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PRELIMINARY COMMUNICATION

The Benièanci oil field, located in the eastern part of the Drava depression is still one of five main
hydrocarbon reservoirs in Croatia. That makes it very meaningful to plan and perform a whole new set of
geological reinterpretations and improvements of field geological model. The application of the neural
network approach in seismic attribute processing and finally reservoir porosity prediction is presented in
the paper. Three seismic attributes were interpreted – amplitude, phase and frequencies making the 3D
seismic cube. These attributes were interpolated at 14 well locations, averaged and compared by the mean
porosities. It made the network training. The network was of the backpropagation type. It was fitted through
10 000 iterations, searching for the lowest value of correlation between attribute(s) and porosities and
minimal convergence. The best training was reached using all three attributes together, which indicated the
tendency that neural networks like numerous inputs. The obtained results were compared by previously
interpolated geostatistical porosity maps (done by the Kriging and Cokriging approaches). The Cokriging
approach, interestingly included only reflection strength (derivation of amplitude) as the secondary seismic
source of information (compared by neural inputs of three attributes). It very clearly indicated on position of
carefully and geologically meaningful selection of the network inputs for any reservoir analysis. Relatively
smooth map, and rarely reaching of measured porosity minimum and maximum, strongly indicates on
conclusion that neural estimation is more precisely than previously interpolations.
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1. INTRODUCTION
The Benièanci oil field is located in the eastern part of
Drava Depression. The reservoir is of massive type,
lithologically represented by dolomitic and limestone
breccias. The top of the
structure trap is at 1
699 m bsl. Average po-
rosity was 7.33 %, ini-
tial water saturation
28.13 %, and oil gravity
875.0 kg/m3. Produc-
tion started in 1972
and waterflooding in
1975. The field is today
in mature production
stage, explored and de-
veloped by a total of
106 wells with 25 wells
still in the production
stage. The following
analysis was performed
on data collected from
14 wells. In the analy-
sis, new porosity aver-
ages were calculated for
reservoir interval as
well as seismic attrib-
utes1 calculated from
recently performed 3D
seismic survey. This oil

field is still one of the five most productive hydrocarbon
fields in Croatia. It makes this area a favourable target
for additionally geological reinterpretation and model
improvements.
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Fig. 1 Regional map of the Croatian part of the Pannonian Basin
Sl. 1. Regionalna karta hrvatskog dijela Panonskog bazena



The neural network
approach is a well
known developing tool
within the last couple of
decades. Supervised
trainable networks are
used in many different
fields. In this case, the
user provides some ex-
amples for the neural
network to learn, and
then the network is
tested with another
data set to check the
success of training. One
important point to re-
member is that the net-
work, if trained
properly, will recognize
and correctly classify
only those cases included in the training set. Any new
conditions not included in the training set will be
misclassified or not recognized. Feed forward, fully con-
nected perceptron artificial neural networks (ANN),
Learning Vector Quantization (LVQ), Probabilistic Neural
Networks (PNN), and Radial Basis Function Networks
(RBF) are some of the available networks.2 Each of the
methods has its advantages and limitations.

Also, the neural approach is not as expensive a process
as some other development tasks like seismic acquisi-
tions or drilling costs. The tool is very useful in predic-
tion of reservoir properties, and searching for
improvements of existing geological modeling results.

2. GEOLOGY
The Benièanci oil field is the largest hydrocarbon reser-
voir in the Benièanci oil zone. It comprises a total of four
oilfields (Bizovac, Crnac, Števkovica, Obod-Laciæi), three
oil and gas fields (Benièanci, Bokšiæ, Obod), one gas field
(Obradovci) and one geothermal field (Bizovac). The total
geological oil reserves in the Benièanci reservoir are
34 x 106 m3 and oil recovery 52.5 %.

Gas reservoirs of the Benièanci field are structurally
shallower and represent a minor (secondary) produc-
tion target. Proven reserves are about 2 700 x 106 m3 and
total recovery about 58 %.

