
into an Object-Oriented Scripting Language
Markus Schatten

Faculty of Organization and Informatics
University of Zagreb

Pavlinska 2, Varaždin, HR-42000, Croatia
markus.schatten@foi.hr

Abstract— Python is an object-oriented scripting language
known for its ability to support various programming paradigms.
In Python one can write procedural, functional, object-oriented,
and thanks to metaclasses even aspect-oriented code. Even if
some efforts were done to support the last major programming
paradigm, logic programming is still not supported in a Python
programmer friendly way.

In this paper a solution that aims on this target using F-Logic
(particularly FLORA-2), which syntax is much more compatible
with the Python language than traditional Prolog syntax, is
presented. In order to make such an integration useful ZODB
(Zope Object Base) is used to facilitate permanent storage of
Python objects, while the FLORA-2 engine built on XSB is used
for reasoning facilities.

To take advantage of logic programming concepts like facts,
rules, variables or queries, special logical Python object are
introduced. In the end some examples of usage are shown and
future development guidelines are given.

I. INTRODUCTION

Python is a well known dynamic object-oriented scripting
language initially implemented by Guido van Rossum for the
Amoeba operating system, later published on USENET and
made public available. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types (like
lists, tuples, dictionaries etc.), classes, and metaclasses. The
language comes with a large standard library that covers
areas such as string processing (regular expressions, Unicode,
calculating differences between files etc.), operating system
interfaces (system calls, filesystems, TCP/IP sockets etc.), In-
ternet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP,
CGI programming etc.), and software engineering (unit testing,
logging, profiling, parsing Python code etc.) [7].

One of the great advantages of the Python programming
language is the fact that it supports various programming
paradigms like procedural, functional, object-oriented or even
aspect oriented programming. Even if there were some inter-
esting attempts [5] [1] [2] to introduce the logic programming
paradigm into Python due to incompatibilities to traditional
Prolog syntax this task is still not achieved.

In [5] Petuello and later Zagrodnick, created a Python inter-
face to SWI Prolog called PyLog. It allows interaction between
Python and Prolog code, loading of Prolog programs, issuing
queries and the useage of query results. The impossibility to
use Python objects in an intuitive way is a major drawback of
this interface.

In [1] and [2] Berger and Coelho, respectively, propose a
metaprogramming approach to introduce logic programming
into Python. Berger uses Pythons method override facilities
to provide a more intuitive way to produce Prolog-like code
in Python. These solutions still lacks the possibilities to
completely integrate logic programming into Python since
logic programming concepts are in a certain way separated
from the rest of the ’normal’ Python code. They also build
upon traditional Prolog syntax which seems not to be the
optimal solution for an object-oriented programming language
like Python.

As opposed to traditional Prolog syntax frame logic based
languages [3] seem to be much more compatible with Python
syntax. Especially the object-oriented knowledge base lan-
guage FLORA-2 [10] has very interesting (but rather coin-
cidental) similarities in its syntax to the Python syntax. Addi-
tionally FLORA-2 integrates F-Logic, HiLog and Transaction
Logic which makes it a powerful knowledge representation
and inference language. In [6] Yang, Kifer and Zhao argue that
FLORA-2 ”is a flexible and natural framework that combines
rule-based and object-oriented paradigms”.

Another system to mention here is the Zope Objectbase
(ZODB) developed by the Zope Corporation [12]. It’s a simple
object-oriented database which has the capabilities to store
Python objects in a permanent way. However it lacks any
reasoning facilities since all object are stored in a rather
large Python dictionary. By combining the reasoning engine
of FLORA-2 and the capabilities of ZODB it is possible to
use knowledge bases in Python, as argued further.

II. INTRODUCING LOGIC PROGRAMMING CONCEPTS INTO
PYTHON

Most important logic programming concepts to introduce
into Python addressed here are logic variables, facts, rules and
queries. In FLORA-2 logic variables are denoted by any word
starting with an uppercase letter or the underscore (’ ’). A
similar way is used in Python, by creating a class of objects
named Variable which behavior is shown in the following
Python interactive shell session.

