their domain (the fact that they differ in domain is a side-effect caused by
the fact that we were searching corpora with different writing styles). Writ-
ing style denotes the structure of sentences in documents (their length, com-
plexity, presence of adjectives and adverbs in them, etc.), average document
lengths, repetitive use of words from a restricted vocabulary, etc. The three
mentioned writing styles (journalistic, legislative and scientific) have the fol-
lowing characteristics:

Journalistic writing style uses short, simple sentences while trying not to reuse
the same vocabulary, but use synonyms instead. The documents are
short and without a formal structure and adjectives and adverbs are
used moderately.

Legislative style has a very strict document and sentence structure and ab-
stains from using adverbs and adjectives. Vocabulary in these docu-
ments is kept at a minimum (cf. table 4.1—Narodne novine corpus has
the least unigram types of all three Croatian corpora) and documents
range from very short to very long ones.

Scientific style is characterized by long, complex sentences without a very
formal structure. The vocabulary is rich as there are many scientific
terms from different fields present (cf. table 4.1—Hrcak corpus has the
most unigram types of all three Croatian corpora). Adjectives and ad-
verbs are not used much and documents tend to be long.

Beside finding the best combination of AM and EP for each corpus, three
important questions will try to be answered:
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TABLE 4.1: Basic type statistics

documents unigrams digrams trigrams tetragrams∗

Vjesnik 40299 210 782 3 524 733 4 653 020 1 779 486
Narodne novine 7008 167 911 1 816 120 4 656 012 1 601 788
Hrcak 3469 512 806 3 920 105 7 450 716 2 496 401
Time 33527 199 826 3 029 454 8 385 518 1 916 748

TABLE 4.2: Basic token statistics

unigrams digrams trigrams tetragrams∗

Vjesnik 18 103 261 16 108 992 9 683 327 2 124 441
Narodne novine 17 417 156 15 414 673 14 038 809 6 163 831
Hrcak 14 623 218 12 367 069 10 837 252 2 999 252
Time 18 525 401 16 696 071 15 057 799 2 181 082

1. Do EPs depend on the AM, or are there some EPs that are generally bet-
ter than others and that should be used whenever extracting colloca-
tions of more than two words?

2. Is the ranking of AMs independant of the writing style, i.e., do some AMs
show to perform better than others independent of a style in which the
corpus was written, but within the same language? To answer this ques-
tion, results for the first three corpuses which are all in Croatian, but
have different writing styles, will be compared.

3. Is the ranking of AMs language-independent, i.e., do some AMs show to
perform better than others independent of a language? To answer this
question, results for the Vjesnik and Time corpora will be compared, as
they have the same writing style but are in different languages.

The last two questions can also be raised for the ranking of EPs, so they
will be addressed as well.

An explanation why it was decided to compare different writing styles and
not different domains is in order. This was done because there is much more
diversity (with regard to collocation extraction) between different writing styles
than between different domains with the same style. Since AMs don’t care
about the actual meaning of the words but rather their frequencies in the cor-
pus, if one would take for example a collection of maritime laws and a col-
lection of civil laws, AMs would perform very similar on both corpora as they

∗Only the statistics for the tetragrams that passed the POS filter are shown.
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have the same sentence structure and thus word and n-gram frequencies are
distributed similarly. This point is illustrated in tables 4.4a–4.4d. These tables
give the Zipf distribution for n-grams in all four corpora, i.e., they give the in-
formation about how many n-grams (types) appear a certain number of times
in the corpus. The fact that the number of n-grams that appear k times in the
corpus drops as k increases is known as Zipf’s law [60]. From the tables, one
should observe the difference between the first three rows (three corpora of
different writing styles), and compare it with the difference between the last
two rows (two corpora of the same writing style). Note that all four corpora
have almost the same number of tokens. From tables 4.4a–4.4d it is obvi-
ous that different writing styles have very different Zipf distributions, while
the two newspaper corpora have almost the same distributions, even though
they are in different languages. This confirms the characteristics of writing
styles given earlier in this section (e.g., the claim that legislative writing style
has a more controlled vocabulary and that scientific is quite opposite with a
much richer vocabulary due to technical terms from various fields). Still, the
claim that writing styles make more difference in collocation extraction than
domains do is somewhat based on intuition. However, in the work done by
Johansson [26], he compared, among other things, the overlap of digrams be-
tween four different genres.∗ What Johansson found was that there is very
little overlap between the digrams extracted from the four different genres. In
other words, different genres yield very different collocations. On the other
hand, there is no work, known to the author, that deals with collocation ex-
traction from corpora of same genres and different domains. Based on in-
tuition and empirical results from both the corpora used here and the work
done by Johansson, and due to lack of literature that would back up the claim
that different domains matter in collocation extraction, the assumption that
writing styles should be compared (and not domains), is a rational one.

4.2 Sample

In section 1.2 on page 4 an overview of some of the approaches taken by au-
thors to evaluate the results of thier collocation extraction systems was given.
Some advantages and disadvantages for each approach were also pointed out.
When deciding how to evaluate the results, the following had to be taken into
consideration:

∗The term genre is basically the same as writing style used here. Four genres compared by
Johansson were press reportage, biographies and memoires, scientifical and technical writ-
ing, and adventure and Western fiction novels.
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TABLE 4.3: Zipf distribution of n-grams in the four corpora. Each entry in the
table shows how many types of n-grams are there in a given corpus, that have the
frequency in the corpus equal to the number in the top row of the same column.
The numbers are shown in thousands.

Corpus 1 2 3 4 5 6 7 8 9 ≥ 10

NN 73 26 12 9 6 4 3 3 2 36
Hrcak 279 77 34 21 13 10 7 6 5 61
Vjesnik 118 32 10 5 3 2 2 1 1 36
Time 111 23 10 6 4 3 3 2 2 34

(a) Unigrams

Corpus 1 2 3 4 5 6 7 8 9 ≥ 10

NN 931 312 138 90 53 41 29 23 18 182
Hrcak 2761 525 193 106 64 45 32 24 19 152
Vjesnik 2351 489 194 107 68 47 34 27 22 188
Time 2021 397 162 90 59 42 31 24 19 185

(b) Digrams

Corpus 1 2 3 4 5 6 7 8 9 ≥ 10

NN 2937 813 297 176 88 67 43 34 25 176
Hrcak 6325 689 177 83 44 28 19 14 11 61
Vjesnik 7399 847 239 112 64 41 29 21 16 99
Time 6881 810 247 122 71 48 33 25 19 129

(c) Trigrams

Corpus 1 2 3 4 5 6 7 8 9 ≥ 10

NN 1123 259 83 46 20 16 9 7 5 32
Hrcak 2260 168 30 13 6 4 2 2 2 8
Vjesnik 1632 105 19 8 4 3 2 1 1 5
Time 1792 94 14 6 3 2 1 1 1 3

(d) Tetragrams
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1. We are dealing with four different corpora.

2. The corpora are not standardized, i.e., there is no established set of col-
locations with which one can compare the results.

3. For each corpus, we are using five different AMs.

4. For each AM, we are extracting collocations consisting of two, three or
four words.

5. For each AM used on trigrams, six different EPs will be tested.

6. For each AM used on tetragrams, eleven different EPs will be tested.

7. The number of n-grams in the corpus depends on n , and varies roughly
between one and three million n-grams.

In total, 360 different lists of a few million n-grams each will be generated
for evaluation. Having that in mind, some of the mentioned approaches for
evaluation can be eliminated. Employing the skills of a professional lexicogra-
pher to manually tag the n-grams is obviously out of the question, as it would
take years to complete this task, even if the expert would evaluate only the
first thousand highest rakning n-grams in each list. Thanopoulos’ approach
is unusable due to fact number 2 in the previous list. The method used by
da Silva and Lopes is also unusable for two reasons. Firstly, their approach is
based on a list of n-grams that are extracted as multi-word units (i.e., all the
n-grams in that list are claimed to be collocations). This is not the case here
as the n-grams in each list are just ranked by their value of AM, but no ex-
plicit decision is made wheter or not an n-gram is a collocation. Secondly, the
problem of a great number of lists is still present. Extracting even a small sam-
ple from each of the 360 lists would take very long to inspect manually. What
is left is the approach used by Evert and Krenn [17]. Though not completely
precise, his method of evaluation was the only sound solution in this case.
This reasoning coincides with the statement from [17]which says that “where
it is difficult to generalize evaluation results over different tasks and corpora,
and where extensive and time-consuming manual inspection of the candi-
date data is required—random sample evaluation is an indispensable means
to make many more and more specific evaluation experiments possible.”

Evert’s approach consists of a small random sample of n-grams that are
manually annotated by a human expert. After obtaining the sample, he sim-
ply compares the n-best list of candidates for each AM against this random
sample and computes the precision and recall. However, this approach had
to be modified somewhat to meet the particular needs of the work done here.
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The reason was that we are, unlike Evert, interested not only in precision, but
also in recall. Recall is very important as the purpose of collocation extraction
presented here was motivated by a need for improvement of a document in-
dexing system. For a document indexing system, it is very important that not
to lose any of the potentialy valuable indexing terms. So, in order to get mea-
surable levels of recall, a larger number of positive examples (i.e., true collo-
cations) was needed. If one would simply use a random subset of the corpus,
that subset would need to be large in order to find enough collocations in it,
as there are normally more non-collocations than collocation (see later in this
section for more on this).

That is why the following approach was used: the human expert was pre-
sented with a large list of randomly selected n-grams from the corpus and
was asked to find 100 collocations. After that, he was asked to find another
100 non-collocations from the same list. This list of 200 n-grams (100 colloca-
tions and 100 non-collocations) was then used as a random subset for evalu-
ating the results of each AM. It is important to note here that the list presented
to the human expert consisted of only those n-grams that passed the POS fil-
ters. The following POS filters were used: AN, NN (for digrams); ANN, AAN,
NAN, NNN, NXN (for trigrams); and ANNN, AANN, AAAN, NNNN, NXAN, and
ANXN (for tetragrams). For English, the pattern NXXN was also included for
tetragrams. It should be noted here that not allowing the first word in an n-
gram to be a stopword leads to some decreas of recall. The reason is that the
stoplist (list of stopwords) used consisted of prepositions, conjunctions, num-
bers, and pronouns. Therefore, collocations like first aid or ten command-

ments will not pass the POS filter as their POS is XN. However, cases like this
account for only a minor part of all the n-grams with that pattern so it was
decided that this small loss of recall will be traded for a much greater gain
in precision. Recall that for lemmatising and POS tagging, a morphological
lexicon constructed by rule-based automatic acquisition [48] was used. The
so obtained lexicon is not perfectly accurate, thus prone to lemmatising and
POS tagging errors. The words not found in the dictionary were given all pos-
sible POS tags. Presenting the human expert with a POS filtered list has two
main advantages over presenting him with a non-filtered list. Firstly, since
the same POS filter is applied in the actual process of extracting collocations,
it is insured that all collocations from the sample will appear also in the list
generated by the system. That way we will surely be able to get 100% recall
on the sample. The second advantage is that also all negative examples from
the sample will appear in the list generated by the system. This is important
because otherwise the human expert could generate a sample with a lot of
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non-collocations that do not pass the POS filter∗, resulting in an unrealisti-
cally high precision for all AMs. This high precision would be due to the POS
filter and not the AMs, which is obviously not what one would desire.

Using this approach, the human expert had to extract 1200 collocations
and 1200 non-collocations (4 corpora × 3 n-gram sizes × 100 n-grams). In
comparison, if the human expert was to tag only one hundred higest rank-
ing n-grams for each generated list (recall that this is 360 lists of n-grams),
he would need to look at 36 thousand n-grams. Of course, the number of
n-grams actually inspected by the human expert was more than 2400, but is
still much less than 36 thousand. And this is only the time saved. The real
advantage in using the modified method to inspecting first n highest rank-
ing n-grams in a list lies in the fact that the highest-ranking n-grams hardly
reflect the real performance of an AM†, especially when dealing with a few
million candidates like in our case.

There are, however, some problems. The lack of a good definition of a col-
location (even after deciding on what will be considered a collocation, there
is a lot of room left for ambiguity) led to problems with the construction of
the sample. For some n-grams it was unclear whether they are collocations
or not, even for the human expert. Most of the problems were caused by two
types of collocations: technical terms and the tech and science collocations.
Problem with technical terms is that no human expert can ever be familiar
with all the technical terms from all areas of human activity (trazim bolju rijec
od activity). This is why the expert is sometimes unsure if some n-gram is a
collocation or not—he simply doesn’t know enough about the filed in which
the n-gram is used to judge about it. Problem with tech and science type of
collocation is different—it is caused by the fact that this particular type is very
hard to define and deciding on whether or not to classify an n-gram as this
type of collocation often depends on the subjective point of view of the person
performing the classification. In short, problems were caused by two things:
lack of knowledge of the human expert (with regard to technical terms) and
the vague border between collocations and non-collocations in the tech and

science type. As an example of vagueness in the tech and science type, con-
sider the following n-gram: mother and child—to some people that would be
a collocation as there is an obvious semantic link between the first and the
last word, but again some would argue that this link is not strong enough or
that the n-gram simply isn’t used as a phrase in speech often enough to be
considered a collocation. Whenever the human expert would be in doubt as

∗See section 5 to see the actual number of n-grams that do not pass the POS filters.
†Most of AMs give good collocations at the very top of the list, i.e., they give good precision

at the top without giving an indication of what is their recall.
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to whether n-gram is or isn’t a collocation, he would have discarded it and
the n-gram wasn’t considered a collocation but it wasn’t considered a non-
collocation either. These n-grams are said to be borderline cases.