The remaining recoverable reserves are small, but the
field is still in production that could be assumed higher
than expected from mathematical balance and some
older history matches. Also, the precise prediction of to-
tal recoverable reserves is very difficult. It is the result of
relatively complex Neogene clastic depositional model,
especially of Middle Miocene breccia.

Generally, Neogene depositional environments in the
Drava depression can be classified into two groups. One
group comprises the local alluvial fans, which were active
during the Middle Miocene (Badenian) extension
throughout the entire Pannonian Basin. The second
group comprises the continuous Pannonian and Pontian
sedimentation starting with lacustrine environment of
partly deepwater and partly prodelta (turbidity) fans and
terminating at the delta plain sedimentation.

The coarse-grained sediments of alluvial fans have
great hydrocarbon potential. The Benièanci field is a ma-
jor Croatian field with oil reservoir of such age and lithol-
ogy.

Moreover, such reservoirs are mostly overlain by pelitic
seal deposits sometimes including organic-rich source
facies. This characterizes the Middle Miocene sequences
(mostly of Badenian age) as complete petroleum sys-
tems.

Alluvial environments are characterized by frequent
changes of petrophysical properties, due to the local
character of the depositional mechanism and material
sources. This renders any prediction very difficult and
requires geological knowledge of depositional history
and tectonics. Recently, the detailed analysis of the rela-
tion between alluvial facies and porosity prediction was
published for the Stari Gradac-Barcs Nyugat field, lo-
cated about 100 km north-west, also in the Drava de-
pression.2 The gradually decreasing porosity toward
south-east was proven to be caused by alluvial fan activ-
ity. The same trend can be observed at the Benièanci field
(Fig. 2), which can be observed on the field’s porosity in-
dex map. This trend was a very important feature for
mapping applications, and was also modeled by
geostatistical maps.

In this analysis, porosity is selected as the important
reservoir variable with high influence on reservoir vol-
ume, OGIP (Original Gas In Place) and finally produc-
tion. The analyzed reservoir is also described in detail by
seismic attribute analysis as the result of 3D seismic
cube interpretation. Attribute analysis was targeted pre-
cisely for the interval beginning at 20 m from the reser-
voir seal and continued to the reservoir base or the well
bottom.1 Seismic attribute analysis included amplitude,
frequency and phase analysis.

These values, including averaged porosity for the same
reservoir interval were used for reservoir porosity map-
ping performed by backpropagation neural network.
There are a total of 14 such wells (Fig. 2). These 14 val-
ues, derived from 106 wells, were selected based on the
quality and reliability of log-curves analysis, quality of in-
terpretation software and their relatively regular distri-
bution across the reservoir zone.
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Fig. 2. Porosity index map
Sl. 2. Indeks karta poroznosti



3. SEISMIC BACKGROUND
Seismic waves reflect from layer borders and can be dis-
tinguished by receiving time, amplitudes, phases, fre-
quencies and polarities. Every change in acoustic
impedances on both layer planes will change the above
parameters. Detailed analysis of these changes would al-
low determination of structure, lithology or fluid satura-
tion in reservoir layers.3

Seismic trace is a complex record of subsurface seis-
mic wave arrivals presented as real trace in Fig. 3. The
associated complementary imaginary trace is calculated
by Hilbert’s transformations. The sum of real and imagi-
nary trace amplitudes is always equal to the complex
trace amplitude. Such complex trace is used in further
analysis and calculation of amplitudes, phases and fre-
quencies, applying relevant mathematical operations in
order to achieve reliable seismic trace analysis. It is im-
portant that input seismic traces are of good quality and
contain minimal noise.

