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Abstract: Given the fact that AUV dynamics change depending on the payload, finding a 
mathematical model in a rather small period of time is quite important. Classical open-
loop identification methods give accurate parameter identification, but are also time 
consuming. In the paper we present an identification method based on induced self-
oscillations, which has proved to be applicable to underwater vehicles. In addition to that, 
an error analysis for the proposed method is presented. Experimental results obtained on 
an underwater vehicle are given and compared to the results obtained using open-loop 
identification algorithms. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 
The control of marine vehicles presents a challenging 
task, mostly due to complex mathematical models 
that describe their motion. The main characteristics 
of their dynamics are high coupling and nonlinear 
effects. In addition to that, 6 DOF make the control 
even more complex. Prior to control development for 
any type of system, a proper mathematical model has 
to be identified. Usually, this is a complex task that 
requires numerous experiments. This paper presents 
a new method based on identification by use of self-
oscillations for determining ROV or AUV 
mathematical model parameters. The general 
identification algorithm given in detail in (Miskovic 
et. al. 2007b) is used for the ROV yaw linear model, 
and a modification of the algorithm for identification 
of the nonlinear mathematical models is presented. 
The paper is organized as follows. Section 2 gives 
the proposed identification algorithm procedure for 
linearized and nonlinear mathematical model of the 
ROV’s yaw dynamics. Section 3 gives error analysis 
based on simulations together with recommendations 
for performing experiments on real systems. Section 

4 presents experimental results obtained on a real 
system, and the paper is concluded with Section 5. 
 
1.1. Some Prior Work 
 
Methods for identification of marine vehicles’ 
dynamics can be found in literature, e.g. by Carreras 
M. et al. (2003), Ridao et al., (2004), and by M. 
Caccia et al., (1998), (2000). While Caccia uses 
classical measured data and some estimations to 
obtain the model of Charlie (autonomous surface 
catamaran), Carreras designed a uniquely patterned 
bottom of a laboratory test pool in order to localize 
Uris (unmanned underwater vehicle) and thus 
calculate the speeds which are necessary for model 
identification. Both authors use either linearized 
vehicle models, or “zig-zag” maneuvers to determine 
some model parameters. Stipanov et al. (2007) give a 
method for open-loop identification where open-loop 
system response is used to determine all parameters of 
the nonlinear system. Coupled mathematical model 
identification can also be found in (Miskovic et al., 
(2007a)). 
 



 

1.2. Underwater Vehicles’ Mathematical Model 
 
Marine vehicles’ mathematical models consist of 
kinematic and dynamic part. The kinematic model 
gives the relation between speeds in a body-fixed 
frame and derivatives of positions and angles in an 
Earth-fixed frame, (Fossen, 1994). According to 
terminology in (Fossen, 1994), vector of positions 
and angles of an underwater vehicle  

[ ]TE x y z ϕ θ ψ=η  is defined in the Earth-
fixed coordinate system (E) and vector of linear and 
angular velocities [ ]TB u v w p q r=ν  (surge, 
sway, heave, roll, pitch and yaw velocity, 
respectively) is defined in a body-fixed (B) 
coordinate system. 
 
As stated before, the dynamic model of underwater 
vehicles is highly coupled and nonlinear. The main 
reasons for this are not only the rigid-body dynamics 
but hydrodynamic influences also. A general 
dynamic equation for underwater vehicles is given 
with (2). 
 

( ) ( ) ( ) d+ + + = +Mν C ν ν D ν ν g η τ τ&          (2) 
 
Matrix RB A= +M M M  represents the sum of the rigid-
body mass and added mass matrix. Matrix ( )D ν  is a 
damping matrix, which is diagonal and usually 
represented with a linear and/or quadratic term. 
Matrix ( ) ( ) ( )RB A= +C ν C ν C ν  represents the sum of 
the rigid-body and added mass Coriolis matrix, 
vector g represents gravitational and buoyancy 
forces, vector τ consists of external forces and 
moments that act upon the underwater vehicle and 

dτ  is the disturbance vector. 
 