Note that the existence of borderline cases does not influence the results
of the evaluation as they are never a part of the sample. However, one might
argue that we cannot simply ignore their existence and exclude them from
the sample altogether. Maybe adding them to the sample either as colloca-
tion or as non-collocations would change the final ranking of the AMs? To
answer this question, experiments were run with borderline cases all treated
as collocations, then all as non-collocations and even with half of borderline
cases (randomly selected) treated as collocations and the other half as non-
collocations. The total number of borderline cases was 100. This experiment
was run only for digrams in Narodne novine corpus, as running it on all com-
binations of corpora and n-gram sizes is out of scope of this thesis. The results
showed that there was no change in the ranking of performances of AMs for
either of the experiments. This enables the continuation of experiments using
the method described above while ignoring the borderline cases and without
fear that this would influence the results. The results of the mentioned exper-
iments with included borderline cases will not be shown, in an effort to keep
the large amount of the presented material from cluttering the thesis.

One more thing that remains questionable about the method of evalu-
ation used is the fact that a sample with the same number of collocations
and non-collocations was used, even though there are more non-collocations
than collocations in text (this was mentioned earlier in the section). In short,
one might argue that the sample does not reflect the true state of the corpus
(which it doesn’t) and that therefore the results would be different if a more
adequate sample was used (i.e., a sample containing the right ratio of colloca-
tions and non-collocations). To see if this is true, this claim was tested on di-
grams from the Narodne novine corpus. The human expert first went through
all the digrams from ten randomly selected documents from the corpus and
tagged them as collocation, non-collocations or borderline cases. From that
list, the total number of collocations and the total number of non-collocations
was taken (borderline cases were ignored) and the ratio of non-collocations
to collocations was computed. The ratio was found to be 1.3. The reason
for this somewhat surprisingly small ratio (one would expect the ratio to be
even more in favor of non-collocations) is that the expert was presented with
a POS filtered list of n-grams from each selected document. This was done
so beacuse the final ranked list of n-grams is also POS filtered, and the ratio
of non-collocations to collocations was estimated for this list. After that, the
human expert simply found more non-collocations to get a sample with the
right ratio and the experiments were run on that sample. The results showed



4.3. Obtaining Results 31

that there is no difference in the ranking of AMs when using a sample with
the same number of collocations and non-collocations and this sample (of
course, the absolute numbers for precision and recall were different, but we
are only interested in the ranking of the AMs). Again, due to the large number
of presented material, the actual numbers for this experiment will be omitted.

4.3 Obtaining Results

In the previous section the idea of using a random sample for evaluation was
explained. Here it will be shown how that sample is actually used. First, one
should decide on a measure for comparing the results. Using the precision-
recall graph was decided to be the most appropriate in this case. For every
level of recall from 5 to 100%, precision is computed and that represents one
point on the graph. It is important to note here that if two or more n-grams
had the same value given by an AM, it was randomly decided how they will be
ranked. Here is the algorithm for computing the precision and recall:



4.3. Obtaining Results 32

Algorithm 1: Computing precision and recall

positive← set of positive examples
negative← set of negative examples
sample← positive∪negative

ngs← list of all n-grams
srtlist← []

POS← set of allowable POS patterns
ngs← filter(lambda x: x ∈ POS, ngs )

for ngram in ngs do
i ← AM(ngram)

srtlist.add ((i, ngram))
end

sort(srtlist, order = decreasing)

for j ← 0 to len(srtlist )−1 do

if srtlist[j ] ∈ sample then

if srtlist[j ] ∈ positive then
np← np + 1
if np mod 5 = 0 then

precision← np

np+nn

recall← np

|positive|

points.add ((recall, precision))
end

end

else nn← nn + 1
end

end

return points



CHAPTER 5

Results

I have had my results for a long
time, but I do not yet know how I
am to arrive at them.

Karl Friedrich Gauss

In this chapter the results for digrams, trigrams, and tetragrams for all four
corpora will be given. As showing the results of all possible combinations of
AMs and EPs would take up much space and would only clutter the docu-
ment, for each AM only the results of its best extension will be shown.

Although a method of evaluating the performance of AMs was chosen,
there was nothing said on when one AM is considered to perform better than
another. In section 5.1 the criteria for doing this are established. Sections 5.2
to 5.4 on pages 36–40 simply show the results, commenting which measures
performed better and which ones performed worse. As results themselves
don’t mean anything without an interpretation, this is done in the last section
of the chapter.

5.1 Comparison Criteria

In chapter 4 the idea of using samples for evaluation of AMs was described.
However, it is still unclear how exactly to say whether or not one AM is better
than another. Should one AM have better precision than another AM for each
level of recall in order to say it performs better? Or does some other criterion
exist?

If we recall that these collocations are meant to be used for document
indexing, one thing becomes apparent: there is no point in looking at the
lower levels of recall, as only the highest levels are of interest. The reason

33
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for this is that one would really want to have as much collocations as possible
as features for documents—it is not a problem if the system tags some non-
collocations as collocations because they will probably be discarded later in
the process of feature selection. A much bigger problem is if a collocation is
not at all extracted by the system as there is no way to fix this—all the later
processing of documents just removes features, it never adds them. That is,
if the system fails to identify, for example, “black market” as a collocation, a
very valuable information about a document is lost.

For this reason, the recall level of 95% is used as a point on which the com-
parison will be done. If one AM has higher precision than another on the recall
level of 95%, it will be considered better. Why 95% recall? This particular level
of recall was chosen instead of the 100% level because there are always col-
locations in the sample that are very hard to identify using only statistics and
POS tagging. The drop of precision from the point of 95% recall to the point
of 100% recall is often very big as a consequence of these hard-to-identify col-
locations. Therefore, taking the precision on the 100% recall for comparison
would not reflect the true nature of a measure, as will be shown in the results.
On the other hand, the drop of precision from the point of 90% recall to the
point of 100% recall is not very noticeable.

There is however, another thing to be careful of. The precision at a partic-
ular level of recall does not tell us about how many n-grams are taken as collo-
cations. As it is obvious from algorithm 1, n-grams that are not in the sample
are not taken into account when computing precision and recall. Therefore,
it is possible for all the n-grams from the sample to be very low ranked in the
list of n-grams returned by an AM, but if they are sorted in a way that most
of negative examples come after positive ones, the precision will still be high.
For example, it would be possible to have a precision of 85% for 95% recall, but
in order to get that 95% recall one would have to take 98% of highest-ranking
collocations from a list of those that passed the POS filter. In that case, using
the AMs looses any meaning as the list of collocations after applying the AM
would be almost the same as the list where the AM was not applied. This is
why the number of n-grams that are above the last positive example for a par-
ticular level of recall is important. Note that when two or more n-grams have
the same value of the AM, their order in the list is random.
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Example 5.1. Number of n-grams above the last positive example

Suppose the sample consists of five positive and five negative examples, and
that there are ten thousand n-grams that passed the POS filter (candidates for
collocations). Let p i , 0 ≤ i ≤ 5 denote positive, and n i , 0 ≤ i ≤ 5 denote the
negative examples. All the other n-grams that are not in the sample are not
shown here, they are only marked with “· · ·”. Lines are numbered to indicate
the position of an n-gram in the ranked file. Consider the following list:
1 p3

2 n 1

3 p4

4 n 2

· · ·

4999 p1

5000 p2

· · ·

9997 n 5

9998 n 3

9999 p5

10000 n 4

Precision for the 80% recall of the shown list is 4/6, i.e., 66.7%. The number
of n-grams that are above the last positive example for 80% recall is 5000 (the
last positive example being counted). Now consider the following list:
1 p3

2 n 1

3 p4

4 n 2

· · ·

9995 p1

9996 p2

9997 n 5

9998 n 3

9999 p5

10000 n 4

In this list, the order of n-grams in the sample is exactly the same as in the
previous one. Precision for this list at 80% recall is also 66.7%, but the number
of n-grams above the last positive example for 80% recall is much higher—
it is 9996. It is obvious that the first list (i.e., the AM that generated this list)
is much better than the first one, even though they have the same order of
n-grams in the sample.

The previous example showed the problem with using just precision and
recall for comparison of AMs. That is why, beside this, another criterion is



5.2. Digrams 36

used for comparison—the already mentioned number of n-grams above the
last positive example. For simplicity, this number will be denoted by β , and
it will be expressed as the percentage of n-grams (of the total number of n-
grams that passed the POS filter) that are above the last positive example for
95% recall. The smaller this number is, the better. Note that β is used as a
secondary criterion for comparison. High precision is the first criterion, and
the measure that has the highest precision for 95% recall is then inspected
using this second criterion to see if the number of n-grams above the 95%
recall is very high. If it is, further investigation is needed to declare a best AM
for that particular case.

Note here that there was no frequency filter used for obtaining the results.
Applying the frequency filter∗ is a widely used method of trading recall for
precision, and because recall was very important here, it was not used.

Sorting the n-grams by pure frequency will not be regarded as an AM, it
will be seen more as a baseline performance. There are two reasons for this.
First is that frequency is never used alone as a measure for extracting collo-
cations, it is used in the form of a frequency filter to boost precision (see last
paragraph). The second reason is that 5–10% of n-grams in each sample ap-
pears only once in the entire corpus. Since up to 70% of n-grams in some
corpora appear only once, and since n-grams with the same value of an AM
are sorted randomly, this means that sometimes even 70% of n-grams ob-
tained by applying frequency are randomly sorted in the list. Obviously, this
makes the results obtained by frequency extremly sensitive to the selection of
the sample. For all this, frequency was not taken into account as an actual
measure.

It is also important to note that I and I’ are considered the same measure,
and they are denoted by MI and MI’ in the graphs (for better readability). The
better of the two is always shown, never both of them.

5.2 Digrams

5.2.1 Narodne novine

The results for digrams in the Narodne novine corpus are shown in figure 5.1.
Out of 1816120 different digrams in the corpus, 898641 digrams (49.5%) passed
the POS filter. From figure 5.1 it is clear that for 95% recall AM with the high-
est precision is mutual information. MI achieved 79.8% precision, while the
next best AM is Dice coefficient with 63.3%. β for mutual information is 42%

∗That is, keeping only those n-grams that appear in the corpus more than a certain num-
ber of times.
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(377711 n-grams), while the AM with the lowest β was Dice whose β was
18.4% (165434 n-grams). Since Dice had more than two times lower β than
MI, a third criterion was used to decide which AM is better for this corpus.
This criterion is the precision on 100% recall. Dice had a precision of 51.8%,
while MI achieved a precision of 58.8% on the 100% recall. Therefore, MI is
considered the best AM for digrams on the NN corpus.

5.2.2 Vjesnik

The results for digrams in the Vjesnik corpus are shown in figure 5.2. Out of
3524733 different digrams in the corpus, 1420557 digrams (40.3%) passed the
POS filter. Here, the frequency-biased version of mutual information (MI’) is
the AM with the highest precision, with the value of 81.2%. Second best was
Dice with the value of 72.5%. β for MI’ is 16.3% (232245 n-grams), which is
also the best result. Second lowest β was 21.4% (303299 n-grams) achieved
by Dice. Therefore, MI’ is the best AM for digrams on the Vjesnik corpus.

5.2.3 Hrcak

The results for digrams in the Hrcak corpus are shown in figure 5.3. Out of
3920105 different digrams in the corpus, 2098817 digrams (53.5%) passed the
POS filter. MI’ was again found to have the highest precision—71.4%, while
the second best was again Dice which closely followed with 69.3%. β for
MI’ was 39.8% (836131 n-grams), while Dice was the best with a β of 30.3%
(636367 n-grams). Neither the difference in precisions nor the difference in
β ’s was enough to say that one measure was better than the other. The pre-
cision at 100% recall was again taken as the third criterion. For MI’, precision
was 55.6%, while for Dice it was also 55.6%. Therefore, the results for Hrcak
are inconclusive as either Dice or MI’ could be considered to be the best.

5.2.4 Time

The results for digrams in the Time corpus are shown in figure 5.4. Out of
3029454 different digrams in the corpus, 1190293 digrams (39.3%) passed the
POS filter. MI’ has again showed to have the highest precision—77.8%, while
the second best was Dice with 71.9%. MI’ had a β of 22.7% (269666 n-grams),
while the best was Dice withβ = 20.5% (244130 n-grams). Since the difference
of β ’s for MI’ and Dice is smaller than the difference in their precisions, MI’ is
considered to be the best AM for digrams on the Time corpus.
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Figure 5.1: Digram results for NN corpus
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Figure 5.2: Digram results for Vjesnik corpus
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Figure 5.3: Digram results for Hrcak corpus
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Figure 5.4: Digram results for Time corpus
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5.3 Trigrams

5.3.1 Narodne novine

The results for trigrams in the Narodne novine corpus are shown in figure 5.5.
Out of 4656012 different trigrams in the corpus, 1570200 trigrams (33.7% of all
trigrams) passed the POS filter. The measure with the highest precision was
heuristic pattern of mutual information with the precision of 73.1%. Second
best measure was G4 of chi-square with precision of 60.9%. β for MI was 49.9%
(784015 n-grams), while the best measure regarding β was heuristic pattern
of Dice with β of 32.7% (513054 n-grams). G4 of chi-square had a β of 61.3%
(990558 n-grams), while the precision for heuristic Dice was 58.2%. As G4 of
chi-square has both a lower precision and a higher β , it is clear that it cannot
be the best measure. Heuristics pattern of Dice has a 15% lower β , but it also
has a 15% lower precision. Since precision is the main criterion for compari-
son, heuristic pattern of MI is considered the best measure for trigrams on the
NN corpus. For log-likelihood, the best extension regarding precision was G4,
and for Dice that was G2.