Hilbert’s transformation resulted in moving all fre-
quencies components of input – positive for -90º and neg-
ative for +90º. Assuming that x(t) is input signal, y(t)
output signal, G(w) Hilbert’s transformation in coordi-
nate axes based on frequencies. Equation (1) describes
Hilbert’s transformation of input signal H(x(t)) in
time-coordinate axes as:

� � � � � � � � � �� �x t G w j w y t H x t� �� � �sgn (1)

Where:

j � �1, and

sgn (w) = + 1 for w > 0

sgn (w) = - 1 for w < 0

sgn (w) = 0 for w = 0

With the amplitudes of complex function
z(t), obtained from (1), it is possible to cal-
culate values of instantaneous amplitudes
a(t), phases �(t) and frequencies w(t) of the
complex trace using:

� � � � � �a t x t y t� �2 2 (2)

� �
� �

� �
� t arctg

y t

x t
�

�

	



�

�
 (3)

� �
� �

w t
d t

dt
�

�
(4)

Every acoustic impedance change in layers
directly influences their seismic reflection
character and the detail analysis of such
changes is the basis to study reservoir sta-
tus. Even small amplitude and phase anom-
alies can indicate changes in lithology,
thickness and fluid saturation. The changes
in amplitudes, phases and frequencies have
already become a reliable tool in rock phys-
ics study determination in oil reservoir, as
schematically presented in Fig. 4.

Interpreted amplitudes can be used to determine reser-
voir properties like porosity, gas accumulation, fluid con-
tacts, lithological continuity and detection of over-
pressured zones. They could also be used in detection of
unconformities, fault planes, stratigraphic barriers, wa-
ter or CO2 front progress etc.

The main advantage of the instantaneous phase is
simple observing of phase changes, regardless of ampli-
tude values. Such phase transitions can be especially
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Fig. 3. Real (Re), imaginary (Im) and complex seismic trace
(�)4

Sl. 3. Stvarni (Re), imaginarni (Im) i slo�eni seizmièki trag (�)4

Fig. 4. Seismic attributes analysis enables rock physics determination
Sl. 4. Seizmièka atributna analiza omoguæava odreðivanje fizikalnih svojstava
stijena



useful in interpretation of facies changes, unconformi-
ties, faults and stratigraphic relations.

Frequencies can be calculated using correlations
among sinusoidal and co-sinusoidal functions of differ-
ent frequencies. Such correlation coefficients can be the
measure of frequency content in a relatively wide time in-
terval. However, instantaneous frequencies indicate
changes between particular time samples. This data can
be used for lateral correlation of reflected seismic sig-
nals, detection of thin layers of small acoustic imped-
ances, finding fractures characterized by extremely low
frequencies, and sand/shale ratio calculation.

The combined and improved application of several
seismic attributes may enable selection of different facies
zones in heterogeneous reservoirs, such as the Benièanci
field reservoir of Badenian age. Moreover, such facies
analysis can be performed indirectly, in search of more
appropriate spatial analysis of an important reservoir
parameter like porosity.

4. BACKpropagation network
Generally, neural networks are modern tools with nu-
merous purposes.5 In the early days of artificial intelli-
gence ROSENBLATT, employed at the Cornell
Aeronautical Laboratory, in the 1957 the machine
called perceptron was developed, based on memorizing
patterns of the human mind.6,7 This machine could
“learn” and represented a prototype of the neural net-
work. The Perceptron scheme included connections like
those in the associative memory.

The structure of the network is based on the artificial
neuron model. Such a neuron is assembled from several
inputs and one single output. Each input is associated
with related weight added to the input value. Depending
on the result, the neuron could stay inactive or be acti-
vated. The values and conditions for activation are deter-
mined by the activation function.

How a specific number of neurons defines a network is
described through layers. The set of selected neurons
make an input layer that collects and distributes data
loaded into network. Such inputs are modified (Eq. 5)
through hidden layers using the activation function (Eq.
6), and the result is given in the output layer. Hidden lay-
ers are not connected only inside the network and do not
communicate by outside information.