1.2. The Concept of Identification by Using Self-

Oscillations 
 
If a process is closed in a loop with a nonlinear 
element as shown in Fig. 1, and given that the initial 
state of the process or the closed-loop input has 
enough energy, the system can enter a nonlinear 
behavior called self-oscillations, (Vukic et al. 2003.). 
The assumption is that the self-oscillations are 
monoharmonic (filter hypothesis is satisfied). 
 
The idea of using self-oscillations for process 
identification resides on finding a connection 
between the self-oscillations’ magnitudes and 
frequencies, and process parameters. This connection 
can be found by using the Goldfarb method, (Vukic 
et al. 2003), given with equation  (1), 
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Fig. 1. Closed-loop scheme for inducing self-

oscillations.  
 
where GN(Xm) is the describing function , Xm is the 
magnitude of oscillations at the input of the nonlinear 
element and GP(jω) is the process frequency 
characteristic. Equation (1) can be graphically 
interpreted as finding intersection points between 
Nyquist frequency characteristic of the LTI process 
and an inverse negative describing function of the 
nonlinear element. Some prior work on using self-
oscillations to determine system’s parameters can be 
found in (Luyben, 1987), (Li et al., 1991), (Chang and 
Shen, 1992), (Wang et al., 1999) and references 
within. Usually, the nonlinear element that is used is a 
relay with hysteresis because it can induce self-
oscillations for any process whose Nyquist curve 
passes through the third quadrant. The describing 
function of the relay with hysteresis is given with (2) 
where xa is half the width of the hysteresis, and C is 
the relay output.  
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Once the self-oscillations are established in a closed 
loop system, we can use the magnitude and frequency 
of the obtained self-oscillations at the input of the 
nonlinear element and determine one point in the 
Nyquist plane which is also one point on the Nyquist 
curve of the process. Depending on the number of the 
unknown process parameters, more different self-
oscillations may be obtained. For more details, the 
reader is referred to (Miskovic et al., 2007). 
 
 

2. ALGORITHM DESCRIPTION 
 
The algorithm will be derived for the case of a 
constant and linear drag model given with equations 
(3) and (4). 
 

r rI r k r τ+ =& &                             (3) 

r r rI r k r r τ+ =& &                          (4) 
 
 In the first case, differential equation describing the 
motion is linear, while in the second it is nonlinear. 
 
 
 
 



 

1.1. Linear case 
 
A general LTI system can be written by the 
following form: 
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A general identification algorithm by use of self-
oscillations appropriate for system (5) can be found 
in (Miskovic et al. 2007b). The short version is 
described here. The linear system parameters an be 

found using equation [ ] I
0a b
−⎡ ⎤= ⎢ ⎥⎣ ⎦

Ω
Y

Ω Ω Θ  where 

[ ]1
T

εω ω=ω ; [ ]1
TP Pε=P  and 

[ ]1
TQ Qε=Q  are measurement vectors with 

elements Pi and Qi being functions of the 
experimentally obtained magnitude of self-
oscillations and nonlinear elements parameters, and 
ωi frequency of the self-oscillations obtained in the 
ith experiment, vector of  unknown parameters is 
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and ε ε ε×=I I , ε ε ε×=0 0 , 10 ε×= 0 , 1I ε×= I . The dot 
symbol (.k) denotes the element-wise exponent, % is 
the modulus operation and ¬  is the logical negation 
symbol. The parameter vector θ can be found by 
using the formula 1−=Θ Ω Y  only if there is an even 
number of unknown parameters. If there is an odd 
number of parameters, matrix Ω will have one row 
more than there are parameters. In this case, the last 
row can simply be omitted, or the pseudo-inversion 
can be used. 
For the case of an ROV with the assumption of the 
linear model in the form of r rI kψ ψ τ+ =&& & , the 
following transfer function can be written 
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Using the proposed identification algorithm for 
linear systems we get 
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Since the system has one integrator, the following 
modification has to be made upon the describing 
function vector, (Miskovic et al., 2007b) 
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giving matrix equation  
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which yields the following linear equation 
parameters: 

r
Qk
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1.2. Nonlinear case 
 
In the case where the yaw model of an underwater 
vehicle can be described by using nonlinear dynamics 
given with (4), then the parameters can be determined 
using the following procedure. 
If the system is in oscillatory regime, then the 
following equations can be written, under the 
assumption that the oscillations are symmetric: 
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Combining (4) and (7) yields the following equation: 
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The multiplication of the two cosine terms can be 
developed into a Fourier series (in the same manner 
as the describing function is derived, see (Vukic et al. 
2003.)), which gives equation (8). 
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From equation (8), drag coefficient and moment of 
inertia can be determined using (9) and (10). 
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From this it is obvious that the term for the moment 
of inertia in the linear and nonlinear case are the 
same, while the expressions for the drag coefficient 
differ. This calculus shows that by using a simple 
identification procedure by use of self-oscillations 
can yield an UUV model that can be used for 
autopilot design. 
 
1.3. Proof of Self-Oscillations Symmetry 
 
One of the assumptions that are made while 
performing proposed identification experiments is 
that the self-oscillations of the system are symmetric. 
In (Miskovic et al., 2006) a proof is given that a 
constantly excited system composed of a symmetric 
nonlinear element and a Type 1 (or higher) process, 
produces symmetric oscillations at the input of a 
nonlinear element. Here we give proof of self 
oscillation symmetry for a wider class of processes, 
including processes with nonlinear damping. 
 
Theorem: 
A constantly excited system composed of a 
symmetric nonlinear element, a Type 1 (or higher) 
process and a symmetric damping, produces 
symmetric oscillations at the input of a nonlinear 
element. 
 
Proof: 
A general system described above can be written in 
the following form 
 

( )ax F x τ+ =&& &                      (11)            
 
where x is the process’ output, ( )F x&  is the process’ 
damping and τ  is the process’ input. Fourier series 
development of static nonlinearity ( )F x&  gives  
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If damping is symmetric, Fourier series (12) do not 
have a constant term, i.e. 0 0a = . Let’s make an 
assumption that the induced oscillations are 
asymmetric, i.e. 
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From this, system (11) in self-oscillations regime can 
be described with the following equation. 
 

( ) ( ) ( )
( )

2
1 1

0

sin sin

               sin
m

N m

aX t a jb t

G x X t

ω ω ω

ω

− + +

= +⎡ ⎤⎣ ⎦
          (14) 

 
This equation has a solution if and only if 0 0x = . 
QED 
 
 

2. ERROR ANALYSIS 
 
The initial assumption made on self-oscillations 
method is that they are monoharmonic. This is not 
true in real systems – nonlinear systems produce 
higher harmonics. This assumption can be true if the 
magnitude of higher harmonics is substantially 
smaller than the magnitude of smaller harmonics. One 
approach would be filtering the obtained self-
oscillations. This, however, can require larger datasets 
or more demanding calculus, i.e. computational 
power. This is why we present an a priori error 
analysis for linear and nonlinear UUV models.  
 
The error in determining drag coefficient, 

rkε  and 

r rkε , and moment of inertia, 
rIε &
, versus m

a

X
x  ratio for 

linear and nonlinear model are shown in Fig. 2. in red 
crosses and blue circles, respectively. The error is 
obviously smaller in the linear case, since the only 
element whose approximation causes the error is the 
nonlinear element. In the nonlinear case,  the process 
itself is approximated by using Fourier series, hence 
the error is larger. An important thing that should be 
stressed out is that the curves in Fig. 1 do not depend 
on the process parameters. The importance of this is 
that the given error functions are valid for any system 
that can be described using equations (3) and (4) 
(does not depend on system’s parameters). 
 
Using the results in Fig. 2, we can conclude that the 
error in determining moment of inertia is quite small 
in all cases. However, the error in determining drag 
coefficient can be significant. These simulation 
results show that if the experimentally obtained 
magnitude of oscillations is around 1.5 times the 
width of the hysteresis, the error will be small.  
 
As it was mentioned earlier, the error occurs due to 
different values of calculated magnitude ( mX ) and 
frequency (ω ) of self-oscillations, and the obtained 
ones, ( mX  and ω ). The errors  

rkε , 
r rkε  and 

rIε &
 can 

be written as functions of ratios of real and obtained 
magnitudes, xγ , and frequencies ωγ  (see equations 
(15), (16) and (17)). The mentioned ratios are shown 
in Fig 3. and are also the same for any system that can 
be described with equations (3) and (4). 
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Fig. 2. Errors in determining drag coefficient and 

moment of inertia. 
 

 
Fig. 3. Ratios between the obtained and real self-

oscillation magnitudes and frequencies. 
 
 

3. EXPERIMENTAL RESULTS 
 
The proposed algorithm for linear and nonlinear 
identification has been performed on an AUV built 
  

Table 1 Yaw models’ parameters identified using 
open-loop procedures 

Model linear nonlinear 
r rk  - 1.257 

rk  0.9961 - 

rI &  0.7058 1.018 

 
Table 2 Experimentally obtained data 

C 
xa

 

[°] 

xa
*  

[°] 
Xmax 
[°]  

Xmin 
[°]  

TH 
[s] 

TL 
[s] 

1 20 23.8 38 -38.4 2.54 2.34 
 

 

 
 
Fig. 4. The Automarine Module installation. 

 
Table 3 Yaw models’ parameters identified using the 

proposed procedure 
Model linear nonlinear 

r rk  - 1.2661 

rk  0.9233 - 

rI &  0.8995 0.8995 
 

from a VideoRay Pro II ROV and Automarine module 
(see Fig. 4.). For details on the construction of this 
system, the reader is referred to (Stipanov et al., 
2007).  
 
This systems yaw model parameters have been 
identified using open-loop procedures, and the results 
are given in table 1. The validation of these 
parameters is also given in (Stipanov et al., 2007). We 
have shown that the nonlinear model describes the 
system better. For the sake of algorithm testing, we 
will also provide the results of the identification of the 
linear model of the system. 
 
Table 2 gives parameters of the relay that was used in 
the experiment of obtaining self-oscillations, together 
with the results. Parameter C is the applied 
normalized torque, xa is the set hysteresis width, xa

* is 
modified hysteresis width (Miskovic et al. 2007b), 
Xmax and Xmin are the maximum and minimum of the 
obtained self-oscillations respectively, and TH and TL 
are the durations of the hysteresis high and low state 
respectively.  Finally, table 3 gives the identified 
parameters, using the proposed method based on self-
oscillations. 
 
The results show that this method gives accurate 
results. The main advantage of this method is that it is 
not time consuming. While for performing open loop 



 

experiments a great number of data has to be 
obtained, in this method only a couple of similar 
oscillations must be recorded in order to determine 
the model’s parameters. In this particular case, 
oscillation period is about 5s, and 5 periods were 
taken into account – the identification procedure took 
less than 30[s]! Another advantage is that, since the 
procedure is performed in closed-loop, the 
disturbance influence is much smaller than in the 
case of system identification in open-loop. It should 
be mentioned that this method can be applied to 
other degrees of freedom of an underwater vehicle, 
which can be described using similar models. 

 
 

4. CONCLUSION 
 
In this paper we presented a method for determining 
linear and nonlinear yaw model parameters by using 
self-oscillations. The novel approach is in use of the 
general matrix formed algorithm presented in 
(Miskovic et al., 2007b) and the use of the procedure 
for nonlinear systems. We also gave error analysis 
with recommendations on when the error will be the 
smallest. The experiments were performed on an 
AUV which consists of a VideoRay Pro II ROV and 
an Automarine module. Comparison of the obtained 
results with the results from an open-loop 
identification procedure, prove the applicability and 
accuracy of the proposed method. The main 
advantage of this method is that it is not time 
consuming, and that due to the closed-loop 
procedure, the disturbance influence is minimized. 
 
Future work will include determining analytical 
expressions for describing the ratio between the 
obtained magnitudes and frequencies of self-
oscillations, and analytically derived values. Further 
on, we will give simulation and experimental 
identification results when the disturbance is present, 
proving the robustness of the system to external 
disturbances. 
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