5.3.2 Vjesnik

The results for trigrams in the Vjesnik corpus are shown in figure 5.6. Out of
4653020 different trigrams in the corpus, 2161053 trigrams (46.4%) passed the
POS filter. Heuristic pattern of MI’ was the best measure regarding precision,
with the value of 77.2%. Interestingly, pure freqeuncy was the second best
with precision of 72.5%. However, due to reasons explained in section 5.1, fre-
quency is not really regarded as an AM. The third best measure was G2 of Dice
with precision of 67.4%. β for heuristic pattern of MI’ was 46.5% (1004447 n-
grams), while the best measure when comparing β ’s was heuristic pattern of
Dice, with β = 42.2% (911825 n-grams). β for G2 of Dice was 51.7% (1118300
n-grams). As the difference between β ’s is 3.3% and difference in precisions
was 9.8%, and taking into account that precision is given more wieght, heuris-
tic pattern of MI’ is the best measure for trigrams on Vjesnik corpus. For log-
likelihood and chi-square, G4 was found to be the best extension regarding
precision.

5.3.3 Hrcak

The results for trigrams in the Hrcak corpus are shown in figure 5.7. Out of
7450716 different trigrams in the corpus, 2834970 trigrams (38.0%) passed the
POS filter. Heuristic pattern of MI’ was again found to be the best measure
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with the precision of 70.9% for 95% recall. The second best measure was again
frequency with precision of 66.0%, while the third best was G4 of chi-square
with precision of 63.3%. β for heuristic pattern of MI’ was 57.0% (1616708
n-grams), while the best measure for β was heuristic pattern of Dice with β
of 55.0% (1558648 n-grams). β for G4 of chi-square was 77.5% (2198437 n-
grams), while precision for heuristic pattern of Dice was 61.7%. The difference
of 2% inβ is not enough for heuristic Dice to make up the difference of 9.2% in
precision. Therefore, heuristic pattern of MI’ is the best measure for trigrams
on Hrcak corpus. For log-likelihood and chi-square, G4 was again found to be
the best extension regarding precision.

5.3.4 Time

The results for trigrams in the Time corpus are shown in figure 5.8. Out of
8385518 different trigrams in the corpus, 1804455 trigrams (21.5%) passed the
POS filter. Heuristic pattern of MI’ was yet again found to be the best measure
with precision of 74.2%. G4 of Dice and chi-square are at the second best with
the same precision of 70.4%. β for heuristic pattern of MI’ was 40.9% (738568
n-grams) which was also the bestβ among all measures, whileβ for G4 of Dice
was 56.9% (1027133 n-grams) and for G4 of chi-square was 52.8% (952802 n-
grams). Having the best precision and the best β , heuristic pattern of MI’ is
clearly the best AM for trigrams on Time corpus. G4 was the best extension of
log-likelihood regarding precision.

5.4 Tetragrams

Due to a large number of tetragrams in the corpora, they were filtered by POS
pattern during the process of extraction from documents, and not after like
digrams and trigrams.∗ Because of this, it is not possible to give the number
of tetragrams that passed the POS filter as a percentage (as the total number
of tetragrams is unknown).

5.4.1 Narodne novine

The results for tetragrams in the Narodne novine corpus are shown in fig-
ure 5.9. There were 1601789 tetragrams that passed the POS filter. The AM
with the highest precision on the 95% recall is H2 pattern of MI’ with 68.3%,
while the second best AM was G1 of chi-square with 62.9%. β for H2 of MI’

∗This is an implementation issue—storing all the n-grams requires too much memory.
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Figure 5.5: Trigram results for NN corpus
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Figure 5.6: Trigram results for Vjesnik corpus
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Figure 5.7: Trigram results for Hrcak corpus
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Figure 5.8: Trigram results for Time corpus
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was 37.8% (604826 n-grams), while the best AM regarding β was G5 of log-
likelihood withβ of 33.9% (543256 n-grams). β for G1 of chi-square was 55.5%
(889771 n-grams), while precision for G5 of log-likelihood was 54.9%. Clearly,
G1 of chi-square has a lower precision and a higher β , therefore it cannot be
the best measure. Log-likelihood’s 3.9% lower β does not make up for the dif-
ference of 13.4% in the precision that is in favor of MI’, hence H2 pattern of
MI’ is the best measure for tetragrams on NN corpus. H1 was the best pattern
for Dice, while H4 was the best pattern for log-likehood regarding precision.

5.4.2 Vjesnik

The results for tetragrams in the Vjesnik corpus are shown in figure 5.10. There
were 1779487 tetragrams that passed the POS filter. H2 pattern of MI’ was
again found to be the best AM regarding precision, with the precision of 78.5%.
G6 of Dice coefficient was the second best with precision of 76.0%. β for MI’
was 56.7% (1008405 n-grams), with the best measure for β being G6 of Dice
with β of 48.5% (863934 n-grams). If the sole criterion for comparison would
be precision, MI’ would be the best measure. However, β for Dice was 8.2%
lower than that of MI’, while precision of MI’ was only 2.5% higher. The differ-
ence in precisions was not even comparable with the difference inβ , therefore
MI’ cannot be declared the best measure for Vjesnik corpus. However, it is still
not clear whether Dice should be considered the best measure either—having
a lower β is not enough. That is why another, third, criterion was used in this
case—precision for the 100% recall. For MI’, this value was 57.5%, while for
Dice it was 69.9%. Seeing this, G6 of Dice coefficient was declared the best
measure for tetragrams on Vjesnik corpus. For chi-square, G1 was the best
extension pattern, while for log-likelihood that was H4.

5.4.3 Hrcak

The results for tetragrams in the Hrcak corpus are shown in figure 5.11. There
were 2495401 tetragrams that passed the POS filter. Association measure with
the highest precision was in this case G1 of chi-square with precision of 62.1%.
Second best was G6 of MI with precision of 61.3%. β for chi-square was 85.3%
(2129467 n-grams), while the AM with the lowest β was G3 of log-likehood
with a β of 59.8% (1492371 n-grams). G6 of MI had a β of 83.2% (2075994 n-
grams). Precision for G3 of log-likelihood was 50.2%. The difference between
chi-square and MI (log-likelihood has a too low precision to be considered as
being the best measure) in both precision and β is too small for one to decide
on a best measure just by these two criteria. That is why precision for 100%
recall was again examined. Chi-square had a precision of 51.0% for 100% re-
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call, while MI had 50.2%. Again, the difference was too small to give any real
conclusion, so both of these measures can be considered to be the best mea-
sures for tetragrams on Hrcak corpus. However, both of these measures do
not perform well in the sense that they require over 80% of all candidates to
achieve 95% recall on the sample. This means that more than 5% of colloca-
tions from the sample are ranked very low by both of these measures, which
a good AM should not do. For this, the results for tetragrams on Hrcak corpus
are considered inconclusive. The best extension with regard to precision was
H4 for log-likelihood and G6 for Dice.

5.4.4 Time

The results for tetragrams in the Time corpus are shown in figure 5.12. There
were 1916748 tetragrams that passed the POS filter. The best AM with regard
to precision was H1 pattern of Dice with precision of 61.7%, while the sec-
ond best was H1 pattern of MI’ with precision of 59.7%. β for Dice was 73.6%
(1409972 n-grams), while β for MI’ was 73.2% (1403589 n-grams). AM with
the lowestβ was G5 of log-likelihood with aβ of 61.5% (1178277 n-grams) and
a precision of 56.2% (this pattern of log-likelihood was also its best extension
pattern regarding precision). Although Dice has a higher precison and a lower
β than MI’, the difference is not great enough to be able to say Dice is better.
Log-likelihood will also not be discarded as a candidate for the best measure
because its precison is 5.5% lower than that of Dice which is not a lot given it
has a 12.1% lower β . Precision on the 100% recall is inspected for these three
measures. Precision for Dice on 100% recall was 52.6%, for MI’ it was 50.2%,
while it was 52.3% for log-likelihood. Since MI’ does not perform best on any
of the criteria, it is discarded as a candidate for the best AM. The difference
in precision for log-likelihood and Dice was 0.3% which is not a lot so they
could both be regarded as performing the best. The difference between the
two should be obvious—while Dice will generally give higher precision, it will
require more candidates which means that the collocations from the sample
are not very high ranked, but rather the non-collocations from the sample are
low-ranked. On the other hand, log-likelihood gives a lower precision while
requiring less candidates. That means that it gives good scores to both collo-
cations and non-collocations from the sample. The best pattern of chi-square
with regard to precision was G1.
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Figure 5.9: Tetragram results for NN corpus
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Figure 5.10: Tetragram results for Vjesnik corpus
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Figure 5.11: Tetragram results for Hrcak corpus
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Figure 5.12: Tetragram results for Time corpus
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TABLE 5.1: Summary of results. Number before the corpus name indicates digrams,
trigrams or tetragrams. If there are two measures that perform equally well, they
are both given, with one of them in parenthesis.

Corpus Best AM Precision at 95% recall β at 95% recall

2 NN MI 79.8 42.0
2 Vjesnik MI’ 81.2 16.3
2 Hrcak MI’ (Dice) 71.4 (69.3) 39.8 (30.3)
2 Time MI’ 77.8 22.7
3 NN MI, H 73.1 49.9
3 Vjesnik MI’, H 77.2 46.5
3 Hrcak MI’, H 70.9 57.0
3 Time MI’, H 74.2 40.9
4 NN MI’, H2 68.3 37.8
4 Vjesnik Dice, G6 76.0 48.5
4 Hrcak chi-square, G1 (MI, G6) 62.1 (61.3) 85.3 (83.2)
4 Time Dice, H1 (log-likelihood, G5) 61.7 (56.2) 73.6 (61.5)

5.5 Discussion of Results

In sections 5.2–5.4 the results of perfomance of various AMs on the four cho-
sen corpora are given. All the most important results from those sections are
summarized in table 5.1. Using table 5.1, some of the questions raised at the
end of section 4.1 will now be answered.

To see if the order of AMs is independant of writing style, one has to look
at the results for the three Croatian copora—NN, Vjesnik, and Hrcak. For di-
grams, mutual information performed the best on all three corpora, with Dice
performing equally good as MI on Hrcak. For trigrams, mutual information
performed the best on all three corpora, while for the results for tetragrams
were a little different—MI performed the best on NN, Dice was the best on
Vjesnik, and chi-square and MI were equally good on Hrcak. From this, it is
clear that for digrams and trigrams, mutual information outperforms all the
other AMs, independent of the writing style, but within the same language.
For tetragrams, the results show that there in no AM that is the best on all three
corpora, indicating that as the length of collocations grows, they tend to be-
come more and more corpus-specific∗, so one really needs to find an AM that

∗For digrams and trigrams, the collocations in the sample were more general, widely used
in the language, e.g., comic book, energy source,video camera, whereas for tetragrams half of
the collocations in the sample were named entities, e.g., vice president Dick Cheney, Buddhist

Church of Vietnam.
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suits the specific corpus when extracting those longer collocations. However,
mutual information again showed to perform well, it was the best AM on the
NN corpus, and on the Hrcak corpus chi-square and MI performed equally
well, outperforming all the other AMs. In short, for digrams and trigrams the
results show that there the order of AMs does not depend on the writing style,
and that the best measure is mutual information. For tetragrams, the results
show that there are variations in the ordering of AMs depending on the writing
style.

To see if the order of AMs is indepemdant of languages, the results for
Vjesnik and Time corpora should be examined. The results for digrams and
trigrams show that mutual information outperformed all other measures on
both corpora. For tetragrams, Dice coefficient was the best for both corpora,
while for Time log-likelihood performed equally well as Dice. The results are
interesting as they show that there is little difference in results between Croa-
tian and English on the same type of corpora. It seems that there is more vari-
ation between the length of n-grams than in languages or in writing styles.
However, it should be noted here that mutual information was always very
close to the best AM, in cases where it was not the best AM, while log-likehood
performed worse than all AMs, except for tetragrams in Time corpus. The fact
that log-likelihood did not perform well contradicts the claims made in [15],
but other authors have also found that log-likehood gives poor results in com-
parison to other AMs (cf. [45]). The fact that mutual information was found
to be the best AM almost always in Croatian corpora coincides with the re-
sults obtained by Pecina [40]where 84 AMs were compared and mutual infor-
mation showed to perform the best. It is very interesting to note that Pecina
has done his experiments on a corpus that was in Czech, which is a Slavic
language, same as Croatian. Even when he automatically extracted the best
subset consisting of 17 measures, MI was among them (while neither log-
likelihood nor chi-square were selected). Also, mutual information showed
very good performance in [45].

One other question remains—are there some extension patterns that are
generally better than others? To see that, the best pattern for each measure is
given in table 5.2.

Looking at table 5.2, it is obvious that results for trigrams and tetragrams
are very different. For trigrams, pattern four was consistently the best EP for
chi-square, same as for log-likelihood. Pattern four expresses the idea that
a trigram like “crash test dummy” should be seen as a digram consisting of
entities “crash test” and “test dummy”. The best extension for Dice did not
show any consistent results—sometimes it was pattern two, sometimes pat-
tern four, and sometimes it was the heuristic pattern. The best pattern for
mutual information was always the heuristic pattern.
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TABLE 5.2: Best extension patterns for trigrams and tetragrams, with
regard to precision.

corpus Chi-square Dice coefficient Log-likelihood MI

3 NN G4 G2 G4 H
3 Hrcak G4 H G4 H
3 Vjesnik G4 G2 G4 H
3 Time G4 G4 G4 H
4 NN G1 H1 H4 H2

4 Hrcak G1 G6 H4 G6

4 Vjesnik G1 G6 H4 H2

4 Time G1 H1 G5 H1

For tetragrams, the best EP for chi-square was always pattern one which
is the natural extension of the measure, saying that all the words in the tetra-
grams should be treated equally. For Dice, heuristic pattern one was the best
two times, and the other two times the best EP was pattern six. For tetragrams,
log-likelihood did not show the same results as chi-square, as was the case for
trigrams. Heuristic pattern four was the best EP for Croatian corpora, while
pattern five was the best for Time corpus. Best patterns for mutual informa-
tion were heuristic patterns for NN, Vjesnik, and Time corpora, and pattern
six for Hrcak corpus.