� �U X wj i ij� � (5)

Where:
j - Number of neurons

i - Number of inputs

Xi - Value of input “i”

wij - Previously determined weight coefficient for input “i”

Uj - Value of output in neuron “j”

� �Y F U tj j j� � (6)

Where:
F - Activation function

tj - Target value for neuron “j”

Yj - Layer output (or total output if it is last layer)

The value of output (Uj) is compared with the condi-
tions necessary for hypothesis acceptance (tj). Activation
function (F) is eventually started based on this value.
Equation (5) implies that previously determined are the
weighting coefficients, value of hypothesis acceptance,
number of layers and number of neurons in each layer.
This enables us to obtain a result from a neural network.
The values of weighting coefficients and hypothesis ac-
ceptance are changed and modified in the period of net-
work training (or learning).

Recognition of samples that could only be separated
using linearity, represents limits of a network based only
on perceptrons. This limitation is overcome by introduc-
ing the back error propagation paradigm (abbr.
backprop). This algorithm extends the perceptron effect,
using of large number of hidden layers, which is why the
term multiple layer perceptron (abbr. MPL) is used.

Backpropagation algorithm means that network train-
ing includes determination of the difference between true
and wanted network response, i.e. calculation of error
that is backed in the network for the purpose of optimal
training. Such an error is determined for each neuron
and used for adopting the existing weighting coefficient
and activation value. This corrective procedure is called
the backpropagation network that describes the pro-
cess of network learning and validation. It is repeated so
many times, until a particular or total error is decreased
below the limit. After that, the training is over and the
network may be applied for processing new inputs. The
backprop algorithm first processes inputs, checks the
output error, and finally goes back to the same inputs. It
is the most popular paradigm that is applied for neural
network at all. Backprop of information in a network al-
ways starts from the output to the inputs. Backprop is
used in multilayer networks, but often could be charac-
terized with long lasting training. This is why the applica-
tion of backprop is limited for calculation without
inquires for fast outputs. Such shortages in the learning
rate resulted from the gradient descent method that is
used in improving the backprop algorithm. The
backprop equation is shown below (7):

� � � � � � � � � � � � � �w w LR TF CT MC previous wi new i old
� � � � � � � (7)

Where:
wnew weighting coefficient of input (seismic attribute) in

“i-th” iteration

wold weighting coefficient of previous iteration

Dw difference between the two weighting coefficients above

LR Learning Rate, which indicates in each iteration the use

level of the transformation function and momentum

coefficient. If LR=0 the transformation function is not

used and entire network is based only on applying the

Momentum Coefficient

TR Transfer Function can be selected among several types.

Here we used the sigmoid shape expressed as

� �f x
ex�

�

1

1
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CT Correction Term value depends on differences between

true (measured) and trained (by network) value

MC Momentum Coefficient defines how large the influence

is of the result of previous iteration in instantaneous

calculation.

Training is largely influenced by the values of momen-
tum coefficient and correction term. The momentum co-
efficient defines the size of previous iteration’s influence
on the new estimation. Let us explain the geological
meaning by the following example. Imagine the set of 1D
porosity values 7.2, 7.0, 6.3, 5.7, 6.2, 6.5, 5.5, 5.2 %.
Generally, this array tends to a minimum at the end.
However, there is also one local minimum 5.7 % in 4th

place. The network will recognize these local minima if
the network parameters are set very sensitive. In other
cases, the network will only detect a general decreasing
trend. The momentum coefficient is extremely sensitive
for detection of local minima, and learning rate for de-
tection of general trend. The third important parameter
is the correction term that represents the differences be-
tween true and modeled values. It is calculated for each
hidden layer, and the network tries to decrease these dif-
ferences through each next iteration.

5. BENIÈANCI FIELD NETWORK
(POROSITY PREDICTION)
There were two datasets for the Benièanci field reservoir.
The first included 14 seismic (amplitude, frequency,
phase) and porosity values averaged at the well locations.
The second set encompassed the seismic raw data from
seismic grid (16 384 values in total), which were
averaged at the locations of the first dataset.

