
Computational study of the isomerization of silylsubstituted vinyl cations

Helena Čičak and Zlatko Mihalić

Laboratory of Organic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia

Recently, silyl-substituted unsaturated carbocations have been invoked as intermediates in the formation of neutral silylated products arising from the reaction of radiolytically formed Me_3Si^+ with alkynes in a gaseous medium at atmospheric pressure.¹ FT-ICR results has testified that equivalent cationic adducts, which are generated by protonation of trimethylsilylacetylenes, may store enough internal energy to dissociate to reagents and/or to undergo isomerization.²

The aim of this work is to explore the part of the potential energy surfaces of silylsubstituted vinyl cations $Me_3SiC_2RH^+$ (R = H, Me, SiMe₃), which includes vinyl and silaallyl isomers and related transition structures, by quantum-chemical calculations.

Our investigation has shown some new characteristics of these potential energy surfaces, not previously observed for $H_3SiC_2H_2^{+,3}$ which include new structural isomers (minima) and strong dependence of calculation method and/or basis set used.

[1] B. Chiavarino, M. E. Crestoni and S. Fornarini, J. Am. Chem. Soc., 120 (1998) 1523.

- [2] B. Chiavarino, M. E. Crestoni and S. Fornarini, Chem. Commun., (2002) 1418.
- [3] A. E. Ketvirts, D. K. Bohme and A. C. Hopkinson, J. Phys. Chem., 98 (1994) 13225.