>>> X = f.Variable(’X’)
>>> X
<f.Variable instance at 0xb7dd854c>
>>> print X

Reasonable Python or how to Integrate F-Logic

297

1-4244-1148-3/07/$25.00 ©2007 IEEE.

X
>>> X == 27
>>> print X

X = 27

When analyzing facts, rules and queries we can conclude
that they are all instances of a construct which has the form:

Head : −Body. (1)

: −Body. (2)

Head : − . (3)

(1) is a rule where Head is the rule head, and Body is
the rule body (denoted by Head :- Body.). (2) is a query
where Body is the query string (denoted by ?- Body.). (3)
is a fact where Head is the actual fact (denoted by Head.).
We can conclude that we need only one class when introducing
these concepts into Python which behavior is shown in the
following interactive shell session (where Bogus is a logical
class as argued further).

>>> x = f.Construct()
>>> print x

>>> h, b1, b2 = f.Bogus(), f.Bogus(),
f.Bogus()
>>> x & h
>>> x. class
<class f.Fact at 0xb7ae356c>
>>> del x
>>> x = f.Construct()
>>> x << b1 & b2
>>> x. class
<class f.Query at 0xb7ae365c>
>>> del x
>>> x = f.Construct()
>>> (x & h) << b1 | b2
>>> x. class

<class f.Rule at 0xb7ac5dac>

One can see that x which is an instance of the Construct
class dynamically changes its class to Fact, Rule or Query
according to its content (e. g. its head and body). The bitwise
shift (’<<’), the bitwise or (’|’) and the bitwise and (’&’) were
overridden in order to allow logic programming constructs,
and stand for ’:-’, ’;’ and ’,’ respectively. This means that
a logic programming construct like:

X : −(Y, Z); W. (4)

in Python would be written like:

X << (Y&Z)|W. (5)

Which is similar to both FLORA-2 and Python syntax. In
addition to these two classes some additional classes were
defined to ease such behavior.

III. TRANSLATING PYTHON OBJECTS INTO F-MOLECULES

Another task to be accomplished is the translation of Python
objects into F-molecules in FLORA-2 syntax in order to allow
reasoning about them. Python has a feature which eases this
translation and can be seen in the following interactive shell
session.

>>> class a:
... def init (self, b1 = 1, b2 = 2):
... self.b1 = b1
... self.b2 = b2
...
>>> y = a()
>>> dir(y)
[’ doc ’, ’ init ’, ’ module ’, ’b1’, ’b2’]
>>> y. dict
’b1’: 1, ’b2’: 2
>>> y. class

<class main .a at 0xb7a27b9c>

We can conclude that Python objects allow us to query their
internal structure and content. Using this feature a multiple
recursive algorithm was developed which translates Python
objects into FLORA-2 F-molecules. For example the y object
from the example when translated into FLORA-2 would be:

>>> tr = py2f.py2f()
>>> tr.f2obj(y)
’py0xb7db4e2cpyobj main py :

pyapyclass main py ["b1"->1, "b2"->2]’

To have unique object names in our knowledge base we
use the objects internal memory addresses and some additional
information about its module. When an object is translated it is
automatically stored in a ZOBD object base for later retrieval
and permanent storage. Python objects which are not logical
constructs as argued earlier, are considered to be facts.

IV. CONNECTING FLORA-2 AND PYTHON

In order to use the FLORA-2 engine from Python an
interface had to be developed. FLORA-2 is build upon the
OpenSource XSB Prolog engine which is developed in C
and thus has a C interface [8]. The Simplified Wrapper and
Interface Generator (SWIG) was used to create an interface
between XSB and Python (but could be easily extended to
any other language supported by SWIG i. e. AllegroCL, C# -
Mono, C# - MS .NET, CFFI, CHICKEN, CLISP, Guile, Java,
Lua, MzScheme, Ocaml, Perl, PHP, Ruby, or Tcl/Tk).

Through such an interface FLORA-2 is then loaded as a
module into XSB. Additional wrapper classes were devel-
oped to ease communication between XSB and Python, and
FLORA-2 and Python, as shown in the following interactive
shell session.