The best network iteration was selected by the most ap-
propriate weighting coefficient. Such a network was used
for porosity estimation from the second exhaustive seis-
mic dataset (seismic grid). The final goal was to reach the
estimated porosity map, which could be considered an
improvement for any previously interpolated reservoir
porosity map (obtained by geostatistics). Transformation
function was of log-sigmoid type.

5.1. Insensitive network parameters fitting
There were 5 hidden layers in the network. We increased
this number up to 25, but this did not improve the
obtained correlation between attribute and porosity (only
for 0.001-0.01), but only made the network very slow.
The learning rate value was left on recommended 0.9,
the momentum coefficient also on recommended 0.6.
Network output was very similar for ranging these
parameters from 0 to 1. The number of iterations was
10 000, but the output did not significantly differ even for
30 000 iterations.

5.2. Sensitive network parameters fitting
The most sensitive parameter was the number of in-
cluded seismic attributes in analysis in the same time.
We tried to feed the network with single and multiple
seismic attributes in the same training. The use of 2 or 3
attributes could be a questionable procedure regarding
the physical meaning of such new “attributes”. However,
the obtained correlations are highly associated with the

number of included attributes, which is why we varied
the number of nodes in the input layer between 1 and 3,
combining amplitude, frequency and phase in new “com-
plex” attribute.

Moreover, the selected transfer function (activation
function) was log-sigmoid type. The value of convergence
criteria (��2) played the role of the network stopping cri-
teria. If the network calculated convergence value lower
than the selected value, the simulation would stop al-
though iteration no. 10 000 was not reached. This value
was set on 1 and only once did the network reach lower
value.

5.3. The results of prediction by neural
network

The quality of network training was expressed through
correlation between porosity and included attribute(s),
while a convergence criterion was considered as the er-
ror minimum reached by the network. According to dif-
ferent numbers of input network nodes, the following
results were obtained:

• Amplitude + frequency + phase = porosity - R2=0.987
; ��2=0.329;

• Amplitude + frequency = porosity - R2=0.496 ;
��2=1.935;

• Amplitude + phase = porosity - R2=0.603 ;
��2=1.740;

• Phase + frequency = porosity - R2=0.820 ; ��2=1.090;

• Amplitude = porosity- R2=0.250 ; ��2=2.730.

The presented results show that porosity can be pre-
dicted with any number of attributes. However, it is inter-
esting that the highest correlation was reached using all
three attributes together. Moreover, porosity in the input
dataset ranged from 5.27-11.06 %, but the estimation by
the neural network had a tendency to narrow this varia-
tion (remaining within limits). This is also often charac-
teristic of geostatistics and regression.

Using only one or two attributes the estimation was ar-
tificially too high, e.g. pair amplitude-frequency led to av-
erage porosity close to the upper limit.

The problem with one-parametric estimation can be ex-
plained by amplitude. Physically, amplitude is the most
“geological” attribute that could lead to good estimation
of porosities in clastics. In our case, correlation of the
pair amplitude-porosity is very low (0.25) and the net-
work is poorly trained (��2=2.73). The lower amplitude
led to lower porosities, but the problem was the differ-
ence between these estimations. For example, amplitude
value 1 200 is paired by porosity of 5.27 %, then 1 472 =
7.3 %, 1 669 = 8.15 %, 1 842 = 8.16 %, 1 990 = 8.17 %
and 2 107 = 8.16 %. The change is not linear, i.e. it artifi-
cially favors porosity closer to the lower limit.

The best porosity estimation was obtained using all
three attributes (Fig. 5). The estimated porosity varied
widely, respecting the limits of input (5.27 - 11.06 %). Un-
fortunately, the input dataset was too small to interpret
whether the estimated porosities also respect input dis-
tribution.
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Graphically, the re-
sults are presented by
the map obtained using
the SigmaViewTM pro-
gram (Landmark appli-
cation). A problem was
encountered by import-
ing the network results
and there was only the
possibility of interpo-
lating one new neural
map at the southern
part of the field (Fig. 5).
However, such a solu-
tion can be compared
with the same area
(bordered by a white
line in southwest area)
at geostatistical poros-
ity maps interpolated in
2003 at the same field
using the same soft-
ware.8

5.4. Comparison
with geostatistical
maps
The quality of interpo-
lation of the same input
dataset was tested us-
ing Inverse Distance
Weighting, Ordinary
Kriging and Collocated
Cokriging methods.
The results8 obtained
by Inverse Distance
Weighting and Ordinary
Kriging differ very little
and both maps were
also characterized by
the unfavorable bulls-
eye effect (Fig. 6).