From this, it is obvious that mutual information benefits greatly from the
heuristic patterns, both for trigrams and for tetragrams. Extension patterns
for Dice showed a great variation, so no conclusion can be made from those
results. For trigrams, log-likelihood favored the same EPs as chi-square, but
for tetragrams it too had benefited from heuristic patterns. Chi-square never
benefited from the heuristic patterns, which was strange. That is why a more
thorough investigation was conducted to find out why this is so. It turned
out that the problem with chi-square and heuristic patterns was the follow-
ing: some POS patterns had very strong collocations,∗ much stronger than all
other with the same pattern. Those collocations were then assigned a score
(by chi-square) much higher than all other with the same pattern. Mean-
while, other POS patterns did not have those cases. Thus, when computing
the α coefficients for each POS pattern, α for the patterns with the very strong
collocations was much lower than it should really be, resulting in a low score
for all the n-grams with that pattern. To illustrate this problem, consider the
following example.

∗Collocations with a very high value of an AM.
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Example 5.2. Unequal treating of POS patterns

Consider that we have two classes of POS patterns for trigrams: one in which
the second word is a stopword, and the other one which covers all other cases.
When computing α1 and α2 from equation (3.28), we have to find the trigrams
with each of those two patterns that are given the highest score by the AM in
question. Imagine the list of trigrams in which the second word is a stopword
has the scores (trigrams with this pattern are denoted t i ):
t1 10432
t2 178
t3 176
t4 176
t5 175

Now, imagine the list of trigrams which have no stopword has the scores (those
trigrams will be denoted u i ):
u 1 576
u 2 556
u 3 555
u 4 553
u 5 552

By dividing the scores of the first list by 10432 (which is equal to multiply-
ing them with α1 = 1/10432) and scores of the second list by 576, and then
sorting the list, we get the following:
t1 1
u 1 1
u 2 0.965
u 3 0.963
u 4 0.960
u 5 0.958
t2 0.017
t3 0.016
t4 0.016
t5 0.016

It is obvious that the trigrams with the first pattern are being “punished”
because there is a very strong collocation with that pattern. This is exactly
what is happening with chi-square and why it does not perform well with
heuristic patterns.



CHAPTER 6

Conclusion of the First Part

A conclusion is the place where
you got tired of thinking

Arthur Bloch

The first part of this thesis deals with the process of extracting colloca-
tions from a large textual corpus. Particular interest is given to the compari-
son of different association measures, functions used to indicate the strength
of bond between the words. The work done here is actually an extension of the
work done in [41] where the measures were compared only for digrams and
trigrams on the Narodne Novine corpus. As the motivation for the work lied
in improving a indexing system for documents in Croatian, special interest is
given to results obtained on Croatian corpora. The most important contribu-
tion of the first part of this thesis is that different association measures were
compared for Croatian here for the first time.

After explaining the notion of collocation and all the problems it bares
with it, motivation has been given for its use in the field of natural language
processing, followed by a formal approach to preprocessing of the corpus.

This is followed by a brief introduction to the issue of association mea-
sures and extending them for trigrams and tetragrams. Dealing with extend-
ing AMs in the way it was presented in chapter 3 is completely new and is
proposed here for the first time. With the framework given there, some of the
different approaches proposed by various authors (da Silva and Lopes [45],
McIness [34], Boulis [5], and Tadić and Šojat [51]) were succesfully modeled,
and some new approaches were also proposed. As stopwords can sometimes
be parts of collocations (as is the case here), some ways of overcoming the
problem of their very high frequency is also proposed in the form of heuristic
extension patterns. This is a generalization of the idea given in [41].
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Evaluating the performance of AMs is always problematic, and the specific
approach taken here is thoroughly described in chapter 4. Small random sam-
ples used here are a refinement of the approach taken by Evert and Krenn [17]
to fit the specific needs of this task. While it is not claimed that this approach
will lead to accurate values for precision and recall, it was shown that it is suf-
ficient for the purpose of comparing AMs.

The results of comparing AMs on four corpora are given in chapter 5. The-
se results showed that there is no difference in the ranking of AMs when collo-
cations are extracted from corpora whose documents are written in different
ways and that there is little difference in ranking of AMs when extracting col-
locations from corpora in Croatian and English. It was also interesting that
mutual information was the best measure in most cases, a result obtained by
Pecina [40] on a Czech corpus. The fact that log-likelihood gave very poor re-
sults contradicts the work done by Dunning [16]. However, upon inspection of
56 digrams that were ranked highest in [16] (according to their log-likelihood
score), only 15 of them would be considered collocations in the sense they
were defined in this thesis. For example, the five highest ranked digrams were
the swiss, can be, previous year, mineral water, and at the—only mineral wa-

ter would be considered a collocation. This also shows how important is the
definition of collocation that is adopted—some authors would consider can

be and at the to be valid collocations. In such case, their results would cer-
tainly differ from those given here. It is also important to note that Dunning
only compared log-likelihood to chi-square, he never compared it to mutual
information or Dice coefficient.

Different extension patterns were also compared for every tested AM and
the results showed that different AMs have different preffered patterns. The
heuristic patterns proposed here have shown to give the best results in most
cases, which indicates more work should be done on developing extension
patterns that treat n-grams differently based on their POS.



Part II

Application in Text Mining
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CHAPTER 7

Letter n-grams

They call it golf because all the
other four-letter words were
taken

Ray Floyd

Beside using words to represent text, it is possible to use other text features.
Letter n-grams are one of such features. This chapter explains what exactly
are letter n-grams and on what tasks have they been applied. Some of their
weak and strong points are also given.

7.1 Introduction

An n-gram is a subsequence of n items from a given sequence. A letter n-

gram (sometimes also called character n-gram ) is a sequence of n characters
extracted from text. To generate the n-gram vector for a particular document,
a window of length n is moved through the text, sliding forward by a fixed
number of characters (usually one) at a time. At each position of the window,
the sequence of characters in the window is recorded.

For example, the word “technology” has the following tetragrams (sequen-
ces of four characters): “tech”, “echn”, “chno”, “hnol”, “nolo”, “olog”, and “logy”.
However, strings are often padded with one leading and one closing space so
each string of length N has N−n + 3 n-grams. In the case of the word “tech-
nology”, two more tetragrams would be extracted—“␣tec” and “ogy␣”, where
the character “␣” represents a space. There are also other issues to note when
extracting letter n-grams. Sometimes only characters from the alphabet are
taken into account, while ignoring digits and other characters like punctua-
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tion marks, quote signs, etc. Special care should also be taken when crossing
the word boundaries as some systems prefer that n-grams don’t cross word
boundaries, while others do. In case that n-grams do cross word boundaries,
the phrase “full text” would have the following tetragrams: “␣ful”, “full”, “ull␣”,
“ll␣t”, “l␣te”, “␣tex”, “text”, and “ext␣”. In case n-grams do not cross word
boundaries, the following letter n-grams would be extracted: “␣ful”, “full”,
“ull␣”, “␣tex”, “text”, and “ext␣”.

7.2 Applications of Letter n-grams

Letter n-grams have a wide variety of applications. First work on letter n-
grams was done by Shannon [44]. He wanted to know, given a sequence of
letters, the likelihood of the next letter. Mathematically speaking, he wanted
to know the probability of the letter x i , given the last N events were x i−1,x i−2,
. . . ,x i−N, i.e., he wanted to know P(x i |x i−1,x i−2, . . . ,x i−N). He used this Markov
model to simulate a source that generates human language (in his case, En-
glish).

Dunning [16] uses letter n-grams for identifying human languages. The
advantage of using letter n-grams for this purpose is that they require no a
priori linguistic knowledge, and they can be applied to any language, whereas
using words for this purpose leads to problems when dealing with languages
like Chinese or Japanese, as texts in those languages cannot be tokenized into
words. The results obtained from [16] are very promising as very short strings
of text (of about dozen characters) can be identified using only a small training
corpus (around 100 KB).

Letter n-grams are also used in text categorization. Cavnar and Trenkle [6]
used profiles of n-gram frequencies to classify Usenet newsgroup articles,
achieving around 80% correct classification rate. They have also succesfully
used them for identifying languages.

Jalam [25] used letter n-grams for categorization of multilingual texts. His
use of letter n-grams is two-fold—he uses them to first identify the language
of the text, then translates the text into French and proceeds to classify the
text using letter n-grams-based classifiers built for French. This approach en-
ables building classifiers only for one language, instead of building a classifier
for each language in which texts need to be classified. To add support for
new languages, one needs only to translate the texts, leaving the classifiers
unchanged. Similar work has also been done by Damashek [12], and Biskri
and Delisle [3].

There are also information retrieval systems based on letter n-grams [35].
The advantages of using letter n-grams over words in IR systems are numer-
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ous: letter n-grams are less sensitive to errors (e.g., if the document contains
the word “claracter” insted of “character”, these two words still have five letter
trigrams in common), using letter n-grams achieves language independence
without having to use language-specific stemmers, lists of stopwords, etc.,
and using longer letter n-grams than span over word boundaries captures re-
lations between pairs of words (e.g., the n-gram “of co” is the first n-gram in
the phrase “of course”).

In summary, the main advantage of letter n-grams is that they are very
simple to implement, require no a priori linguistic knowledge, and are very ro-
bust to noise that is typically present in large textual corpora (especially when
text is obtained using OCR). One of the points that will be addressed in this
thesis is the appropriatness of letter n-grams as features for documents to be
visualized using correspondence analysis.



CHAPTER 8

Correspondence Analysis

Everything has beauty, but not
everyone sees it

Confucius

Correspondence analysis is an exploratory technique for visualizing large am-
ounts of data. It is used to visualize the structure within a matrix, where the
rows and columns represent two categorical variables. In this thesis, corre-
spondence analysis will be used to visualize a corpus of newpaper articles,
which is represented by a matrix with different text features as columns and
with documents as rows.

After an introduction to correspondence analysis in section 8.1, section 8.2
lists some of the applications of the method in various fields. The final section
goes into detail to describe the mathematical background of correspondence
analysis.

8.1 Introduction

The term correspondence analysis is a translation of the French term anal-

yses des correspondances, where the term correspondance denotes a “system
of associations” between the elements of two sets. Originally developed by
Jean-Paul Benzécri in the early 1960’s, this exploratory technique has gained
popularity in English-speaking countries in the late 1980’s.

Generally speaking, correspondence analysis is a visualization technique
used to represent the structure within matrices that contain some measure
of correspondence between the rows and columns. This measure of corre-
spondence is usually given as frequencies of items for a cross-classification
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of two categorical variables. Correspondence analysis is then used to create
a plot where each row and column of the matrix is represented by one point,
thus showing the interaction of two categorical variables. The space in which
rows and columns are projected is usually one-, two-, or three-dimensional.
In most cases, two-dimensional Euclidean space is used. Like in all other mul-
tivariate techniques that use SVD, axes spanning the space in which rows and
columns are projected are not interpretable. If a row and a column point are
close, that particular combination of categories of the two variables occurs
more or less frequently than one would expect by chance, assuming that the
two variables are independent.

One should note that as an exploratory technique, correspondence anal-
ysis is very similar to factor analysis, and some other multivariate statistical
techniques like principal component analysis, multi-dimensional scaling, re-

ciprocal averaging, etc. All these techniques are often used in text mining.

8.2 Applications of Correspondence Analysis

Correspondence analysis is a technique for displaying the rows and columns
of a matrix as points in dual low-dimensional vector space. This way, the data
can be displayed on a graph which is later used by human experts for further
analysis.

In general, correspondence analysis can be used to perform the following
types of analyses:

Discriminant analysis A given partition of i subjects into n groups is explored
to find variables and patterns of observations that characterize and sep-
arate groups

Classification A set of grouped subjects is given from which classification of
ungrouped observations should be inferred

Regression A dependency of one of the variables, called “dependent”, is in-
vestigated regading the other “independent” variables. From the inves-
tigation, dependent variable can be forcasted for other values of inde-
pendent variables than those observed

Cluster analysis Groups of similar objects are created by analyzing observa-
tions

For a detailed description on using correspondence analysis in the mentioned
methods, one should refer to [22].
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Although originally used to analyze textual data in linguistics, correspon-
dence analysis has since been used in many other fields. For example, it
was used by Krah et al. [31] in biology to study protein spots, while Zamir
and Gabriel used [59] it to analyze time series on science doctorates in USA.
Morin [36] used correspondence analysis for information retrieval on English
abstracts of internal reports from a research center in France. She also ex-
plains why they prefer correspondence analysis to latent semantic indexing
for this task. Some other applications of correspondence analysis include, for
example, sociology [42]. A comprehensive list of publications prior to 1984 is
given in [22].

8.3 Mathematical Background

In this section, mathematical foundations of correspondence analysis will be
presented. First, some basic definitions from linear algebra that will be used
thoroughout this chapter are given.

Definition 8.1. A field is a set F together with two binary operations on F,

called addition and multiplication, and denoted + and ·, satisfying the follow-

ing properties, for all a ,b , c ∈ F:

1. a +(b + c ) = (a +b )+ c (associativity of addition)

2. a +b =b +a (commutativity of addition)

3. a +0= a for some element 0∈ F (existence of zero element)

4. a +(−a ) = 0 for some element −a ∈ F (existence of additive inverses)

5. a · (b · c ) = (a ·b ) · c (associativity of multiplication)

6. a ·b =b ·a (commutativity of multiplication)

7. a ·1= a for some element 1∈ F, with 1 6= 0 (existence of unit element)

8. If a 6= 0, then a ·a−1 = 1 for some element a−1 ∈ F (existence of multiplica-

tive inverses)

9. a · (b + c ) = (a ·b )+ (a · c ) (distributive property)

Definition 8.2. Let R2 be the set of all ordered pairs (x , y ) of real numbers. We

define two operations on R2, called addition and multiplication. They are de-

fined as:

+ :R2→R2
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(x1, y1)+ (x2, y2) = (x1+x2, y1+ y2) (8.1)

· : R2→R2

(x1, y1) · (x2, y2) = (x1x2− y1y2,x1y2+x2y1) (8.2)

Set R2 with operations + and · is called field of complex numbers, and is de-

noted by C.

It is easy to prove that operations+ and · satisfy the axioms of fields (1)–(9)
in definition 8.1.

Definition 8.3. A matrix is an m-by-n array of scalars from a field F. If m=n,

the matrix is said to be square. The set of all m-by-n matrices over F is denoted

by Mm ,n (F), and Mn ,n (F) is abbreviated to Mn (F). In the most common case

in which F = C, Mn (C) is further abbreviated to Mn , and Mm ,n (C) to Mm ,n .

Elements of a matrix M will be denoted m i j , where i denotes the row index,

and j denotes the column index. Matrices will be denoted by capital letters.

Definition 8.4. Let A be an m ×n matrix. The conjugate transpose of A is the

n ×m matrix defined as:

A∗ ≡A
T

, (8.3)

where AT denotes the transpose of the matrix A and A denotes the conjugate

matrix (matrix obtained by taking the complex conjugate of each element of

A).

Definition 8.5. Let U be an n × n complex matrix. U is said to be a unitary
matrix if and only if it satisfies the following condition:

U∗U=UU∗ = In , (8.4)

where U∗ denotes the conjugate transpose of U.

Definition 8.6. Let M be an m ×n matrix. A non-negative real number σ is a

singular value of M iff there exist unit-length vectors u and v such that

Mv=σu and M∗u=σv. (8.5)

The vectors u and v are called left singular and right singular vectors for σ,

respectively.
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Theorem 8.1 (Singular value decomposition). Let M be an m×n matrix whose

entries come from the field K, which is either the field of real numbers or the

field of complex numbers. Then there exists a factorization of the form

M=UΣV∗, (8.6)

i.e.,

M=

p∑

k=1

σk ukvk
T (8.7)

where U is an m ×m unitary matrix over K, Σ is an m ×n diagonal matrix of

non-negative numbers, and V∗ is the conjugate transpose of V, an n×n unitary

matrix over K. Such a factorization is called a singular value decomposition
of M. Note that the values on the diagonal of Σ (they will be denoted σi ) are

singular values of M, and columns of U and V (ui and vi, respectively) are left

and right singular vectors for the corresponding singular values.

Proof. The proof will be omitted as it is too long. It can be found for example
in [57].

The SVD has one nice property. When the terms, corresponding to the
smallest singular values, are dropped from the formula (8.7), a least-square
approximation of the matrix A is obtained. That is, if we define the matrix A[K]
as the first K terms of (8.7):

A[K] ≡

K∑

k=1

σk ukvk
T (8.8)

then A[K] minimizes

‖A−X‖2 ≡

m∑

i=1

n∑

j=1

(a i j −x i j )
2 (8.9)

amongst all m ×n matrices X of rank at most K. Note that ‖A−X‖2 is actually
the squared Frobenius norm of the matrix A−X. A[K] is called the rank K (least-
squares) approximation of A and can itself be written in SVD form as:

A[K] =U(K)Σ(K)V(K)
T (8.10)

where U(K), V(K), and Σ(K) are the relevant submatrices of U, V, and Σ, respec-
tively.

Matrix A[K] is the least-squares approximation of A in the sense of Eu-
clidean distance when the masses and dimension weights are absent. There
is, however, a generalization of SVD that copes with masses and dimension
weights.
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Theorem 8.2 (Generalized SVD, GSVD). LetΩ ∈Rm×m andΦ∈Rn×n be positive-

definite symmetric matrices. Then any real m × n matrix A of rank K can be

expressed as

A=NDαMT =

K∑

i=1

αi nimi
T (8.11)

where the columns of N and M are orthonormalized with respect to Ω and Φ

respectively:

NT
ΩN=MT

ΦM= I. (8.12)

This decomposition is called generalized singular value decomposition “in the

metrics” Ω and Φ.

Proof. Let us observe the ordinary SVD of matrix Ω1/2AΦ1/2:

Ω
1/2AΦ1/2 =UDαVT, where UTU=VTV= I. (8.13)

Letting N ≡ Ω−1/2U and M ≡ Φ−1/2V and substituting U and V in the previous
equation, we get (8.11) and (8.12).

If Ω = Dw is the matrix of masses, and Φ = Dq is the matrix of dimension
weights, then the matrix approximation

A[K] =N(K)Dµ(K)M(K)
T =

K∑

k=1

µk nkmk
T (8.14)

minimizes

‖A−X‖2
Dq,Dw

≡

m∑

i=1

n∑

j=1

w i qj (a i j −x i j )
2

=

m∑

i=1

w i (ai−xi)
TDq(ai−xi)

(8.15)

amongst all matrices X of rank at most K. Note that µk in equation (8.14)
denotes the elements of matrix Dµ (that is, µk denotes the k -th singular value
of A[K]). Further details about SVD and GSVD can be found in [22].

Computing the GSVD A= NDµMT, where NTDwN=MTDqM= I is done in
four steps:

1. Let B=Dw
1/2ADq

1/2.

2. Find the ordinary SVD of B: B=UDαVT.

3. Let N=Dw
−1/2U, M=Dq

−1/2V, Dµ =Dα.
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4. Then A=NDµMT is the generalized SVD required.

We will now proceed to define some terms normally used in correspon-
dence analysis.

Definition 8.7. Let A ∈ Rm×n be a matrix of non-negative numbers such that

its row and column sums are non-zero, i.e.,

A≡ [a i j ], a i j ≥ 0, (8.16)

m∑

i=1

a i j > 0,∀j ∈ {1, . . . , n}, (8.17)

n∑

j=1

a i j > 0,∀i ∈ {1, . . . , m }. (8.18)

Let a .. denote the sum of all elements of A:

a .. ≡

m∑

i=1

n∑

j=1

a i j . (8.19)

Correspondence matrix P is defined as the matrix of elements of A divided by

the grand total of A:

P≡
1

a ..
A. (8.20)

The row and column sums of P are m ×1 and n ×1 vectors r and c such that

r≡P1, ri > 0,∀i ∈ {1, . . . , m } (8.21)

and

c≡PT1, c j > 0,∀j ∈ {1, . . . , n}. (8.22)

Diagonal matrices with elements on diagonal equal to elements of r and c are

denoted by Dr and Dc, respectively:

Dr ≡ diag(r) Dc ≡ diag(c). (8.23)

Note that 1≡ [1 . . .1]T denotes an n × 1 or an m × 1 vector, its order being
deduced from particular context.

Definition 8.8. Let P be a m × n correspondence matrix. Row and column
profiles of P are vectors of rows and columns of P divided by their respective

sums. Matrices of row and column profiles are denoted by R and C, respectively:

R≡Dr
−1P=







r̃T
1
...

r̃T
m







C≡Dc
−1P=







c̃T
1
...

c̃T
n







(8.24)
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The row and column profiles can be treated as points in respective n- and
m -dimensional Euclidean spaces. Centroids of the row and column clouds in
thier respective spaces are c and r. Note that the dimension weights for the
metric in these Euclidean spaces are defined by the inverses of the elements
of c and r , that is, D−1

c
and D−1

r
, respectively.

Definition 8.9. Let R and C be the matrices of row and column profiles of a cor-

respondence matrix P, thereby defining two clouds of points in their respective

n- and m - dimensional space. For each cloud, the weighted sum of squared

distances from points to thier respective centroids is called total inertia of that

cloud. Total inertia for row points is

inertia(R) =

m∑

i=1

ri (r̃i − c)TD−1
c
(r̃i − c) (8.25)

inertia(R) = trace[Dr (R−1cT)D−1
c
(R−1cT)T], (8.26)

while for column points it is

inertia(C) =

n∑

j=1

c j (c̃j − r)TD−1
r
(c̃j − r) (8.27)

inertia(C) = trace[Dc (C−1rT)D−1
r
(C−1rT)T]. (8.28)

The notation trace is used to denote the matrix trace operator. Note that
the term inertia in correspondence analysis is used by analogy with the defini-
tion in applied mathematics of moment of inertia, which stands for the integal
of mass times the squared distance to the centroid.

Theorem 8.3. Let in(R) and in(C) be the total inertia of row and column cloud,

respectively. When calculated, the total inertia is the same for both clouds, and

it is equal to the mean-square contingency coefficient calculated on the original

matrix A.

in(R) = in(C) =

m∑

i=1

n∑

j=1

(p i j − ri c j )
2

ri c j

=
χ2

a ..

= trace[Dr
−1(P− rcT)Dc

−1(P− rcT)T]

(8.29)

χ2 ≡

m∑

i=1

n∑

j=1

(a i j − e i j )
2

e i j

(8.30)

e i j ≡
a i .a .j

a ..
(8.31)
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Proof. From (8.25) and (8.27) we have

in(R) =

m∑

i=1

ri

n∑

j=1

(p i j /ri − c j )
2/c j =

m∑

i=1

n∑

j=1

(p i j − ri c j )
2/ri c j

and

in(C) =

n∑

j=1

c j

m∑

i=1

(p i j /c j − ri )
2/ri =

n∑

j=1

m∑

i=1

(p i j − ri c j )
2/ri c j .

Hence
in(R) = in(C).

In the χ2 formula a i j = a ..p i j and thus the “expected” value in a cell is:

e i j ≡ (

n∑

j=1

a i j )(

m∑

i=1

a i j )/a .. = (a ..ri )(a ..c j )/a .. = a ..ri c j .

This implies that χ2 = a ..in(R) = a ..in(C), hence (8.29).

The respective K-dimensional subspaces of row and column clouds which
are the closest to the points in terms of weighted sum of squared distances are
defined by K right and left (generalized) singular vectors of P− rcT in metrics
Dc
−1 and Dr

−1 which correspond to the K largest singular values.
Let the generalized SVD of P− rcT be

P− rcT =ADµBT, where ATDr
−1A=BTDc

−1B= I

and µ1 ≥ . . .≥µk > 0
(8.32)

Then the columns of A and B define the principal axes of the row and col-
umn clouds, respectively.

Theorem 8.4. Let R and C be the matrices of row and column profiles. Then the

coordinates of vectors from R and C with respect to their own principal axes are

related to the principal axes of the other cloud of profiles by simple rescaling.

Let

F≡ (R−1cT)Dc
−1B= (Dr

−1P−1cT)Dc
−1B (8.33)

be the coordinates of row profiles with respect to principal axes B in the χ2 met-

ric Dc
−1. Then

F=Dr
−1ADµ. (8.34)

Let

G≡ (C−1rT)Dr
−1A= (Dc

−1PT−1rT)Dr
−1A (8.35)

be the coordinates of the column profiles with respect to principal axes A in the

χ2 metric Dr
−1. Then

G=Dc
−1BDµ. (8.36)
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Proof. Let us consider the coordinates of row profiles. Notice that, since prin-
cipal axes B are orthonormal (see (8.32)), these coordinates are just scalar
products of the centered profiles with B, hence the definition in (8.33). Us-
ing 1=Dr

−1r we can rewrite (8.33) as follows:

F=Dr
−1(P− rcT)Dc

−1B. (8.37)

Multiplying the generalized SVD of P− rcT on the right by Dc
−1B we obtain:

(P− rcT)Dc
−1B=ADµ. (8.38)

Substituting (P− rcT)Dc
−1B in (8.37) with ADµ we get (8.34).

As an immediate consequence of the previous theorem and (8.32), the two
sets of coordinates (F and G) are related to each other by the following for-
mulæ:

G=Dc
−1PTFDµ

−1 =CFDµ
−1, i.e., GDµ =Dc

−1PTF (8.39)

F=Dr
−1PGDµ

−1 =RGDµ
−1, i.e., FDµ =Dr

−1PG (8.40)

Theorem 8.5. With respect to the principal axes, the respective clouds of row

and column profiles have centroids at the origin. The weighted sum of squares

of the points’ coordinates along the k th principal axis in each cloud is equal to

µ2
k , which is denoted by λk and called the k th principal inertia. The weighted

sum of cross-products of the coordinates is zero.

Centroid of rows of F: Principal inertias of row cloud:

rTF= 0T FTDrF=Dµ
2 ≡Dλ (8.41)

Centroid of rows of G: Principal inertias of column cloud:

cTG= 0T GTDcG=Dµ
2 ≡Dλ (8.42)

Proof. The proof will be omitted as it is trivial.

The total inertia of each cloud of points is decomposed along the princi-
pal axes and amongst the points themselves in a similar and symmetric fash-
ion. This gives a decomposition of inertia for each cloud of points which is
analogous to a decomposition of variance. This decomposition is shown in
table 8.1 on the next page.

This table forms the numerical support for the graphical display. The columns
display contributions of the rows and columns to the inertia of an axis. Each
of these contributions can be expressed as a proportion of the respective in-
ertia λk (≡ µ2

k ) in order to interpret the axis. These contributions are called
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TABLE 8.1: Decomposition of inertia

1 2 . . . K total

1 r1 f 2
11 r1 f 2

12 . . . r1 f 2
1K r1

∑

k
f 2

1K

2 r2 f 2
21 r2 f 2

22 . . . r2 f 2
2K r2

∑

k
f 2

2K

rows
...

...
... · · ·

...
...

m rm f 2
m 1 rm f 2

m 2 . . . rm f 2
m K rm

∑

k
f 2

m K

total λ1 ≡µ2
1 λ2 ≡µ2

2 . . . λK ≡µ
2
K in(R) = in(C)

1 c1 g 2
11 c1 g 2

12 . . . c1 g 2
1K c1

∑

k
g 2

1K

2 c2 g 2
21 c2 g 2

22 . . . c2 g 2
2K c2

∑

k
g 2

2K

columns
...

...
... · · ·

...
...

n cn g 2
n1 cn g 2

n2 . . . cn g 2
nK cn

∑

k
g 2

nK

“absolute” because they are affected by the mass of each point. Each row of
the table contains the contributions of the axes to the inertia of the respec-
tive profile point. And again, these contributions express proportions of the
point’s inertia in order to interpret how well the point is represented on the
axes. These are called “relative contributions” because the masses are dev-
ided out.

It is interesting to note here that the correspondence matrix P can be re-
constituted from the matrices F, G, and Dµ using the formula (8.43), while a K
rank approximation of P can be computed from (8.44).

P= rcT+DrFDµ
−1GTDc (8.43)

≈ rcT+DrF(K)Dµ
−1
(K)G

T
(K)Dc (8.44)

To illustrate the mathematical concepts introduced in this section, con-
sider the following example:

Example 8.1. Correspondence analysis of smoker data

Suppose we have data on the smoking habits of different employees in a com-
pany. The data is given in table 8.2.

The correspondence matrix P is then

P=










0.0207 0.0104 0.0155 0.0104
0.0207 0.0155 0.0363 0.0207
0.1295 0.0518 0.0622 0.0207
0.0933 0.1244 0.1710 0.0674
0.0518 0.0311 0.0363 0.0104










while the row and column sums are



8.3. Mathematical Background 66

TABLE 8.2: Incidence of smoking amongst five different types of staff. The data is
taken from [22]

Smoking Category

Staff Group None Light Medium Heavy Total

Senior Managers 4 2 3 2 11
Junior Managers 4 3 7 4 18
Senior Employees 25 10 12 4 51
Junior Employees 18 24 33 13 88
Secretaries 10 6 7 2 25

Total 61 45 62 25 193

r=
�

0.3161 0.2332 0.3212 0.1295
�T

and
c=
�

0.0570 0.0933 0.2642 0.4560 0.1295
�

.

The row and column profiles are vectors of rows and columns of P divided
by their respective sums (elements of r and c):

R=










0.3636 0.1818 0.2727 0.1818
0.2222 0.1667 0.3889 0.2222
0.4902 0.1961 0.2353 0.0784
0.2045 0.2727 0.3750 0.1477
0.4000 0.2400 0.2800 0.0800










C=








0.6565 0.6565 0.4098 0.2950 0.1639
0.0444 0.0667 0.2222 0.5332 0.1333
0.0484 0.1129 0.1936 0.5323 0.1129
0.0800 0.1600 0.1600 0.5200 0.0800








.

Row profiles indicate what smoking patterns different types of employees
follow (analogous for column points). For example, it is obvious from R that
Senior employees and Secretaries exhibit very similar patterns of relative fre-
quencies across the categories of smoking intensity.

The inertia is same for the row and column cloud and it is equal to 0.08519.
Note that the total value of χ2 is 16.442 (i.e., 0.08519*193, according to equa-
tion (8.29)). After computing generalized SVD of P− rcT we can compute the
coordinates for row and column points in the new space. The coordinates
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for the first two dimensions are (F and G are coordinates of row and column
points, respectively):

F=










−0.065768 0.193737
0.258958 0.243305
0.380595 0.010660
0.232952 −0.057744
−0.201089 −0.078911










G=








−0.393308 0.030492
0.099456 −0.141064
0.196321 −0.007359
0.293776 0.197766








.

These first two dimensions (corresponding to two largest singular values
of P− rcT) explain 99.5145% of inertia. This means that the relative frequency
value that can be reconstructed from these two dimensions can reproduce
99.5145% of the total χ2 value for this two-way table. The biplot of the smok-
ers data in the first two dimensions is shown in figure 8.1.

From figure 8.1 one can see that the categoy None is the only column point
on the left side of the origin for the first axis. Since emplyee group Senior Em-

ployees also falls on that side of the first axis, one may conclude that the first
axis separates None smokers from the other categories of smokers, and that
Senior Employees are different from, e.g., Junior Employees, in that there are
relatively more non-smoking Senior Employees. Also, the proximity of Heavy

smoker catrgory and Junior Managers employee type suggest a larger portion
of heavy smokers amongst junior managers than one would normally expect.

Example 8.1 not only demonstrates the mathematical concepts of corre-
spondence analysis, but also shows how this exploratory technique is used,
i.e., how the biplot is interpreted and what possible conclusions can be drawn
from it.
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Figure 8.1: Biplot showing employee types and smoker categories



CHAPTER 9

Implementation in Orange

C++ is an insult to the human
brain

Niklaus Wirth

Orange [13] is a component-based open-source data mining software devel-
oped at AI Laboratory, Faculty of Computer and Information Science, Univer-
sity of Ljubljana, Slovenia. It includes a number of preprocessing, modelling
and data exploration techniques. Orange can be downloaded from http://

www.ailab.si/orange/. Orange is written mostly in Python,∗ except for its
kernel which is written in C++.

This chapter will describe the implementation of text preprocessing meth-
ods in Orange, and will also give useful examples on using them. First, in sec-
tions 9.1 and 9.2, functions for text preprocessing and feature selection that
were written on the script level of Orange will be described. As the real ad-
vantage of using Orange is the simplicity of using its widgets for visual pro-
gramming, widgets were created that provide the functionality described in
the first two sections. These widgets are covered in section 9.3.

9.1 Text Preprocessing in Orange

All the classes and functions for working with text in Orange are united under
the module orngText. This section will describe those functions and show how
they can be used from within scripts or the Python interactive shell.

∗http://www.python.org/
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Listing 9.1: Structure of DocumentSet XML

<s e t name = " . . . ">
<document id = " . . . ">
<c a t e g o r i e s>
<category> . . . </ category>
. . .
<category> . . . </ category>

</ c a t e g o r i e s>
<content>
. . .
</ content>
. . .

</document>
. . .

</ s e t>

9.1.1 Loading Textual Data

Module orngText accepts various textual formats as input: XML, pure text, and
Reuters .sgm files. Following is an overview of the functions for loading these
formats.
loadFromListWithCategories(fileName)

This function will load pure textual data from file fileName. fileName

is a file that has two lines for each document to be loaded—first line
contains the path to the document and the second line contains space
separated categories. If a document’s category is unknown, the second
line for that document has to be left blank.

loadFromXML(fileName, tags={}, doNotParse=[])
Loads textual data from XML file fileName into an ExampleTable and re-
turns that table. XML should be of DocumentSet type. The structure
of this XML is shown in listing 9.1. The tag set is the top level tag of
the XML, which contains a collection of documents. Each document is
enclosed within document tag. Each document may (but doesn’t have
to) have categories associated with it. The categories are placed in-
side the categories tag. categories tag can hold one or more category tag,
each of them containing one category for the document. The content
of the document (its text) is placed within content tag. Other tags can
be placed within content tag or after it but they will be ignored unless
stated otherwise.
If provided, the dictionary tags changes the standard names of tags. For
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example, to change the tag for the begining of a new document from
‘document’ to ‘doc’, and leave the other tags intact, simply put tags =

{ ’document’: ’doc’}. Tags provided in the list doNotParse will not be parsed.
If omitted, every tag will be parsed.

loadReuters(dirName)
Loads all .sgm files from directory dirName into an ExampleTable and
returns it. Sgm files have an XML-like structure and support for them is
included because the Reuters 21578∗ collection comes in that format.

After loading the text into Orange data structures, some basic preprocessing
can be done with it. Following is a list of functions that make this preprocess-
ing possible.

9.1.2 Preprocessing the Text

Before adding textual features, the text has to be preprocessed in some way.
This preprocessing includes tokenization, stopword removal, and lemmatiza-
tion, and it is done using the class Preprocess, which will now be described.
class Preprocess(object)

Class for constructing objects that serve for preprocessing of text (lemma-
tization, stopwords removing, and tokenization). Note that this class
does not add any features, it changes the text in the original ExampleTable.

Attributes

inputEncoding
String indicating the input encoding of the text. For a list of all possible
values, see [1, pp. 208–210].

outputEncoding
String indicating the output encoding of the text. For a list of all possible
values, see [1, pp. 208–210].

lemmatizer
Function used to perform the lemmatization of text. It should take a
string as an argument and return a lemmatized string.

stopwords
A set of stopwords, i.e., words that will be removed during preprocess-
ing.

tokenize
Function used to tokenize the words in the text. It should take a string
(text) as an argument and return a list of words from that text.

∗This is a collection widely used in many text mining applications as a standard data
set for experiments. It can be found at http://www.daviddlewis.com/resources/
testcollections/reuters21578/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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langData
A dictionary of predefined lemmatizers, tokenizers, and lists of stop-
words for each of the currently supported languages (Croatian, English,
and French). All three languages share the same tokenizer provided by
the TMT [47] library. TMT (Text Mining Tools) is a C++ library of classes
and routines for preprocessing corpora of textual documents. There are
also some machine learning algorithms implemented in TMT. TMT is
developed at Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb, by students Frane Šarić and Artur Šilić, under supervision
of prof. Bojana Dalbelo Bašić and Jan Šnajder. Lemmatizer for Croat-
ian is based on the automatically generated morphological dictionary
(see [48]). For English, Porter’s algorithm [43] was used. Both of these
lemmatizers are integrated in the TMT library. For use in Python, a
wrapper was generated using SWIG.∗ Unfortunately, there is no publicly
available lemmatizer for French, known to the author, so a NOP lemma-

tizer† was used. Lists of stopwords are specific for each language.
Methods

__init__(self, language=None, inputEncoding=’cp1250’,
outputEncoding=’cp1250’)

Constructor for Preprocess class. language can be either ’en’, ’hr’, or ’fr’.
inputEncoding and outputEncoding are strings, for a list all possible val-
ues, see [1, pp. 208–210].

_in2utf(self, s)
Converts string s from inputEncoding to UTF-8.

_utf2out(self, s)
Converts string s from UTF-8 to outputEncoding.

doOnExampleTable(self, data, textAttributePos, meth)
Executes function meth for each example in ExampleTable data. meth is
executed on the attribute specified by textAttributePos argument.

lemmatizeExampleTable(self, data, textAttributePos)
Lemmatizes each example in ExampleTable data. The text attribute is
specified by the textAttributePos argument.

lemmatize(self, token)
Lemmatizes a single token or a list of tokens.

removeStopwordsFromExampleTable(self, data, textAttributePos)
Removes the stopwords from each example in ExampleTable data. The
text attribute is specified by the textAttributePos argument.

removeStopwords(self, token)

∗http://www.swig.org/
†A lemmtizer that leaves each word unchanged.

http://www.swig.org/
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Removes stopwords from text or a list of tokens.

9.1.3 Adding Textual Features

Following is a description of functions that enable adding of different features
(words, letter n-grams, and word n-grams) to textual data in Orange.
bagOfWords(exampleTable, preprocessor=None, stopwords=None)

Adds words as features in ExampleTable exampleTable. preprocessor is
an instance of a Preprocess class and it will, if provided, preprocess the
text in the desired way before constructing word features (see documen-
tation for Preprocess class earlier in this section for more). stopwords is a
Python set object containing words that should not be added as features
(i.e., stopwords).∗ For Python versions earlier than 2.5, Sets.set should be
used instead of set.

Example 9.1. Adding words as features

Suppose we have an ExampleTable data for which we wish to add words as
features. No special text preprocessing will be done, other than tokenization.
The following code demonstrates how this is done.

Listing 9.2: Adding words as features

>>> data
<ExampleTable instance at 0x00C9AE68>
>>> data [0 ]
[ ’ ’ , ’ ’ , ’ ’ , ’ Mary had a l i t t l e lamb . ’ ]
>>> r e s = orngText . bagOfWords ( data )
>>> r e s [0 ]
[ ’ ’ , ’ ’ , ’ ’ , ’ Mary had a l i t t l e lamb . ’ ] , { "Mary" : 1 . 0 0 0 , "had" :
1 . 0 0 0 , "a" : 1 . 0 0 0 , " l i t t l e " : 1 . 0 0 0 , "lamb" : 1 . 0 0 0 }

extractLetterNGram(table, n=2)
Adds letter n-grams as features to ExampleTable table. n is the length
of n-grams to be added. All characters are treated equally, i.e., punctu-
ations, digits, and other non-alphabet characters are included in letter
n-grams.

Example 9.2. Adding letter n-grams as features for text

Suppose we have an ExampleTable data for which we wish to add letter n-
grams as features. The following code demonstrates how this is done.

∗A careful reader will notice that the functionality provided by stopwords argument can
also be achieved through the preprocessor argument, provided the options are set accord-
ingly. However, specifying that we only wish some stopwords removed from the list of words
is more easier done through providing those words in a list as an argument rather than con-
structing a Preprocess object and setting the appropriate options. Don’t try to kill a fly with
a hand grenade.
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Listing 9.3: Adding letter n-grams

>>> data
<ExampleTable instance at 0x00C9AE68>
>>> data [0 ]
[ ’ ’ , ’ ’ , ’ ’ , ’ Mary had a l i t t l e lamb . ’ ]
>>> r e s = orngText . extractLetterNGram ( data , 2)
>>> r e s [0 ]
[ ’ ’ , ’ ’ , ’ ’ , ’ Mary had a l i t t l e lamb . ’ ] , { "a " : 1 . 0 0 0 , " e " : 1 . 0 0 0 ,
" a" : 1 . 000 , "Ma" : 1 . 0 0 0 , "ad" : 1 . 0 0 0 , " l a " : 1 . 0 0 0 , " y " : 1 . 0 0 0 ,
" h" : 1 . 0 0 0 , "mb" : 1 . 0 0 0 , "am " : 1 . 0 0 0 , " ry " : 1 . 0 0 0 , "d " : 1 . 0 0 0 ,
" l i " : 1 . 0 0 0 , " l e " : 1 . 0 0 0 , " t l " : 1 . 0 0 0 , " ar " : 1 . 0 0 0 , " l " : 2 . 0 0 0 ,
" i t " : 1 . 0 0 0 , "ha" : 1 . 0 0 0 , " t t " : 1 . 0 0 0 , "b . " : 1 . 0 0 0 }

extractWordNGram(table, preprocessor = None, n = 2,
stopwords = None, threshold = 4, measure = ’FREQ’)

Add word n-grams as features to ExampleTable table. If provided, pre-

processor will preprocess the text in the desired manner before adding
the features. n is the number of words in the n-gram, and it defaults to
two. Set of words provided as stopwords will greatly improve the qual-
ity of word n-grams, but this argument is optional. All n-grams having
value of the given association measure above threshold will be kept as
features, while others will be discarded. measure is a function that indi-
cates how strongly the words in the n-gram are associated.∗ The higher
this value, the stronger the association. measure can have the following
values: ’FREQ’, ’CHI’, ’DICE’, ’LL’, and ’MI’. ’FREQ’ will assign each n-
gram its frequency in the data. ’CHI’, ’DICE’, ’LL’, and ’MI’ will compute
for each n-gram its chi-squared value, Dice coefficient, log-likelihood
value, and mutual information, respectively. These measures are de-
scribed in more detail in chapter 3.