>>> f = interface.Flora2()
[FLORA2 specific output]
>>> f.consult(’test’)
[FLORA2 specific output]
>>> f.query(’X:person[Y -> Z].’, [’X’,

INES 2007 • 11th International Conference on Intelligent Engineering Systems • 29 June – 1 July, 2007 • Budapest, Hungary

298

’Y’, ’Z’])
[{’Y’: ’age’, ’X’: ’mirko1’, ’Z’: ’40’},{’Y’:
’age’, ’X’: ’mirko2’, ’Z’: ’42’}]
>>> f.close query()

We can conclude that such an interface allows for using
XSB and FLORA-2 engines from Python. Compiling and
loading of Prolog and FLORA-2 specific programs is also
supported. Queries can be issued directly whereas return
variables have to be provided in a Python list as the second
argument. The results of queries are Python lists which ele-
ments are Python dictionaries where each dictionary represents
one solution. Keys of each dictionary are the provided return
variables, and the matching values are the returned values from
the knowledge base.

V. PUTTING IT ALL TOGETHER

After describing the particular parts of this integration
it is possible to connect all together in order to facilitate
logic programming in Python. All previously described parts
constitute a Python module. In addition to theses parts a new
class was defined which integrates them. In particular this class
represents an F-Logic base with storing and querying facilities.

Any object to be stored in to the knowledge base is first
stored in the ZODB in order to be persistent. Afterwards it is
translated into FLORA-2 syntax and loaded into the FLORA-2
engine. Additionally the FLORA-2 code is saved in an external
file so the state can be restored later. This behavior of the
system is transparent to the Python programmer.

To query the knowledge base one can either use FLORA-2
syntax or create special query objects using logical variables
and logical constructs. In the following interactive shell session
we first create a construct and define a logical class which we
will use for querying the knowledge base.

>>> x = Construct()
>>> class query object(Logical):
... def init (self, a, b):
... Logical. init (self)
... self.a = a

... self.b = b

Now we can create a query object and modify it to fit our
needs. Note how it is possible to use a logical object to query
for any object of any class by overriding its type and class
type attributes with logical variables. We can also override the
names of attributes by inserting a logical variable in the place
of the attributes name.

>>> q = query object(Variable(’X’),
Variable(’Y’))
>>> x << q
>>> print x
?- py0xb7d6cdacpyobj main py :
pyquery objectpyclass main py [
"b"->Y, "a"->X].
>>> q. type = Variable(’Z’)
>>> print x
?- Z : pyquery objectpyclass main py [

"b"->Y, "a"->X].
>>> q. classtype = Variable(’W’)
>>> print x
?- Z:W["b"->Y, "a"->X].
>>> q. dict [Variable(’V’)] = q. dict [
’a’]
>>> del q. dict [’a’]
>>> print x
?- Z:W["b"->Y, V->X].
>>> del q. dict [’b’]
>>> print x

?- Z:W[V->X].

To query the knowledge base some facts and/or rules have
to be stored in it. A simple data object class which subclasses
the Persistent class is created in the following.

The subclassing allows all instances of the class to be stored
in the ZODB. Instances to be stored in the knowledge base
are also created in this interactive shell session.

>>> class data object(Persistent):
... def init (self, a, b):
... self.a = a
... self.b = b
...
>>> d1 = data object(1, 2)

>>> d2 = data object(3, 4)

Now it is possible to create the knowledge base which is
just an Python object like any other and insert the data objects.

>>> fb = FBase(’my flbase’)
[FLORA-2 specific output]
>>> fb.insert(d1)
[FLORA-2 specific output]
>>> fb.insert(d2)

[FLORA-2 specific output]

By using the previously created query object the following
results are obtained. Note that the W variable returned the
string ’class’ which is due to the impossibility of ZODB to
store class objects (e. g. they are not persistent).