It was very interesting
that in Cokriging appli-
cation, only a single at-
tribute was selected as
the secondary attrib-
ute. This was reflection
strength, derived from
amplitude. The correla-
tion between reflection
strength and porosity
was calculated using
Spearman rank coeffi-
cient with value
r’=-0.64. The Cokrig-
ing approach, using
seismic attribute, led to
significant improve-
ments (Fig. 7). The
bulls-eye effects were eliminated and the numerical qual-
ity check (mean square error) was the lowest (2.19 vs.

2.78 vs. 2.97, retrospectively for Cokriging vs. Inverse
Distance vs. Kriging).
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Fig. 5. The neural network porosity map of the Benièanci field (color scale 5-10 %)
Sl. 5. Poroznosti procjenjene neuronskom mre�om na polju Benièanci (kolor skala 5-10 %)

Fig. 6. The Kriging porosity map of the Benièanci field (color scale 4-10 %)
Sl. 6. Karta poroznosti dobivena krigingom na polju Benièanci (kolor skala 4 - 10 %)

Fig. 7. The Cokriging porosity map at the Benièanci field (range 3-11 %)
Sl. 7. Karta poroznosti dobivena kokrigingom na polju Benièanci (kolor skala 3 - 11 %)



The success of Cokriging means that a seismic attrib-
ute represents an important source of additional infor-
mation regarding porosity. In addition, the network
results showed that the neural approach “likes” more
variables, i.e. several seismic attributes may be com-
bined to gain a very good porosity prediction.

This strongly emphasizes the importance of selecting
and combining more attributes based on the geological
knowledge about a reservoir, and the physical meaning
and relations among such attributes.

6. DISCUSSION AND CONCLUSIONS
The results show that seismic attributes could be a valu-
able additional source of information feeding the neural
network. Seismic data could be the basis for predicting
reservoir parameters, especially porosity, which is
shown in this study.

The quality of the network could be estimated from two
parameters. The first is the correlation coefficient. In this
paper the symbol "R" is used for Pearson correlation co-
efficient, "R2" for coefficient of determination and "r" for
Spearman correlation coefficient. The second parameter
is the convergence criteria and the reached minimum
(��2). The better network will be characterized by higher
coefficient and lower convergence.

A better neural output is obtained with the use of more
attributes. On the other hand, the exclusive use of ampli-
tude led to poor network training. The amplitude values
very often can include uncertainties, although this is gen-
erally the most applied attribute in porosity prediction.
The first reason could be addressed to seismic signal
quality, due to oscillation caused by weak calibration of
geophones. In that case, the observed amplitude values
can be different for the same displacement in a certain
time, but frequencies and phases will mostly remain the
same at all geophones. The second factor of uncertainty
can be gas in the reservoir or in shallower beds. This gas
can masked or even hide seismic reflections from deeper
strata. The main reservoir of the Benièanci field
(Badenian age) includes significant quantities of gas dis-
solved in oil. There are also several smaller,
stratigraphically younger gas reservoirs of Early Pontian
age. Three of them are in production, and all together
contain about 30 % additional recoverable reserves of
gas. These gas reservoirs, due to their stratigraphy, can
attenuate and disperse the seismic signal, reflected from
deeper reservoir of Badenian age. This ultimately results
in increased uncertainties and variations in amplitude
measurements, which can also partially be decreased by
the use of additional attributes as frequency and phase.

