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Abstract – The problem of dynamic path generation for the 
autonomous vehicle in environments with unmoving obstacles 
is presented. Generally, the problem is known in the literature 
as the vehicle motion planning. In this paper the behavioural 
cloning approach is applied to design the vehicle controller and 
virtual obstacle is used also in the goal position reaching. In 
behavioural cloning, the system learns from control traces of a 
human operator. To learn from control traces the machine 
learning algorithm and neural network algorithms are used. 
The goal is to find the controller for the autonomous vehicle 
motion planning in situation with infinite number of obstacles.   
 

I. INTRODUCTION 
 

Techniques for the automatic planning of the motion have 
advanced substantially during the last twenty years [1], [3]. 
In its simplest form, the motion planning problem can be 
defined as follows.  Let B be the autonomous vehicle 
consisting of collection of rigid subparts having a total k 
degrees of freedom, and let B be free to move in two - or 
three - dimensional space V, avoiding obstacles whose 
geometry is known.  For a given initial position S and a 
desired target position G of B, the task is to determine 
whether there exist a continuous obstacle - avoiding motion 
of B from S to G, and if so, to find such a motion.  The 
simplest collision avoidance algorithm fall into the generate 
and test paradigms. A simple path from S to G, usually a 
straight line, is hypothesized and then it is tested for 
potential collisions between B and obstacles. If collision is 
detected, a new path is proposed using information about 
detected collision. This process repeats until no collision is 
detected. But in spite of its simplicity these methods have 
not found significant application. They have couple of 
fundamental drawbacks. One of these is inability to propose 
a radically different and better path from local information 
about potential collision.  Another is that collection methods 
are based on a configuration space approach [2], [3], [4]. 
The configuration of rigid body is set of independent 
parameters that characterize the position of every point of it.  
For the vehicle B some regions represent illegal 
configuration space because there are obstacles. So the find 
path (the vehicle motion planning) approach means that the 
vehicle have to be shrinked to dimension of a reference 
point and to grow obstacles, i.e. to compute forbidden 
regions for the reference point. Finding the path of the 
vehicle is in this way transformed in finding the path of the 
reference point, moving in configuration space and avoiding 

obstacles.  For the vehicle B moving from position S to 
position G the desired path is the shortest path which takes 
into account all constraints of the position of the reference 
point of B. It is possible to obtain this path by generating an 
appropriate graph (visibility graph, connectivity graph,…) 
and finding a path from graph node S to graph node G. 
Fundamental problem arising during the implementation of 
these methods is concerned with the obstacle growing and 
graph searching.  For both cases the problem complexity is 
very large. For example, while in the planar case the shortest 
path can be found in time that is in the worst case the 
quadratic in the number of obstacle and edges, finding the 
shortest path between two points in three dimensions, which 
avoids a collections of polyhedral obstacles is NP – hard 
(has exponentional complexity) [2], [3]. This is a specially 
very large problem if the world model changes. Other 
classes of approaches are developed as alternative to the 
traditional ones. A typical such approach [5] regards the 
obstacles as the sources of repelling potential field, while 
the goal position G of the vehicle is considered as a strong 
attractor. The vehicle B follows potential gradient vector 
field. These approaches try to find the local minimum only.  
As the next, we can consider the direction which assumes 
problem solution capability of the vehicle motion planning 
based on the transfer of skill into controllers of the vehicle 
[6], [7]. A more detailed survey of these methods is given in 
[11]. In our case the behavioural cloning approach is applied 
to design the vehicle controller and virtual obstacle is used 
also in the goal position reaching. In behavioural cloning, 
the system learns from control traces of a human operator. 
To learn from control traces the machine learning algorithm 
and neural network algorithms are used. The goal is to find 
the controller for the autonomous vehicle motion planning 
in situation with infinite number of obstacles 
 

II. THE AUTONOMOUS VEHICLE MOTION 
PLANNING BASED ON THE BEHAVIORAL CLONING 
 

Skill is often defined as an ability to perform a high 
quality sensory-motor coordination and control in real time. 
Humans exhibit such a skill as a result of training over a 
period of time. It would be especially useful if we can also 
provide systems with the capability of acquiring such a skill. 
In this sense two approaches have been known. The former 
treats the skill as something that could be acquired in a 
dialogue with an operator. In that process it is expected from 

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

TuDI16.7

ISBN: 978-960-89028-5-5 2484



 

the operator to describe skills he has been governed over the 
control of the vehicle. Here arise some difficulties because 
the skill is human subconscious action and so cannot be 
completely consciously and reliably described. An 
alternative approach is to start from the assumption that the 
skill can be reconstructed, using learning algorithms, from 
the manifestation trace of it [6], [7], [8]. Sammut, Hurst, 
Kedzier and Michie  [7] give a description of the solution 
belonging to the flight control area. Our idea [9], [10], [11] 
is to enable an intelligent system to learn from the examples 
(operator’s demonstrations) to control a vehicle avoiding 
obstacles, like the human operator does. In section III the 
intelligent controller concept is given. In section IV the 
results in controller development are presented. In section V 
the conclusion is given and possibilities of further 
development are discussed. 
 

III. ELEMENTS OF CONCEPT CONTROLLER 
DEVELOPMENT 

 
A. Introduction 
 

The idea of development of controller by cloning the 
human operator [6] is illustrated in Fig. 1.  
In the problem of the obstacles avoiding, this idea could be 
interpreted in the following way. During one of the 
simulation phases, called the training phase, operator 
controls the vehicle avoiding unmoving obstacles located in 
its working space.  In that phase variables that are evaluated 
as relevant have been written into LOG FILE. In the second 
simulation phase, called the learning phase, the machine 
learning program, taking data from LOG FILE, generates 
differential equations that define the operator’s trajectory. In 
the third phase, called the verifying phase, operator is 
excluded from the vehicle control process and the vehicle is 
controlled solely by a clone induced in the learning phase. 
This development of process phases are needed for the 
repeated changing of both problem domain representation 
and/or learning system regarding cloning success criterion. 
Using “several” vehicle and environment models (problem 
domain representations) and “several” machine learning 
systems, it is attempted to find an appropriate domain model 
and an appropriate machine learning system in order to 
control the vehicle to avoid obstacles according to cloning 
success criterion.  Now, according to the previous case [17 – 
23],  the environment model, which uses the virtual  
obstacle, enables application the same relation to avoid real 
obstacles and to reach the goal position of the vehicle.  

Log
file

Operator
Robot

Machine 
learning 
programm

Environment 
simulator

 
Fig. 1. Behavioral cloning process. 

 
 
B. Learning Systems 
 
  Two learning systems were used. GoldHorn is based on 
algorithm of multiparameter optimization called ameba. It 
attempts to identify the operator's trajectory by finding 
constraints among the state variables. To induce such 
constraints GoldHorn uses the form of ordinary differential  
equations ([12]). To do that GoldHorn first introduces new 
variables by repeatedly applying operators, a such as 
multiplication, sin (x), cos(x), log(x), sign(x), |x|, ex, to the 
state variables. Differential equations are generated from 
these variables using linear regression.  The significance of 
the equations is judged by two measures: the multiple 
correlation coefficient and the normalized deviation. 
GoldHorn does structural synthesis of new forms of 
equations.  GoldHorn treats noisy data, which makes it 
applicable to the modeling of real world systems. The 
operator's trajectory is learned by giving GoldHorn a subset 
of variables (attributes), contained in the execution trace. 
Control action is deliberately left out, since it can be 
computed if the desired next state and an approximate 
system model are known. GoldHorn then finds the 
constraints among the named variables in the form 
differential equations and ranks them according to their 
significance (error estimates). One or more most significant 
equations are used as the constraints to define the operator's 
trajectory.    
The radial basis function (RBF) network  is motivated by 
biological neurons, with locally tuned response. These 
nerve cells have response characteristics   that are selective 
for some finite range of the input signal. These models are 
described by more authors ([15], [24], [25]).The model is 
commonly referred to as the radial basis function (RBF) 
network. The most important attribute that  distinguishes 
the RBF network from earlier radial based models is its 
adaptive nature. It generally allows to utilize  a relative 
small number of locally tuned units. RBF network were 
independently proposed by several authors ([15], [24], 
[25]).The following is a description of the basic  RBF 
architecture Figure 2. The RBF network has a feedforward 
structure consisting of a single hidden layer of  Q locally 
tuned units, which are interconnected to an output layer of 
L linear units.  All hidden units simultaneously receive R 
dimensional  real –valued  input vector p. Notice the 
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absence of hidden layer weights. Each hidden unit output aj  
is obtained by calculating the closeness of the input p to n 
dimensional parameter  vector μj (IW in Figure 2). This 
parameter is associated with jth hidden units. The response 
characteristics of the jth hidden units are given by  

2
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where K is a strictly positive radially symmetric function 
(kernel) with a unique maximum at its center μj and which 
drops off rapidly to zero away from the center. The 
parameter σj is the width of the receptive field of the input 
space for unit j. This means that aj has an appreciable value 
only when distance || p- μj|| is smaller than the width σj. A 
specially but commonly used RBF network assumes a 
Gaussian basis function for the hidden units, i.e.: 
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where σj and μj, are the standard deviation and mean of the 
jth unit. The norm is the Euclidian norm. The output of the 
RBF network is the L dimensional vector a2, which is given 
by: 
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=
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| | nprod| |
Qx1

Qx1

Input

Radial basis layer Spec ial linear layer  
Fig. 2 A radial basis function neural network consisting of a single 
hidden  layer of locally tuned units that is fully interconnected to 

an output layer of linear units.  
 
RBF networks are best suited for approximating continuous 
real valued mappings f : Rn→RL, where n is sufficiently 
small. According to the previously named equations the 
RBF network may be as approximating a desired unction 
f(p).The degree of accuracy can be controlled by three 
parameters the number of basis functions to be used, their 
location and their width. The RBF networks are considered 
as universal approximators. Consider training set of m 
labeled pairs {xj, yj) which are represent samples of a 
continuous multivariate function. The criterion function is an 
error function E to be minimized over the given training set. 
It is desired to develop a training method that minimizes E 
by updating the free parameters of the RBF.  These 
parameters are  σj, μj and wij. One of the first training 

methods that comes to mind is a fully supervised gradient 
descent methods over E, as it is given in  [21]. 

A neural network algorithm as an advancement according 
to the RBF is given in [20] and that model produces quite 
good results, as it is given in section IV.D. 

 
C. The Autonomous Vehicle Kinematical Model 
 

The following model of the vehicle is used: ψ (n)=ψ(n-1) 
+ Δ t r(n), x(n) = x(n-1) + Δt v cos(ψ(n)), y(n) = y(n-1) + Δt 
v sin(ψ(n)),where: ψ is rotation angle of the vehicle (ψ=0 if 
the vehicle is oriented parallel   to x-axis ); r and v are 
control variables meaning desired rotation speed and  
translation speed; x, y are position coordinates, Δt  is sample 
time and n is the time index. The vehicle is represented as a 
geometrical figure. Its dimensions are not neglected. It is 
necessary to point out this as a very important fact.  The 
selection of the vehicle model is inspired by conventional 
methodology that is used in control systems for a given path 
[17]. 
 
D. Environment Models 
 

Environment model amounts to the distances of the 
vehicle gravity center from the goal position (dxG and dyG ) 
and  from the obstacles (di). dxG and dyG  are calculated as: 
dxG= x – xG,  dyG= y – yG , where xG, yG are the goal position 
coordinates. Obstacles are represented by its characteristic 
values, as illustrated in Fig. 3. Obstacle area is divided into 
sub-areas.  

A procedure, for the simulation purpose, calculating  the 
vehicle  distance di from i-th obstacle    is explained for a 
triangle obstacle as: SubArea-4: if((x>=x1)and(y>=yB))         
then   di= ((x-x1)2 + (y-y1)2)1/2, SubArea5: 
if((x>=x1)and(y<yB)and(y>=yC)) then di = |[y+[(y1-y2) ⁄ (x2-
x1)]x +[(y2-y1) ⁄ (x2-x1)]x1-y1] ⁄ [[(y1-y2) ⁄ (x2-x1)]2+1]1⁄2 |, 
……yB and yC are  lines that are normal onto the line BC at 
points B and C. According to the previous cases the 
environmental model has additional characteristics as it is 
given in Section IV.B and IV.C.  
 
E. Cloning Success Criterion 
 

Performance error is very important for the evaluation of 
the quality of clone that was constructed. Regarding the 
ideal case the goal concept and the approximation concept 
of the vehicle trajectory are identical and the performance 
error is 
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Fig. 3. Triangular obstacle. 

 
equal to zero. Ideal trajectory in x-y plane without obstacles 
is, for example, a straight line between the start S and the 
goal G positions of the vehicle, as it is specified in Section 
IV.C. Operator, in a training phase, mostly does not manage 
to realize this trajectory. Position error Exy is based upon a 
distances dop(i) and dcl(i) of operator and clone trajectories, 
respectively, from the named straight  line.  Our problem is 
to avoid obstacle and so we can consider only Eperf  as:  

( ) ( )

max( ( ) ( ))1

d j d jN op cl
d j d jj clop

Exy N

−
∑

−=
=  (1) 

For avoiding n obstacles we have to find                     
(d)m= min{ di, i=1,..n} in order to define: 

( ( )) ( ( 1))

max( ( )) ( ( 1))1

1

d j d jN m mcl cl
d j d jj m mcl clExy N

− −
∑

− −=
=

−
  (2) 

Eventually, we can say that between two clones more 
successful is the one which produces lower performance 
error regarding equations (1) and (2). 
 

IV. EXPERIMENTS AND RESULTS 
 

To form training instances the task was only to avoid 
obstacles. The vehicle start position was its goal position. 
The minimal number of the vehicles traveling from the start 
to the goal position was to chosen be one. It is the 
framework for selecting appropriate training instances. The 
idea is to combine this control strategy with a control 
strategy without obstacles in order to form a full controller, 
which enables to avoid obstacles and to reach the goal 
position of the vehicle. When an obstacle was included, the 
vehicle trajectory for the training scene is illustrated in Fig. 
4.  

 
A. Experiments using GoldHorn 
 

Treating the problem without obstacles, GoldHorn found 
the next equation for the desired rotation angle: 

0.55311*( ) 0.01679y yG
desired x xG

ψ
− −

=
−

 (3) 

So, we defined: (d)m= min{ di, i=1,..n}. The training 
process was repeated (Fig. 4.) and GoldHorn managed to 
find the next equation of the desired rotation angle: 

0.13735

0.0064

dm
desiredψ

− +
=  (4) 

Now, the scenes created by three obstacles have been 
observed, (see Fig. 5.), using the control strategy:  

desiredr
t

ψ ψ−
=

Δ
 (5) 

and  v=0.1. 
For the clone based on equations (4) and (5), it is obtained 

Exy = 0.000141. Eventually, we can say, there is a strong 
reason to use relations (4), (5) and relation (d)m= min{ di, 
i=1,..n} to solve the problem of avoiding n obstacles. The 
clone based on equations (4) and (5) enables only the 
obstacle avoiding. However, it is needed to combine these 
equations with the equation (3), [11]. To avoid the vehicle 
traveling through the narrow passages between obstacles it 
is  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X

Y

S

 
Fig. 4. The vehicle trajectory used to gather training examples. 
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Fig. 5. Test solved by clone based on equations (4) and (5). 

 
needed to define a rule regarding their dimensions. For the 
control variable v of the vehicle, a tested control strategy is 
given in [11]. 

 
 

TuDI16.7

2487



 

B. Experiments with the Vehicle Goal Position as an 
Obstacle 
 

In the next experiments the vehicle goal position is 
treated as an obstacle. The fashion is to take the distances 
(dgoal) of the vehicle gravity center from the goal position as 
the distance from i – th obstacle. Then expanding distance 
set  we defined: (d)m= min{dgoal, di, i=1,..n}. To define the 
vehicle trajectory is defined a rule: if (dmin = dgoal ) then   
Ψdesired =  Ψline            else             Ψdesired =  Ψavoid , where Ψline 
is defined by equation (3) and Ψavoid is defined by equation 
(4). The described method is tested using scene a) S=(0.45, 
0.45), G= (0.8,0.8), P1=(0.23,0.35,0.3,0.4), 
P2=(0.6,0.25,0.75,0.35), P3=(0.35,0.55,0.55,0.75), Fig. 5a); 
b) S=(0.45, 0.45), G=(0.85,0.8), P1=(0.23,0.35,0.3,0.4), 
P2=(0.6,0.25,0.75,0.35), P3=(0.35,0.55,0.55,0.75), Fig. 6b). 

Scenes in Fig. 6a) and in Fig. 6b) are different only 
according to the x – axis of the vehicle goal position. 
According to the terminal position of the vehicle, the 
differences are relatively small, but the trajectory in Fig. 6b) 
is greater then from the trajectory in Fig. 6a) and they are 
different to all appearances. Obviously, the exposed method 
generates the vehicle trajectory which is not an optimal 
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Fig. 6. Test solved by clone using the goal position as an obstacle. 

 
vehicle trajectory. It is the disadvantage. But the method is 
very simple and it enables to the vehicle to reach the goal 
position using only equation (4). It is the advantage. 
 
C. Experiments with the Virtual Obstacle Based on Line 
Connecting the Goal and the Start Position 
 

In the next experiments the line which connect the goal 
and the start position serves to be formed a virtual obstacle 
as it is illustrated in Fig. 7.  According to the Fig. 7 it is 
posible to form relations: 

1 0.05, 1 ;
2 , 2 0.05;
3 0.05, 3 ;
4 , 4 4 0.05;

X XS Y YS
X XS Y YS
X XG Y YG
X XG Y Y

= + =
= = +
= − =
= = −

 (6)1 

2 1
1 1 ( 1)

2 1
Y Y

YP Y X X
X X

−
= + −

−
 (7) 

3 2
2 2 ( 2)

3 2
Y Y

YP Y X X
X X

−
= + −

−
 (8) 

4 3
3 3 ( 3)

4 3
Y Y

YP Y X X
X X

−
= + −

−
 (9) 

4 1
4 1 ( 1)

4 1
Y Y

YP Y X X
X X

−
= + −

−
 (10). 

    It is known that the normal distance of the point M(X,Y) 
from the line aX+bY+c=0 is: 

2 2

aX bY c
d

a b

+ +
=

+
 (11). 

 
A procedure, for the simulation purpose, calculating  the 

vehicle  distance from the virtual obstacle    is given as: 
SubArea-1: if((Y<=YP1)and(Y<=YP2))         then   dv= ((X-
X1)2 + (Y-Y1)2)1/2, SubArea2: 
if((Y>=YP4)and(Y<YP2)and(Y<=YP3)) then dv = |Y+[(Y1-
Y2) ⁄ (X2-X1)] X +[(Y2-Y1) ⁄ (X2-X1)] X1-Y1]  | ⁄ [[(Y1-Y2) ⁄ 
(X2-X1)] 2+1] 1⁄2,….. and so on for all of from  the eight 
areas. This approach enables the vehicle moving from the 
start to the goal position using  only  equation (4), for 
example,  (without equation (3)),  expanding distance set  by  
defining: (d)m= min{dv, di, i=1,..n}.   

.   
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Fig. 7. The virtual obstacle based on  the start - the goal line. 

 
D. Experiments Using the  Virtual Obstacle 

 
                                                           
1 0.05 *2 means that the virtual obstacle is not only the line but has 
dimensions which is randomly determined. Equations (6) – (10) 
define the line which is connected with two determined points. 
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As the first, the methodology which is exposed in section 
IV- C  is tested using GoldHorn learning system  and 
equations (4) and (5) for situation as it is illustrated in 
Figure 5. The result is given in Fig. 8. 
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 Fig. 8. The virtual obstacle based on  the start - the goal line and 

GoldHorn clone. 
 
The virtual obstacle is treated and according to all of 

obstacles  obviously the touch is detected because reaction 
time of GoldHorn  clone is inappropriate, as it was observed 
the previously [22 ].   

An application of RBF network in autonomous vehicle 
motion planning is described in [18], [19].  A relatively 
small corresponding training set is given in Table I.  

 
TABLE I 

THE ORIGINAL AND THE MODIFIED TRAINING SET 
 

Index 
J 

Distance 
(IW[j,1]) 

dmin 

Angle 
Ψ 

(LW[1,j]) 

Angle 
modified 

Ψm 
(LW[j,1]) 

Factor 
fm 

1 0.04 10.906 10.906 1 

2 0.0494 13.8025 13.8025 1 

3 0.0591 11.425 11.425 1 

4 0.08 0.0035 81.025 23151 

5 0.08 9.513 85.617 9 

6 0.081 12.070 12.070 1 

7 0.0894 12.692 12.692 1 

8 0.0923 12.556 12.556 1 

9 0.1006 7.6405 7.6405 1 

10 0.12 0.6895 3.4475 5 

 
According to the problem of the autonomous vehicle 

motion planning, Exy is treated as an appropriate criterion. 
First, spread factor is tuned to σj. For step k=1 spread =1, 
and then spread decreased in 0.01. Process was stopped for 
spread=0.002. The performance error Exy has minimum for 
that spread value. While spread factor decreased, total time 
T of the autonomous vehicle moving out of  reach of the 
obstacles increased:(spread = 0.005, T = 534 s; spread = 
0.003, T = 600 s; spread = 0.002, T = 637 s. In order to 
decrease the performance error for small vehicle distance 
from obstacles edges (dmin ≈ 0.08), LW[1,j] is multiplied by 
fm [j] as  it is given in Table 1. For fm [4] = 23151, fm[5]=6 
and another {fm [j]=1,j=1,2,3,6,7,8,9,10}, it was T = 1248 s. 

But for fm [j]  which have values as it was given in Table 1 
performance error was Exy = 0.00382. Scene with five static 
obstacles is given in Fig. 9c). In that case we have situation 
when the autonomous vehicle moves away from P1 obstacle 
to be close, until some critical distance from obstacles P2, 
P3, P4 and P5, and changes Ψ rapidly safely avoiding the 
obstacles touch for long time. Changing fm[j] repeatedly 
takes a step in the direction of steepest decrease of Exy. But 
some   changes and values of  Exy are inappropriate, as it  is 
given in situation with GoldHorn clone.  GoldHorn clone 
based on equation (4), in the situation given in Fig. 8c), 
touched obstacles (obstacle P2) upon T=475s. Obviously, 
using set of training examples illustrated in Fig. 4, the 
GoldHorn performs generalization which is inappropriate 
for some scenes. 

The obtained RBF network clone produced the results 
that are more appropriate and it could be included in all 
situations as it is included GoldHorn clone, but by now only 
according to the  obstacle avoiding is used. We interested in 
the goal reaching as it is given in Section IV-C. A neural 
network algorithm as an advancement according to the RBF 
is given in [20]. That algorithm is applied in order to solve 
the situation which is given in Fig. 9a),b), c). Again, to 
avoid the vehicle traveling through the narrow passages 
between obstacles it is needed to define a rule regarding 
their dimensions [18], [19], [20], [22]. In situation illustrated 
by Fig. 9a) the vehicle moves from the start position 
S(0.35,0.15) to the goal position  G(0.85, 0.8) avoiding the 
virtual obstacle also. The experiment is successful. Like 
that, the experiment is successful in Fig. 9b). Again  the 
virtual obstacle is treated and the vehicle reaction time is 
quite appropriate.  In Fig. 9c) is illustrated situation with 
five static obstacles P1 – P5, and virtual obstacle P6 which 
is illustrated also. After a great number of obstacle avoiding 
circles  the vehicle attempts to move to the goal G, but some 
oscillations appears and the vehicle decides to avoid 
obstacles and reach the goal  again and again, and has not 
the chance to stop. That process is not time limited, but it 
means that experiment is quite successful: we have obstacle 
avoiding and the goal position reaching using the same 
algorithm, i.e. relation.  
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Fig. 9.  The autonomous vehicle trajectory in xy plane for three 
and for five static obstacles. The autonomous vehicle is controlled 

by RBF neural  network clone. 
 

  
E. Conclusion  
 

Attempting to find some elegant and general solution in 
order to avoid obstacles and in order to reach the goal 
position the advancement is appeared, Section IV.D.   
According to the situation which is the  previously exposed 
in [23] and  means that it is needed to construct sequence of 
the special rules to be reached the goal position of the 
vehicle, the situation which is given here means that it is 
needed to use the same relations to avoid obstacle and to 
reach the goal of the vehicle upon the virtual obstacle is 
defined.  The proposed methodology has complexity O(n2), 
where n is  the number of obstacles. 
 

V. CONCLUSION 
 

The problem of the vehicle motion planning in the 
environment with fixed obstacles was treated. The task for 
the given problem was to find a controller. Taking into 
account the examples which were obtained in training 
phase, when the vehicle was controlled by an operator to 
avoid rectangle unmoving obstacle, some acceptable 

guidance rules were synthesized using different learning 
algorithms. Their importance was subsequently extended in 
order to apply them in some situation with the infinite 
number of different unmoving obstacles. Attempting to find 
some elegant and general solution in order to avoid 
obstacles and in order to reach the goal position the 
advancement is appeared, Section IV.D.   According to the 
situation which is the  previously exposed in [23] and  
means that it is needed to construct sequence of the special 
rules to be reached the goal position of the vehicle, the 
situation which is given here means that it is needed to use 
the same relations to avoid obstacle and to reach the goal of 
the vehicle upon the virtual obstacle is defined.  The 
proposed methodology has complexity O(n2), where n is  the 
number of obstacles. Eventually, the  vehicle kinematical 
and then a complete mathematical model is given by 
nonlinear equations describing a 12 state dynamical system 
simulated in Matlab or Simulink environment. In both case 
we manage to find the regulator for the named autonomous 
vehicle in 2D and 3D- space in situation with infinite 
number of   obstacles, as it is given in  [23]. The tendency of 
the regulator to guide the vehicle in such a fashion that its 
distance from obstacle edges increases was observed in both 
case. That fact is a good reason for the conclusion that these 
results, with sophisticated kinematical and dynamical model 
of the vehicle, quite confirm the results exposed early, when 
was used only kinematical model of the vehicle. 
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