9.2 Feature Selection

Simply adding text features is not enough for any serious application. This is
because there are normally tens of thousands of features (or more) and the
time it would take to process them all is just not feasible. Not only that, but
the results obtained by using all the features in some application would not
be very good as many of the features simply aren’t representative for the text.
Using all the features of a text to, for example, predict its category would be the
same as using all the information we have about a person (including his eye

∗That is, an association measure.
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color, shirts he wore yesterday, name of his uncle, etc.) to predict whether or
not he would make a good employee in a software firm. Therefore, selecting
only a subset of features is always an important task in text mining. In this
section functions developed for this purpose will be described.
FSS(table, funcName, operator, threshold, perc = True)

Removes text features from table, using function funcName, operator op-

erator, and the threshold threshold. If perc is True, then the number
threshold is the percentage of features to be removed, otherwise it is re-
garded as a threshold and all features having value of funcName below
(or above) threshold are removed. funcName can be one of the following:
’TF’, ’TDF’, and ’RAND’. ’TF’(term frequency) is a function that returns
the number of times a feature (term) appears in the data. ’TDF’(term
document frequency) is a function that returns the number of docu-
ments a feature appears in, while ’RAND’ gives a random value to each
feature. operator can be ’MIN’ or ’MAX’. With ’MIN’ specified as the op-
erator, this function will remove the features with value of funcName less
than threshold (or the threshold percent of features with the lowest val-
ues, in case perc is True). Specifying ’MAX’ will do the opposite. For
example, keeping only the most frequent 10% of features is done with
res = orngText.FSS(data, ’TF’, ’MIN’, 0.9, True)

Removing the features that appear in more than 50 documents is done
with
res = orngText.FSS(data, ’TDF’, ’MAX’, 50, False)

DSS(table, funcName, operator, threshold)
Function for document subset selection. Takes an ExampleTable table,
function funcName, operator operator, and a number threshold and re-
moves all the documents that have the value of funcName below (or
above) threshold. funcName can be ’WF’ or ’NF’. ’WF’(word frequency) is
a function that returns the number of words a document has. ’NF’(num-
ber of features) is a function that returns the number of different fea-
tures a document has. For example, if a document would consist only of
the sentence “Mary also loves her mother, which is also named Mary.”,
its ’WF’ would be 10, and its ’NF’ would be 8. operator can be either
’MIN’ or ’MAX’. If ’MIN’ is chosen, the function will remove all docu-
ments having the value of funcName less than threshold. ’MAX’ behaves
the opposite. Removing all documents that have less than 10 features is
done with
res = orngText.DSS(data, ’WF’, ’MIN’, 10)
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Figure 9.1: Text tab in Orange containing widgets for text preprocessing

Figure 9.2: TextFile widget

9.3 Visual Programming with Widgets

Orange widgets are used for visual programming. Each wigdet has its input
and output channels used for communication with other widgets. Program-
ming with wigdets is done in Orange Canvas by connecting widgets and set-
ting each widgets’ properties. Details about Orange widgets can be found in
Orange’s documentation.∗ For each function described in the previous sec-
tion, there is a widget that incorporates its functionality. Those widgets will
be described here. Figure 9.1 shows the Text tab in Orange where all the wid-
gets for manipulating text are found.

9.3.1 TextFile widget

Inputs

(none)

Outputs

Documents (ExampleTable)

Description

This widget is used to load textual data into an ExampleTable. It accepts
data in XML format, pure text, and .sgm format. Widget is displayed in fig-
ure 9.2.

∗http://www.ailab.si/orange/doc/widgets/

http://www.ailab.si/orange/doc/widgets/
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Figure 9.3: Preprocess widget

9.3.2 TextPreprocess widget

Inputs

Examples (ExampleTable)

Outputs

Examples (ExampleTable)

Description

Constructs an orngText.Preprocess object and uses it to process the text in
the desired way. Widget is displayed in figure 9.3. User can choose whether or
not to convert words to lower case, remove stopwords, and lemmatize. These
three options are available for English and Croatian. For French, lemmatiz-
ing is not available because at the time of writing no French morphological
dictionary was available to the author.

9.3.3 BagOfWords widget

Inputs

Examples (ExampleTable)

Outputs
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Examples (ExampleTable)

Description

Constructs the standard bag-of-words representation of a text, i.e., it adds
words as features that represent text. There are some options available through
this widget. Choosing the “log(1/f)” option in the TFIDF box computes the
TFIDF∗ of a feature and uses that value to represent a document instead of
the features’ frequency which is used by default. The TFIDF is a statistical
measure, often used in text mining, that evaluates how important a term is
to a document in a corpus. Importance of a term for a specific document is
proportional to the number of times the word appears in the document, but
is offset by the frequency of the term in the corpus. TFIDF is computed as:

tfidf=
n i
∑

k
n k
︸ ︷︷ ︸

tf

log
|D|

|{d : t i 3 d }|
︸ ︷︷ ︸

idf

, (9.1)

where n i is the number of occurrences of the considered term,
∑

k
n k is the

number of occurrences of all terms, |D| is the total number of documents in
the corpus, and |{d : t i 3 d }| is the number of documents where the term t i

appears.
It is also possible to normalize the length of a document. Normalizing the

length of a document means that the vector representing this document in
feature space will have the chosen norm equal to one. Currently two different
norms are accepted: L1 (Manhattan) and L2 (Euclidean). L1 norm of a vector
v∈Rn is defined as:

L1(v) =
n∑

i=1

vi , (9.2)

while L2 is defined as:

L2(v) =

s
n∑

i=1

v 2
i . (9.3)

The bottom of the widget shows some basic information about the data. Wid-
get is shown in figure 9.4.

9.3.4 LetterNgram widget

Inputs

Examples (ExampleTable)

Outputs

∗Term frequency–inverse document frequency
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Figure 9.4: Bag of words widget

Examples (ExampleTable)

Description

Constructs letter n-grams as features for text. Letter n-grams of two, three,
and four letters can be chosen. Bottom of the widget shows the number of
different letter n-grams found in the data. Widget is shown in figure 9.5.

9.3.5 WordNgram widget

Inputs

Examples (ExampleTable)

Outputs

Examples (ExampleTable)

Description

Constructs the word n-gram representation of text. Some word n-grams—
collocations—are especially interesting. Collocations and their extraction from
text have been the topic of the first part of this thesis. One can choose to ex-
tract word n-grams of two, three, and four words by clicking the appropriate
button in “No. of words” box. Choosing the association measure for extracting
word n-grams is done by clicking the desired measure in “Association mea-
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Figure 9.5: Letter n-gram widget

Figure 9.6: Word n-gram widget

sure” box. It is also possible to specify a list of stopwords and set the thresh-
old for the value of the association measure. While this widget also enables
extraction of named entities as features (“Named entities” option in “No. of
words” box), this option will not be covered here as named entity recognition
is outside of scope of this thesis. WordNgram widget is shown in figure 9.6.
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9.3.6 TextFeatureSelection widget

Inputs

Examples (ExampleTable)

Outputs

Examples (ExampleTable)

Description

This widget is used for removing some features or documents according
to the selected criteria. For a selected measure, we can choose to eliminate
those features (documents) that have the value of that measure less than (op-
tion “MIN”) or more than (option “MAX”) a given threshold. Additionally, if
the percentage box is checked, the value in the threshold field is interpreted
as a percentage. That means that, for example, if we choose TF measure,
MIN operator and threshold of 90 with percentage box checked, we are ac-
tually eliminating the 90% of features with the smallest value of TF measure
(in other words, we are keeping 10% of features with the highest values of TF
measure). The measures TF, TDF, RAND, WF, and NF are described in sec-
tion 9.2 on page 74. Note that it is possible to iteratively apply various selec-
tion criteria on the same data. If this data is to be used with the correspon-
dence analysis module, it should be always checked that there are no zero
rows. That can be done by applying the following selection criteria: selecting
“WF” for measure, “MIN” operator, unckeck “percentage” and use a threshold
of 1. That way all documents with zero words will be eliminated. By clicking
the “Reset” button, the data is reset to the original state. The TextFeatureSe-
lection widget is shown in figure 9.7.

9.3.7 TextDistance widget

Inputs

Examples (ExampleTable)

Outputs

Distance matrix (orange.SymMatrix)

Description

The TextDistance widget is very simple. It inputs an ExampleTable with
any number of features and computes the cosine between the angle of doc-
ument vectors in feature space. Its output can be used for any widget that
requires a distance matrix. Due to its utter simplicity, this widget will not be
shown.
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Figure 9.7: Feature selection widget

9.3.8 Correspondence analysis widget

Inputs

Examples (ExampleTable)

Outputs

(none)

Description

This widget is used to perform the correspondence analysis of an Exam-
pleTable. This widget was implemented by Mladen Kolar. Although some
new features have been added, the core functionality of the CA widget is the
same as described in [29, §6.1]. A very thorough description of how to use the
widget, along with all the options and a few screenshots can be found there.
Therefore, this widget will not be dicussed here.



CHAPTER 10

Comparison of Text Features for

Correspondence Analysis

You may never know what results
come of your action, but if you do
nothing there will be no result

Mahatma Gandhi

Having implemented different text features in Orange, it would be interest-
ing to see how they compare to one another on some text mining task. For
this purpose, correspondence analysis of a parallel Croatian-English corpus
was chosen. The theory of correspondence analysis was covered in chapter 8.
Here it will be shown how well letter n-grams, words, and word n-grams per-
form on a task of visualization of a corpus. As the corpus is bilingual, results
will also be compared for Croatian and English.

Section 10.1 will first explain the criteria that were used to compare the
different text features, while section 10.2 will thoroughly describe the results
and interpret them.

10.1 Comparison Criteria

For this task, a parallel corpus of newpaper articles from the journal Croatia

Weekly was chosen [49]. It consisted of 1790 documents in each language (the
documents had a one-for-one translation). All the documents were already
divided into four categories: politics, economy, tourism and ecology, and cul-
ture and sport. Each document belongs to one and only one category.

As was stated in chapter 8, correspondence analysis is an exploratory tech-
nique. This means that it gives no definitive numerical results, but an inter-

83
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pretation of the results is needed. It is used by experts to give them an insight
about the data they are dealing with. Because of this, the task of comparing
different visualizations arising from using different textual features is not an
easy one. Some criteria for comparison have to be established. It should be
noted that from now on, for simplicity reasons, the term view will be used to
denote the plot we get by choosing a combination of any two axes, and will be
interpreted by an expert from the domain under consideration.

Text features are compared on the following five criteria:

1. For each of the four categories (politics, economy, culture and sport,
tourism and ecology), is there at least one combination of axes (one
view) that separates that category from all others?

2. What is the maximum axis∗ on which results still make sense?

3. Is there a view that separates all four categories at once?

4. Is there a view that separates sport from culture?

5. Is there a view that separates politics into domestic politics and foreign
affairs?

The first criterion is obvious—since every document belongs to one cate-
gory, one would expect that for each category there exists a view which sepa-
rates that category from all other.† The second criterion is somewhat unclear—
what does it exactly mean that “results make sense?” By this, it is meant that
there are still some clusters of documents that are separated from all other,
and documents in those clusters are somehow similar to each other. Although
this is not a precise definition, neither will the results for this criterion be. Re-
sult for the second criterion will be a number which will indicate that the vi-
sualizations using axes higher than that number are very poor and that little
can be inferred from them based on individual subjective judgement of an ex-
pert. The third criterion can be thought of as a stronger first criterion—we not
only want that each category is separated from others on some view, we want
that there is at least one view that separates all the categories at once. This is
like asking correspondence analysis to cluster the data. Since one of the cat-
egories is sport and culture, it would certainly be interesting to see if the doc-
uments within that category are separated from each other based on whether
they are about sport or about culture. A similar criterion could be established

∗Recall that each subsequent axis accounts for less and less of variance in the data.
†At least, that is what “good” features should be able to do.



10.2. Results 85

for tourism and ecology, but that was not done as the documents in that cat-
egory are very similar (tourism is often interconnected with nature and ecol-
ogy in general), much more similar than documents about sport and culture.
Therefore, even the human interpreting the results had problems with telling
tourism and ecology articles apart, so it was decided not to use this criterion.
The final criterion of comparison was the ability to separate articles from the
politics category into those that talk about domestic (Croatian) politics and
those that talk about foreign affairs. For anyone with even a little knowledge
of politics it was easy to infer if a document is about domestic or foreign poli-
tics.

10.2 Results

The following text features are tested: words, letter digrams, letter trigrams,
words digrams obtained by frequency, Dice coefficient, mutual information,
chi-squared, and log-likelihood, and word trigrams obtained by frequency.
The reason for not including word trigrams obtained by other measures is
their sparsness. That is, the majority of word trigrams appear in only one
or two documents. This means that removing any features by using feature
selection (which is necessary as there are much more features than the pro-
gram can handle) will cause many documents to have no features left. A doc-
ument without any features has to be removed and so many documents are
lost, making the comparison with the previous experiments impossible.

Results for the English part of corpus are given in table 10.1. The columns
represent the comparison criteria. The value somewhat means that it is hard
to say whether or not the given criterion is met, i.e., it depends on the per-
son interpreting the results. When lemmatization was used before adding the
features, this is indicated by “(lem)” next to the feature name. Mark “tfidf”
next to a feature’s name indicates that tfidf value of a feature was used (see
equation (9.1)) and not its frequency, while “L2” means that documents were
normalized using L2 norm (see equation (9.3)).

Results for the Croatian part of corpus are given in table 10.2. For Croa-
tian, using word trigrams showed to be problematic (in the way it was de-
scribed earlier in this chapter) even when pure frequency, so those results are
not shown. Marks “lem”, “tfidf”, and “L2” have the same meaning as in ta-
ble 10.1. Note that even though letter n-grams are usually used without any
prior preprocessing, lemmatization was used for letter digrams because the
results without lemmatization were so bad that even for the first two axes all
the data was in one big cluster, looking like it was randomly plotted. Viewing
subsequent axes showed that there was no improvement, so lemmatization
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TABLE 10.1: Results for different text features on the English part of corpus

features 1 2 (≈) 3 4 5

words(lem) yes 9 and 10 somewhat yes somewhat
words yes 9 and 10 somewhat yes yes
words (lem, tfidf, L2) yes 11 and 12 somewhat yes yes
letter digrams no 2 and 3 no no no
letter trigrams no 7 and 8 no no yes
word digrams (freq) yes 13 and 14 somewhat yes yes
word digrams (MI) yes 20 and 21 no yes no
word digrams (Dice) yes 16 and 17 yes yes no
word digrams (chi) yes 10 and 11 yes yes somewhat
word digrams (ll) yes 10 and 11 yes yes yes
word trigrams (freq) yes 15 and 16 somewhat no no

TABLE 10.2: Results for different text features on the Croatian part of corpus

features 1 2 (≈) 3 4 5

words(lem) yes 9 and 10 somewhat yes yes
words yes 5 and 6 somewhat no yes
words (lem, tfidf, L2) yes 10 and 11 no yes yes
letter digrams(lem) no 1 and 2 no no no
letter trigrams yes 6 and 7 somewhat no yes
word digrams(lem) (freq) yes 16 and 17 yes yes somewhat
word digrams(lem) (MI) no 20 and 21 no yes no
word digrams(lem) (Dice) no 16 and 17 yes yes no
word digrams(lem) (chi) yes 10 and 11 somewhat yes no
word digrams(lem) (ll) yes 14 and 15 somewhat yes no

was used in an attempt to get any meaningful results.
From tables 10.1 and 10.2, few interesting facts can be observed. First,

letter n-grams don’t seem to be a very good choice for text features when per-
forming correspondence analysis. This could be due to the fact that letter
n-grams are very dense—many different documents (not necesserily belong-
ing to the same categoy) share the same letter n-grams. For example, an often
seen problem with letter n-grams was the fact that tourism and ecology and
culture and sport were in the same cluster. Upon inspection, it was found
that the n-grams “cul”, “ult”, “ltu”, “tur”, and “ure” are very representative for
this cluster. The words from which these n-grams came are: culture, multi-
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culturalism, intercultural, but also agriculture, horticulture, and floriculture.
The first three words are obviously from the documents that talk about cul-
ture while the last three are from documents about ecology. When dealing
with words and word n-grams, this would never happen.

When comparing different AMs used for extracting word n-grams, it is in-
teresting to notice that Dice and mutual information show somewhat infe-
rior results to chi-square and log-likelihood. This is interesting because Dice
and mutual information have been found to give better collocations than chi-
square and log-likehood (see the first part of the thesis). Indeed, the fea-
tures mutual information gave were, for example, forensic medicine, animated

film, genetically modified, national parks, patron saint, while log-likelihood
found n-grams like previous year, visit Zagreb, percent decrease, particularly

important, which are definitely not collocations (in the sense they were de-
fined in part one). This discrepancy between the results obtained here and
those in part one can be explained by taking into account the work done by
Chung and Lee [7]. They explored the similarity between mutual informa-
tion, Yule’s coefficient of colligation, cosine, Jaccard coefficient, chi-square,
and log-likelihood and what they have found is that, depending on the types
of collocations they wished to extract, different measures behaved similarly.
In conclusion they state that “it is necessary to select an association measure
most appropriate for a given application such as lexical collocation extrac-
tion or query expansion because these may need an emphasis on terms in a
different range of frequencies”. In short, they claim that different measures
will behave better for different tasks to which collocations are applied, and
the results obtained here seem to support this claim. It is also interesting to
compare these results to the work done by Koehn et al. [28]. In one of their ex-
periments they evaluated the use of syntactic phrases (word sequences very
similar to the definition of collocation used here) for machine translation, and
compared this approach to machine translation using phrases without any
restriction. What they found was that not only do syntactic phrases not help
the translation, they even harm the translation quality. As an example, they
consider the German phrase es gibt, which is literally translated as it gives,
but it actually means there is. Of course, es gibt and there is are not syntactic
phrases (nor collocations), so this translation is never learned. Similar exam-
ples are phrases with regard to and note that which are not collocations but
have simple one-word translations in German. All this indicates that perhaps
for correspondence analysis it is not important that the word n-gram features
be collocations, maybe using the n-grams extracted by statistical measures
like chi-square and log-likelihood is better.

When comparing word n-grams with just words, for English the word n-
grams (using log-likelihood) showed better than words, while this was not the
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case for Croatian. In fact, word digrams extracted by log-likelihood in the
English part of the corpus were the only features that were able to meet all
the criteria from section 10.1 (that is, all the criteria except the second one,
which cannot be “met”). Some of the plots obtained by using log-likelihood
in the English part of corpus are shown in figures 10.1–10.3. Figure 10.1 shows
how the documents are grouped into four clusters, corresponding to four cat-
egories. In figure 10.2 one long cluster of documents can be seen separat-
ing from the other documents—documents in that cluster are all about sport.
Separation of domestic and foreign policy can be seen in figure 10.3—the up-
per blue cluster are documents about foreign policy (they mostly talk about
Serbia, Kosovo, Milošević) while the lower blue cluster is made from docu-
ments about domestic policy (those documents talk about SDP, HDZ, HNS
and other Croatian political parties). Why exactly words perform better than
word n-grams for Croatian, and do not for English, is unclear. Obviously, the
fact that the two languages are different plays some part in this, but guessing
how the difference in the languages is reflected in preferance of different text
features for correspondence analysis is outside of scope of this thesis.

How the plot obtained by using same features compares between langua-
ges can be seen in figures 10.4 and 10.5.∗ Figure 10.4 shows the first two axes of
the plot obtained by using words (lemmatized) as features. It is obvious that
the two plots are nearly identical. In contrast, on figure 10.5 it can be seen
that when using word digrams (obtained by mutual information) the plots
for English and Croatian are different even for the first two axes. The purple
cluster spreading to the right, which can be seen in figure 10.5a, is a cluster of
documents that are about sport. However, figure 10.5b shows no such cluster
(though the purple points that are spreading upwards are documents about
sport, there are too few of them to be considered a cluster, and they are also
mixed with documents from tourism and ecology category).

In comparison of different word features (lemmatized, non-lemmatized,
using TFIDF and normalization), it seems that Croatian definitely benefits
from lemmatization, while English does not. This is somewhat expected as
Croatian is morphologically much more complex than English. Using TFIDF†

and L2 normalization showed to give similar results as when using just fre-
quency (for Croatian, it even performed slightly worse). However, using TFIDF
and normalization yielded some other interesting clusters of documents that
were not found using any other features (e.g., a cluster of documents talk-
ing about the concentration camp Jasenovac, a cluster about mass graves and

∗These two figures correspond to rows one and seven in tables 10.1 and 10.2.
†Note once again that TFIDF values of features were used as input to correspondence

analysis—it was not used for feature selection.
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Figure 10.1: Separation of four categories using word digrams on the English part of
the corpus. Word digrams are obtained using log-likelihood without lemmatization,
so these results correspond to row ten in table 10.1.
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Figure 10.2: Sports cluster as separated by using word digrams (obtained by log-
likelihood) on the English part of the corpus. These results correspond to row ten
in table 10.1.
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Figure 10.3: Separation of domestic and foregin policy using word digrams (obtained
by log-likelihood) on the English part of the corpus. These results correspond to row
ten in table 10.1.
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(a) English

(b) Croatian

Figure 10.4: Plots for two different languages, using words (lemmatized) as features
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(a) English

(b) Croatian

Figure 10.5: Plots for two different languages, using word digrams (obtained by
mutual information) as features
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missing persons during the war in Croatia, etc.). Also, the terms obtained by
using TFIDF were much more informative than those obtained by using sim-
ple frequency (which is expected as TFIDF chooses the terms that are most
relevant for a particular document).

For word n-grams, a series of experiments were conducted that are not
shown in tables 10.1 and 10.2. Those experiments included setting different
thresholds for AMs, thus keeping “stronger” or “weaker” collocations. Those
experiments showed that it was always better to set a lower threshold of an AM
and then remove more features using feature selection, than setting a higher
threshold of an AM and then remove less features using feature selection. For
example, it is better to get 30 thousand word n-grams and then keep the most
frequent 5%, thus getting 1500 features, than it is to get three thousand word
n-grams and then keep 50% of the most frequent ones (resulting in the same
number of final features-1500).

While reading the results, it should be kept in mind that correspondence
analysis is only an exploratory technique so any comparison of different rep-
resentations of one dataset using correspondence analysis is subjective. There
can never be any objective comparison criterion for a method that depends
on how the results are interpreted. The comparison criteria that were chosen
in this case are ad-hoc. Choosing some other criteria for comparison would
maybe give different results. However, this is the first time (known to the au-
thor) that different text features were compared for visualization of a text cor-
pus using correspondence analysis, and even though the results are some-
what subjective they give a first glimpse on how different text features behave
when used in correspondence analysis.



CHAPTER 11

Conclusion of the Second Part

Do or do not. . . there is no try

Master Yoda

The second part of this thesis deals with application of word n-grams on
visualizing a text corpus using correspondence analysis, and with comparing
them to some other often used text features on the same task.

Letter n-grams are one of more often used methods for representing text.
They are a sequence of n (consecutive) characters extracted from text. Wide
use of letter n-grams is due to the fact that they are very easy to implement
and do not require any particular linguistic knowledge. Because of the lat-
ter, they are language-independent, performing well even for languages like
Chinese and Japanese where other traditional methods like the bag-of-words
approach fail. Because of their wide use and simplicity, letter n-grams were
chosen as one of the features to compare against word n-grams.

The other feature to compare against word n-grams are words. Lemma-
tized or non-lemmatized, using frequency or TFIDF, words are today probably
most frequently used features in text mining. When used without lemmatiza-
tion, they also require no linguistic knowledge, but unlike letter n-grams they
run into problems when dealing with languages like Chinese and Japanese
because of the problems with tokenizing words. Still, words as text features
have been found to perform very well and have already been exploited in cor-
respondence analysis, making them an ideal candidate for comparing with
word n-grams.

Correspondence analysis is a visualization technique used to represent
the structure within matrices that contain some measure of correspondence
between the rows and columns. It was first proposed by a group of French
mathematicians, but it was soon adopted by others as one of the exploratory
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multivariate techniques and used in many different fields—from linguistics
to biology. Correspondence analysis creates a plot of both rows and columns
of a matrix in the same space, thus showing the interaction of two categor-
ical variables that are represented by them. Axes are created by correspon-
dence analysis in such a way that each subsequent axis explains less and less
of variance in the data. These axes are not interpretabile like in some other
techniques, like concept indexing.

Orange is a component-based data mining software. Providing a range
of different data preprocessing, modelling, and exploration techniques, Or-
ange’s greatest strength is its palette of visualization techniques. The corre-
spondence analysis module was already implemented in Orange, and in this
thesis a text preprocessing module for Orange was implemented. The mod-
ule developed for this purpose, called orngText, has the ability to load most of
the widley used textual formats, lemmatize the text in two languages (Croat-
ian and English), and extract the already mentioned features (word n-grams,
letter n-grams, and words).

Comparing the three different text features was done on a parallel Croatian-
English newspaper corpus Croatia Weekly. As correspondence analysis is an
exploratory technique, some ad-hoc criteria were suggested for comparing
the features. Using those criteria, it was shown that letter n-grams do not
perform as well as words and word n-grams, and also that word n-grams per-
form almost the same as words in Croatian, while they perform even better
than words in English. The comparison among different association mea-
sures also revealed that some measures that performed well in the first part
of the thesis did not prove to be as good for use in correspondence analysis.
Possible reasons for this discrepancy have also been discussed. As expected,
using lemmatization with words showed to improve the results for Croatian,
while it did not have much effect in English. The most important contribution
of this part of the thesis is that the three text features, word n-grams, words,
and letter n-grams, were used and compared in correspondence analysis for
the first time.



Abstract

In this thesis, various association measures for extracting collocations from a
textual corpus were compared. A lot emphasis was also put on proposing and
evaluating different ways of extending the association measures. Extending
the association measures is an important issue, but, to this day, only a few
authors have addressed it, and there has been almost no effort to compare the
different extensions. Different association measures and extension patterns
have been compared on three Croatian corpora of different wiriting styles and
one English corpus.

The second part of the thesis showed how word n-grams, extracted using
the association measures discussed in the first part, can be used for corre-
spondence analysis, a multivariate exploratory technique. They have been
compared with words and letter n-grams for the same task. All of the ex-
periments were conducted on a parallel Croatian-English corpus, so results
between the two languages were also compared.
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