Based on the results presented, the following conclu-
sions can be drawn:

• Reservoir space is always characterized by uncertain-
ties. The neural network was selected as a tool for han-
dling uncertainties of porosity distribution in a
breccia-conglomerate carbonate reservoir of the
Badenian age;

• The lateral changes in averaged reservoir porosities are
influenced by the Middle Miocene depositional environ-
ments, i.e. alluvial subfacies. The proximal part of allu-

vial fan was active in the NW part, and the distal in the
SE part of the field;

• The best porosity training results were obtained when
all three seismic attributes (amplitude, frequency,
phase) were used;

• The reached correlation is R2 = 0.987 and convergence
criteria ��2 = 0.329;

• These values can slightly (a few percent) differ in every
new training, which is the consequence of stochastic
(random sampling) in some process of network fitting;

• The result indicates that neural networks favor numer-
ous inputs, and careful evaluation of which variable
can be a meaningful neural input is required.

7. References
1. Futiviæ, I. and Pleiæ. M.: 3D Seismic interpretation of the oil field Benièanci.

Naftaplin, Zagreb, 2003.

2. Malviæ, T.: Middle Miocene Depositional Model in the Drava Depression De-
scribed by Geostatistical Porosity and Thickness (Case study: Stari
Gradac-Barcs Nyugat Field). Rudarsko-geološko-naftni zbornik, 18, Zagreb,
2006, 63-70.

3. Taner, M.T.: Attributes revisited (Revised Sep. 2000). Rock solid images, Houston,
Texas, USA, 1992.

4. Prskalo, S.: Istra�ivanje ugljikovodika seizmièkim metodama. Naftaplin,
izvanredni broj, knjiga 6, II. dio, HUNIG, Zagreb, 2005, p. 173.

5. Anderson, J.A. and Rosenfeld, E.: Neurocomputing: Foundations of Research.
Cambridge, MA: MIT Press., 1989.

6. Rosenblatt, F.: The perceptron: A perceiving and recognizing automaton. Technical
report 85-460-1, Project PARA, Cornell Aeronautical Lab., 1957.

7. Rosenblatt, F.: The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65, 1958, 386-408.

8. Malviæ, T. and Ðurekoviæ, M.: Application of methods: Inverse distance weight-
ing, ordinary kriging and collocated cokriging in porosity evaluation, and com-
parison of results on the Benièanci and Stari Gradac fields in Croatia. Nafta, 9,
Zagreb, 331-340, 2003.

9. Atlas proizvodnih plinskih polja u Republici Hrvatskoj – verzija 7.2. Fond struè.
dok., INA-Industrija nafte, SD Istra�ivanje i proizvodnja nafte i plina, Sektor
za razradu, p. 243 , 2005.

ACKNOWLEDMENT

Part of this research was performed by the Reservoir En-
gineering & Field Development as well as Exploration De-
partments of INA-Industrija nafte d.d. Zagreb. We thank
INA-Naftaplin for their permission to publish the well
data.9

The neural analysis was performed using Neuro3 –
Neural Network Software. This is a freeware E&P Tool
published by the National Energy Technology Laboratory
(NETL), owned and operated by the U.S. Department of
Energy (DOE) national laboratory system. The system
demonstrates the ability to learn, recall, and generalize
from training patterns or data.

�

Authors

Tomislav Malviæ, graduate engineer in geology, PhD in Natural Sciences,
INA-Industrija nafte .d.d, Exploration and Production Division, Reservoir Engi-
neering & Field Development Department, expert, Šubiæeva 29, 10000
Zagreb, tomislav.malvic@ina.hr

Smiljan Prskalo, graduate engineer in geology, INA-Industrija nafte d.d,
Exploration and Production Division, Exploration Department, chief geophysi-
cist, Šubiæeva 29, 10000 Zagreb, smiljan.prskalo@ina.hr

SOME BENEFITS OF THE NEURAL APPROACH ... T. MALVIÆ AND S. PRSKALO

NAFTA 58 (9) 455-461 (2007) 461