>>> fb.query(x)

[{’X’: ’1’, ’Z’: < main .data object

object at 0xb7dde96c>, ’W’: ’class’},
{’X’: ’2’, ’Z’: < main .data object object

at 0xb7dde96c>, ’W’: ’class’}, {’X’:
’3’, ’Z’: < main .data object object at

0xb7c52aac>, ’W’: ’class’}, {’X’: ’4’, ’Z’:

< main .data object object at 0xb7c52aac>,

’W’: ’class’}]

This simple example shows how transparent the knowledge
base is to a Python programmer. The programmer just has
to create an FBase object to store Python objects in the
knowledgde base.

To query the knowledge base query objects have to be
created. Using logic objects and logical variables this task is
intuitive and fair easy to accomplish.

M. Schatten • Reasonable Python or how to Integrate F-Logic into an Object-Oriented Scripting Language

299

To add rules to the knowledge base one has to use constructs
in order to create them and store them. These rules are similar
to their Prolog and FLORA-2 counterparts with some minor
syntax differences still preserving the flexibility of normal
Python code.

VI. CONCLUSION AND FUTURE WORK

In this paper an integration of F-logic, especially FLORA-
2 and the dynamic object-oriented programming language
Python was proposed. This integration showed some advan-
tages to other attempts of supporting logic programming in
the Python scripting language. These advantages include more
intuitive syntax for Python programmers, complete integration
and reasoning over Python objects, and permanent storage.

This integration could allow Python programmers to easier
create knowledge base, ontology and semantic web solutions.
Other possible usage would include automated applications
generation, reasoning about module capabilities, and auto-
mated software testing.

Even if this solution is a step forward it has still to be devel-
oped further. Future development will include a more network
oriented system which should allow multiple knowledge base
users, client server architecture and the possibility to exchange
Python objects over the network. A main idea is to connect Net
Work Spaces (NWS)[4] with the developed system in order to
facilitate such a system.

Acknowledgments

This paper was written after a disscusion with Michael Kifer
over the FLORA-2 mailing list and a discussion with my
mentor Mirko Čubrilo. In this place I’d like to thank them
for suggestions and ideas.

REFERENCES

[1] S. Berger, Pythologic – Prolog syntax in Python, on-line
<http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/303057>, accessed: 21st November 2006.

[2] F. Coelho, Extending python with prolog syntax *and resolution*, on-line
<http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/360698>, accessed: 21st November 2006.

[3] M. Kifer, G. Lausen, J. Wu, Logical Foundations of Object-Oriented
and Frame-Based Languages, Journal of the Association for Computing
Machinery, May 1995.

[4] Nws-py.sourceforge.net, NetWork Spaces for Python, on-line
<http://nws-py.sourceforge.net/>, accessed: 21st November
2006.

[5] W. M. Petullo and later C. Zagrodnick, PyLog, on-line
<http://www.gocept.com/open source software/Pylog>,
accessed: 19th November 2006.

[6] M. Pilgrim, Dive into Python, on-line <http://
diveintopython.org/>, accessed: 19th November 2006.

[7] Python.org, General Python FAQ, on-line
<http://www.python.org/doc/faq/general/>, accessed:
24th March 2007.

[8] SWIG, Simplified Wrapper and Interface Generator, on-line
<http://www.swig.org>, accessed: 19th November 2006.

[9] XSB, XSB API documentation, on-line <http://xsb.sourceforge
.net/api/index.html>, accessed: 19th November 2006.

[10] G. Yang, M. Kifer, C. Zhao, FLORA-2: A Rule-Based Knowledge Rep-
resentation and Inference Infrastructure for the Semantic Web, In Second
International Conference on Ontologies, Databases and Applications of
Semantics (ODBASE), Catania, Sicily, Italy, November 2003.

[11] G. Yang, M. Kifer, C. Zhao, V. Chowdhary Flora-2 :
User’s Manual, Version 0.94, (Narumigata), on-line <http://
flora2.sourceforge.net>, accessed: 29th November 2006.

[12] Zope.org, ZODB, on-line <http://www.zope.org/Wikis/ZODB/
FrontPage>, accessed: 21st November 2006.

INES 2007 • 11th International Conference on Intelligent Engineering Systems • 29 June – 1 July, 2007 • Budapest, Hungary

300

	Next:
	prev:
	Home:

