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Abstract: many financial time series such as stock returns or foreign exchange rates, observed on daily basis, 
have showed stylized facts. These facts include serially uncorrelated returns with zero mean, time-varying 
variance (heteroscedasticity), leptokurtic distribution of returns and volatility clustering. In empirical research 
we find that these characteristics can be parametrically described using GARCH(p,q) models (Generalized 
AutoRegrresive Conditional Heteroscedasticity models). In practice these models are used in forecasting market 
risk. However, parameter estimation in symmetric GARCH(1,1) model, assuming Gaussian distribution of 
returns is not that simple. 

Maximum likelihood estimation (MLE) is usually concerned in evaluating the parameters. Analytical 
solution of maximization of the likelihood function using first and second derivatives is too complex when the 
variance of innovations is not constant. Therefore, we present usefulness of quasi-Newton iteration procedure in 
parameter estimation of the conditional variance equation within BHHH algorithm. Namely, the advantage of 
BHHH algorithm in comparison to the other numerical optimization algorithms will be presented. To simplify 
optimization procedure algorithm uses the approximation of the matrix of second derivatives (Hessian). Within 
BHHH algorithm Hessian matrix is approximated according to information identity. 

When assumption of normality is unrealistic the estimates are still consistent, but robust standard 
errors should be used. Solutions of the numerical optimization algorithms are sensitive to the initial values and 
convergence criteria. Optimization procedure will be illustrated by modeling daily returns of the most liquid 
stock in first quotation on Zagreb Stock Exchange. In final step, from the evaluated model, prognostic values of 
expected return and expected standard deviation are estimated.  These prognostic values can be used to estimate 
alternative risk measures, such as Value at Risk (VaR) or Conditional Value at Risk (CVaR). Even so, from 
estimated GARCH(1,1) model we can reveal the intensity of volatility reaction on past information, and volatility 
persistence (time for shocks in volatility to die out). 
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1. INTRODUCTION 

In econometric modeling parameters estimation is essential for measuring and quantifying 
different influences between observed variables. These estimations are also relevant for significance 
testing. For example, in linear regression model in matrix form: 

εβ += XY ,       (1) 

the goal is to find such parameter vector β  that minimizes the sum of squared residuals: 

( ) ( ) ( )εεββ TT minXYXYmin =−− ,     (2) 

where ε  is n-dimensional stochastic vector, i.e. vector of unknown deviations from the functional 
form of the regression model. Therefore the objective function in dependence of unknown parameters 
is defined as follows: 
                                                 
1 Faculty of Economics, University of Split, Croatia 
2 Faculty of Economics, University of Split, Croatia 
3 Faculty of Economics, University of Split, Croatia 



              ( ) ββββ XXYX2YYf TTTT +−= .      (3)                          

The extremes of a function in equation (3) are simple characterized by its derivatives being 
equal to zero: 

                         0XX2YX2 TT =+− β .      (4) 

Solving equation in (4) for β , k-dimensional vector of estimated parameters is given by: 

( ) YXXXˆ T1T −
=β .       (5) 

Parameters estimation in (5) is obtained my minimizing quadratic function in (3). These 
estimates are called ordinary least squares estimates (OLS). 

Finding extremes for nonquadratic functions is not so easy. For this kind of problem Sir Isaac 
Newton proposed iterative solution: 

 quadratic approximation of nonlinear function in neighborhood of some value kx  and find 
its    extremes 

 generate a new local approximation  in neighborhood of previous minimum (maximum) and 
find new extremes 

Local quadratic approximation of some nonlinear function ( )xf  is given by Taylor expansion 
(according to Mean Value Theorem): 

( ) ( ) ( )( ) ( ) ( )( )kkkkkk xxx''fxx
2
1xxx'fxfxf −−+−+= .    (6) 

Setting the derivatives of function in (6) to zero, and solving for x : 

0)xx)(x(''f)x('f)x('f kkk =−+= .     (7) 

If the function is quadratic we arrive at the extremes in a single step, as in the case of ordinary 
least squares estimation.  If the function is not quadratic, we must solve for the solution iteratively: 

( )[ ] ( )k
1

kk x'fx''fxx ⋅−= − ,      (8) 

where ( )kx''f  is matrix of second derivatives evaluated at kx , referred as Hessian matrix (later 
denoted as kH ), and ( )kx'f  is vector of the first derivatives evaluated at kx , referred as gradient 
vector (later denoted as kg ). Namely, direction vector, denoted as k

1
kk gHd −= , is a vector describing 

a segment of a path from the starting point to the solution, where the inverse of the Hessian determines 
the angle of the direction and the gradient determines its size. However when the function is not well 
behaved then poorly approximation by the quadratic function results with inaccurate optimum. 

 

2. MAXIMIZATION OF THE LIKELIHOOD FUNCTION 

An alternative approach to estimate vector of parameters is to find vector β  that maximizes 
likelihood function. Likelihood function, for linear regression model, is defined as joint probability 
distribution for observed n21 y...,,y,y .4 According to the assumption that observations are normally 
distributed, likelihood function is denoted by: 
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4 Maximal likelihood estimation chooses coefficient estimates that maximize the likelihood of the sample data 
set being observed. 



From above definition joint probability distribution is given as product of all normally 
distributed variables iy . This relation is true by assumption that these variables are independent. For 
practical reasons function in (9) is transformed in a monotone increasing function, by taking it's 
natural logarithm: 
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Speaking statistically, it is easy to take expectations and variance of sums, rather then 
products. Function defined in (10) is called log-likelihood function. By taking partial derivatives of 
above function with respect to parameters k10 ...,,, βββ  and 2σ , and setting them equal to zero, results 
in the same estimation of vector β  as in OLS case. Estimators given by maximization of log-
likelihood function (MLE) are equivalent to OLS estimators if and only if i.i.d. assumption 
(independently and identically distributed variables) is introduced. Speaking statistically, assumption 
that variables iy  have normal distribution with expectation β̂X  and constant variance is equivalent to 
the assumption that variables iε  have standard normal distribution with zero mean and variance equal 
to unity; ε  ~ )1,0(N . 

However, in financial time series models the assumption of constant variance is unrealistic. 
Financial time series do not have a constant mean and/or constant variance. Therefore, it is assumed 
that variance is time-varying (heteroscedasticity). The most common measure of volatility as 
dispersion in probability distribution is the standard deviation of a random variable. So, it is well-
known that returns from financial instruments such as exchange rates, equity prices and interest rates 
measured over short time intervals, i.e. daily or weekly, are characterized by volatility clustering and 
high kurtosis. 

Models which are used to account daily volatility are GARCH(p,q) models. According to the 
market efficiency hypothesis (random walk hypothesis), the returns are serially uncorrelated with a 
zero mean and hence unpredictable random variables, but autocorrelation of the squared returns 
suggests high dependency between them. This means that volatility changes over time and it is 
conditioned on its past information's. Therefore, assuming that tσ  is time-varying, log-likelihood 
function can be expressed as: 
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By taking first derivatives of function (11), and after some rearrangement: 
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and setting the system of equations in (12) equal to zero, becomes to complex to solve, i.e. it is 
difficult to solve it analytically. Therefore, a numerical approach is needed. Note that variance 2

tσ  is 
described through conditional variance equation according to GARCH(1,1) model, which will be 
discussed later. Thus, the interest of this paper is to estimate parameters of the GARCH(1,1) model by 
maximization of the log-likelihood function using numerical optimization procedure. 

Before presenting numerical optimization procedure in maximization problem of log-
likelihood function some properties of likelihood function will be introduced. 

It can be noticed that ( )βLln  is always negative, since the likelihood is a probability between 
0 and 1 and the ln of any number between 0 and 1 is negative. Numerically, the maximum can be 
found by "walking up" the likelihood function until no further increase can be found. The researcher 
specifies starting values sβ . Each iteration moves to a new value of the parameters at which ( )βLln  is 



higher than at the previous step. If we denote the current value at iteration k by kβ , the question is: 
what is the best step we can take next, i.e. what is the best value for 1k+β ? 

To determine the best value of 1k+β , a second-order Taylor’s approximation of 
( )1kLln +β around ( )kLln β  is used: 

( ) ( ) ( ) ( ) ( )k1kk
T

k1kk
T

k1kk1k H
2
1gLlnLln ββββββββ −−+−+= ++++ .   (13) 

Now we find the value of 1k+β  that maximizes approximation in (13): 
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The Newton procedure uses this formula. The step from the current value of kβ  to the new 
value is ( ) k

1
k gH −− , that is, the gradient vector multiplied by the negative of the inverse of the Hessian. 

The negative of this negative Hessian is positive and represents the degree of curvature. It means that, 
kH−  is the positive curvature, assuming that log-likelihood function is globally concave. Therefore, 

each step is the slope of the log-likelihood function divided by its curvature. The curvature determines 
how large a step is made. If the curvature is great, meaning that the slope changes quickly, and the 
maximum is likely to be close, a small step is taken. 

The scalar λ  is introduced in the Newton iterative formula to assure that each step of the 
procedure provides an increase in ( )βLln . The adjustment is performed separately in each iteration: 

( ) k
1

kkk1k gH −
+ −+= λββ .      (15) 

 The vector ( ) k
1

k gH −− is called the direction, denoted as kd , and λ  is called the step size. 
Classical modified Newton iterative procedure specified in (15) is often referred as Newton-Raphson 
algorithm when Hessian is determined analytically. Even so, calculation of the Hessian is usually 
computation-intensive, i.e. analytical Hessian is rarely available. Therefore, alternative to calculation 
of inverse Hessian matrix is it's approximation, which is related to the group of techniques known as 
quasi-Newton methods. 

 

3. QUASI-NEWTON ITERATIVE PROCEDURES 

The quasi-Newton methods that build up an approximation of the inverse Hessian are often 
regarded as the most sophisticated for solving unconstrained problems. Even so, taking expectation of 
the inverse Hessian is essential for variance and covariance estimates in econometric modeling. 

Let 

k1kkp ββ −= +       (16) 

be the change in the parameters in the current iteration, and 

k1kk ggq −= +        (17) 

be the change in the gradients. Then an estimate of the Hessian in the next iteration 1kH +  would be the 
ratio of change in the gradient to the change in the parameters. This is called quasi-Newton condition.  



There are many solutions to the quasi-Newton condition described above. Initial Hessian 
matrix is usually chosen as identity matrix which is updated by update formula. In classical modified 
quasi-Newton iterative procedure, assuming minimization problem: 

( ) k
1

kkk1k gH −
+ −= λββ ,      (18) 

rank two updates are the most widely used. Earliest update formula for constructing the inverse 
Hessian was originally proposed by Davidon (1959) and later developed by Fletcher and Powell 
(1963). DFP update formula has nice property: for a quadratic objective function, it simultaneously 
generates the directions of the conjugate gradient method while constructing the inverse Hessian. DFP 
update formula for inverse Hessian is given by: 
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According to Broyden-Fletcher-Goldfarb-Shanno (1970), update formula is given by: 
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Weighted combinations of these formulas leads to a whole collection of updates: 

( ) 10forHH1H BFGS
k

DFP
kk ≤≤⋅+−= ααα ,    (21) 

according to parameter α . 

Numerical experiments have shown that BFGS formula is superior over DFP formula. Hence 
BFGS is often preferred. Both methods have properties that guarantee relative fast convergence under 
standard requirements. i.e. the objective function is twice differentiable and Hessian matrix is positive 
(negative) definite, depending on convexity (concavity) of the objective function. 

Log-likelihood function being concave means that its Hessian is negative definite at all values 
of β 's. If H  is negative definite, then 1H −

 is also negative definite. Suppose the log likelihood 
function has regions that are not concave. In these areas, the classical Newton procedure can fail to 
find an increase. If the function is convex at kβ , then the Newton procedure moves in the opposite 
direction to the slope of the log-likelihood function and 1

kH −−  is positive definite. Therefore, classical 
Newton procedure (i.e. Newton-Rapshon algorithm) has two main disadvantages. First, calculation of 
the Hessian is computation-intensive. So, procedures that avoid calculating the Hessian at each 
iteration can be much faster. Second, the procedure does not guarantee an increase in each step if the 
log-likelihood function is not globally concave. When 1

kH −−  is not positive definite, an increase is not 
guaranteed. Therefore, other approaches use approximations to the Hessian to overcome stated 
disadvantages. The methods differ in the form of the approximation, previously described.  

 

4. INFORMATION IDENTITY AND OUTER PRODUCT OF GRADIENT 

 Berdnt, Hall, Hall and Hausman (1974) proposed using information identity in the numerical 
search for the maximum of the log-likelihood function. In particular, iterative procedure is defined as: 
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According to the relations in (22) information identity means that the negative of the expected 
Hessian  at the true parameters is equal to the covariance matrix of the first derivatives. In other words, 
it means that negative Hessian can be approximated as outer product of gradient (OPG). 

There are two advantages using BHHH algorithm in comparison to previously described 
quasi-Newton algorithms: 

 toward information identity approximation, negative Hessian is faster to calculate 

 approximated negative Hessian is necessarily positive definite, and therefore guaranteed to 
provide an increase in log-likelihood in each iteration, even in convex portions of the function 

 

By the law of large numbers it can be shown: 

( ) 0ˆPrlim pt
=>−

∞→
εββ ,     (23) 

where pβ  is vector of true parameter values (from population). Relation (23) describes asymptotic 

property of estimated vector β̂ . It means that β̂  is consistent estimator, i.e. β̂  converges to pβ  in 
probability for every 0>ε . Also it can be shown, by the central limit theorem, that the asymptostic 
distribution of β̂  is multivariate normal with mean vector pβ  and variance matrix equal to inverse of 
negative expected Hessian: 

( ) ( )( )[ ] 1
pHEˆVar −−= ββ .      (24) 

If vector pβ  is replaced with it's estimation, we gets: 

( ) ( )[ ] 1ˆHˆVar
−

−= ββ .       (25) 

Variance-covariance matrix in expression (25) can be calculated in other way: 

( ) ( )( )[ ] 1
pgVarˆVar −≈ ββ .      (26) 

By taking: 

( ) ( ) ( ) ( )pTp2p1p g...ggg ββββ +++= ,     (27) 

the unbiased estimation of variance of gradient can be calculated as: 
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Therefore, by replacing it's estimates it is valid: 
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Approximation of Hessian, according to BHHH algorithm is result in identity in relation (29). 
Identity in (29) is called information identity, which means that negative of the expected Hessian is 
equal to OPG. In other words, information identity means that variance-covariance matrix of first 
derivatives in (28) is equal to negative matrix of expected values of second derivatives, when ∞→T .5 

 

                                                 
5 When assumption of Gaussian white noise process of returns is not realistic, the estimates given my 
maximization of the likelihood function are called quasi-maximum likelihood estimates (QMLE), and the robust 
standard errors should be used. QMLE estimators are consistent and asymptotic normally. 



After presentation of some properties of OPG estimators, numerical optimization procedure of 
BHHH algorithm could be summarized in following steps: 

 

1. determine initial vector of parameters sβ , and convergence criteria 0tol >  

2. at current iteration  calculate a direction vector ( )[ ] 1
kk Hd −−= β , while ( )kH β−  is calculated 

by the outer of the gradients 6 

3. calculate a new vector kk1k dλββ +=+ , where λ  is scalar. Start with 1=λ . If 
( ) ( )kkk fdf ββ >+  try with 2=λ . If ( ) ( )kkkk dfd2f +>+ ββ  try with 3=λ , etc. until 

lambda is found for which ( )kk df λβ +  is in maximum 7 

4. if convergence criteria is satisfied algorithm stops, if not repeat steps from 2 to 4 

 

5. PARAMETER ESTIMATION IN SIMPLE GARCH(1,1) MODEL 

The issue of modeling returns accouting for time-varying volatility has been widely analyzed 
in many financial econometrics literatures.8 Since the introduction by Engle (1982) of the ARCH(p) 
(Autoregressive Conditional Heteroscedasticity) model and it's generalization, i.e. GARCH(1,1) 
model by Bollerslev (1986) a wide range of extensions and modifications have been developed. 
However, the interest of this paper is not presenting different volatility models, but investigating 
numerical optimization methods in parameter estimation of these models. 

When modeling financial time series two equations are introduced: conditional expectation 
equation and conditional variance equation. The expected value of return series is calculated from the 
simple linear regression model usually taking constant as regressor. If there is significant 
autocorrelation in returns, best fitted ARMA(p,q) models are usually used, following Box-Jenkins 
procedure. 

It has been shown that ARCH(p) process with infinite number of parameters is equivalent to 
generalized ARCH process, i.e. GARCH(p,q) process which is very well approximated by simple 
GARCH(1,1). As the time lag increases in an ARCH(p) model it becomes more difficult to estimate 
parameters. Besides it is recommended to use parsimonious model as GARCH(1,1) that is much easier 
to identify and estimate. Therefore, GARCH(1,1) model is used to parametrically describe conditional 
variance. Equations of conditional expectation and conditional variance of returns, according to simple 
GARCH(1,1) model, are given: 
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In above relations Engle foundation is multiplicative structure of innovation process 
2
ttt u σε = , assuming tu ~ ( )1,0N.d.i.i . 

Before presentation of concrete application of described algorithms in maximization of log-
likelihood function with respect to parameters μ , 0α , 1α  and 1β , time series of Pliva's stock prices 
and continuously compounded returns are shown on figure 1.  

 

                                                 
6 If ( )kH β−  is not invertible, substitute ( )kH β−  by identity matrix. This is called "steepest ascent". 
7 If ( ) ( )kkkk dfdf +≤+ βλβ  then lambda is reduced (procedure is backing up). 
8 Prices of observed stock are transformed into compound returns by taking logs, i.e. ( ) ( )1ttt PlnPlnr −−= . 



Figure 1: Pliva's closing prices and Pliva's stock returns from 1 September 2003 to 4 
May 2007, daily observed on Zagreb Stock Exchange 
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In table 1. some results of iterative optimization procedure according DFP algorithm are 

presented within parameters estimation of GARCH(1,1) model using Pliva's stock returns on daily 
basis (including 919 trading days). Pliva stocks where chosen for modeling as the most liquid stock on 
Zagreb Stock Exchange (ZSE) according to trading volume and capitalization. It is worth to mention 
that Pliva is leading Pharmacy Company in Central and Eastern Europe, which is listed on London 
Stock Exchange from 1996. 

 

Table 1: Iterative procedure according DFP algorithm in maximization of log-likelihood 
function in GARCH(1,1) model of Pliva stock returns 9 

Iteration 0: 
------------------------------------------------------------------------------ 
Coefficient vector: 
  eq1(cons):   ARCH(L1):  GARCH(L1): GARCH(cons): 
y1   .0005299   .0174851  -2.12e-10 .000318 
                                                   log likelihood =  2396.6145 
Gradient vector (length =  427.143): 
r1  -2.08e-09   427.1426  -5.45e-06   .5542549 
 
Step (length =  427.143): 
r1  -2.08e-09   427.1426  -5.45e-06   .5542549 
 
b + step -> new b: 
y1   .0005299   427.1426  -5.45e-06   .5545729 
                                                   log likelihood = -657.72384 
                                                            (initial step bad) 
(1) Reducing step size (step length = 213.5715) -> new b: 
y1   .0005299   213.5713  -2.73e-06   .2774454 
                                                   log likelihood =   -339.656 
 
(2) Reducing step size (step length = 106.7858) -> new b: 
y1   .0005299   106.7857  -1.36e-06   .1388817 
                                                   log likelihood = -22.018965 

 M 
(14) Reducing step size (step length = .0260707) -> new b: 
y1   .0005299   .0260707  -3.33e-10   .0003518 
                                                   log likelihood =  2399.5426 

                                                 
9 All empirical results are obtained using Stata 8.0 software package. 



Iteration 1: 
------------------------------------------------------------------------------ 
Coefficient vector: 
  eq1(cons):   ARCH(L1):  GARCH(L1): GARCH(cons): 
y1   .0005299   .0260707  -3.33e-10   .0003518 
                                                   log likelihood =  2399.5426 
Gradient vector (length = 180014.1): 
r1  -272.9569   131.2554  -64.59978  -180013.8 
 
Step (length = 427.1361): 
r1   -.001905   427.1355  -.0004563  -.7020888 
 
b + step -> new b: 
y1  -.0013751   427.1616  -.0004563   -.701737 
                                                   log likelihood =          . 
                                                            (initial step bad) 
(1) Reducing step size (step length = 213.5681) -> new b: 
y1  -.0004226   213.5938  -.0002282  -.3506926 
                                                   log likelihood =          . 

 M 
(13) Reducing step size (step length = .0521406) -> new b: 
y1   .0005297   .0782113  -5.60e-08   .0002661 
                                                   log likelihood =  2413.1593 
------------------------------------------------------------------------------ 

 M 

 M 
Iteration 16: 
------------------------------------------------------------------------------ 
Coefficient vector: 
  eq1(cons):   ARCH(L1):  GARCH(L1): GARCH(cons): 
y1  .0001779  .2112905  .5785378  .0000614 
                                                   log likelihood =  2425.0481 
Gradient vector (length = 902.6982): 
r1  -3.249362  -.1809387  -.2700238  -902.6923 
 
Step (length = .0001644): 
r1  -9.14e-07  -.0000634   .0001517  -6.91e-08 
 
b + step -> new b: 
y1   .000177  .2112272  .5786895  .0000613 
                                                   log likelihood =  2425.0481 
                                                           (initial step good) 
(1) Stepping forward (step length = .0000206) -> new b: 
y1  .0001769  .2112193  .5787085  .0000613 
                                                   log likelihood =  2425.0481 
 
(2) Stepping forward (step length = .0000411) -> new b: 
y1  .0001769  .2112193  .5787085  .0000613 
                                                   log likelihood =  2425.0481 
                                                          (ignoring last step) 
------------------------------------------------------------------------------ 
Iteration 17: 
------------------------------------------------------------------------------ 
Coefficient vector: 
  eq1(cons):   ARCH(L1):  GARCH(L1): GARCH(cons): 
y1  .0001769  .2112193  .5787085  .0000613 
                                                   log likelihood =  2425.0481 
Gradient vector (length = 54.24553): 
r1   .1479717  -.0106831  -.0170939  -54.24533 

 

 From table 1. it can be shown that procedure starts with calculating gradient vector with 
respect to initial parameter values given by ordinary least squares estimation. At each iteration the step 
size is reduced (stepping backward) or increased (stepping forward) in purpose to calculate "new b" 
for which the maximum of log-likelihood function is increased the most. Step size is reduced when the 



initial step is "bad", and it is increased when the initial step is "good". Procedure stops at last iteration 
when a convergence criterion is satisfied and the last step is "ignored". In above example if a relative 
change in maximum likelihood between two successive iterations is less than given tolerance (0.001) 
then a convergence criterion is met. 

 

Table 2: Summary of GARCH model estimation with significance testing (using OPG 
estimation of standard errors) and confidence intervals 

Log likelihood =  2425.048 
 
------------------------------------------------------------------------------ 
             |                 OPG 
plivaret     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------    
_cons        |   .0001769   .0005136     0.34   0.731    -.0008303    .0011828 
-------------+---------------------------------------------------------------      
arch         | 
          L1 |   .2112265   .0323101     6.54   0.000      .148418    .2750712 
garch        | 
          L1 |   .5786619   .1154509     5.01   0.000      .349861    .8024201 
cons         |   .0000613    .000031     1.98   0.048     1.10e-06    .0001228 
 

 

It table 2. estimation of parameters (according to BHHH algorithm) are presented as well as 
standard errors of the estimates and significance tests. These standard errors are obtained from 
covariance matrix which is equal to the inverse of the information matrix, approximated as outer 
product of gradient with respect to estimated parameters at the last iteration. From above results 
GARCH(1,1) model can be write down: 
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.    (31) 

Speaking statistically, all estimated parameters are significant at empirical p-value less then 
5%, except constant term in conditional expectation equation of returns. Also sum of parameters 

11 βα + , according to equation (31), indicate that there is persistence volatility, i.e. conditional 
variance decays slowly, still far from long-memory model. Also parameter 1α  detects high intensity 
reaction of volatility on past information. 

Because the sum of parameters 11 βα +  is less then unity (0.7899) the stationary condition of 
estimated model is satisfied. If stationary condition is satisfied unconditional long-term variance can 
be calculated: 

( ) 0003.0
1 11

02 =
+−

=
βα

α
σ .      (32) 

 From first equation in (31) it can be expected the average return of Pliva stocks of 0.02% with 
average deviation of 1.73% in long term according to (32). 

 

6. INSTEAD OF CONCLUSION 

 In theory the maximum of log-likelihood occurs when the gradient vector is zero. Namely, in 
practice the calculated gradient vector is never exactly zero, but can be very close. Therefore 

( ) k
1

k
T
k gHg −−  is often used to evaluate convergence. If inequality: 

( ) 0001.0gHg k
1

k
T
k <− −       (32) 



is satisfied, the iterative process stops and the parameters at current iteration are considered as 
estimates. However, small changes in parameter values, with small increases in log-likelihood 
function, from one iteration to the next iteration could be evidence that convergence has been 
achieved. Even so, small changes in kβ  and ( )kLln β  accompanied by a gradient vector that is not 
close to zero indicate that we are not effective in finding the maximum. 

 To investigate if local maximum is the global optimum we should use different starting values 
and observe whether convergence occurs at the same parameter values. Empirical research has showed 
that initial vector of parameters as null-vector is not appropriate. Therefore, an ordinary least squares 
estimates (OLS) are taken into account as initial values. 

 In table 3.-5. summary results of parameters estimation according to BHHH, BFGS and DFP 
algorithms, with different convergence criteria are presented. 

 

Table 3: Summary results of parameters estimation when a convergence criterion is satisfied if 
the relative change in maximum likelihood between two successive iterations is less than 0.001 

Parameter BHHH BFGS DFP 
μ  0.0001755 0.0001772 0.0001769 

0α  0.0000614 0.0000617 0.0000613 

1α  0.2112189 0.2133791 0.2112193 

1β  0.5786991 0.5772437 0.5787085 

Iter # 15 16 15 

Log-likelihood 2425.048 2425.048 2425.048 

 

Table 4: Summary results of parameters estimation when a convergence criterion is satisfied if 
the relative change in parameter values between two successive iterations is less than 0.0001 

Parameter BHHH BFGS DFP 
μ  0.0001769 0.0001772 0.0001762 

0α  0.0000613 0.0000617 0.0000620 

1α  0.2112193 0.2133791 0.2117446 

1β  0.5787085 0.5772437 0.5761406 

Iter # 15 16 18 

Log-likelihood 2425.048 2425.048 2425.048 

 

 

 

 

 



Table 5: Summary results of parameters estimation when a convergence criterion is satisfied if 
the gradient of log-likelihood function in current iteration is less than 0.0001 

Parameter BHHH BFGS DFP 
μ  0.0001769 0.0001769 0.000177 

0α  0.0000613 0.0000613 0.0000613 

1α  0.2112265 0.2112292 0.2112522 

1β  0.5786619 0.5786426 0.5785453 

Iter # 16 20 25 

Log-likelihood 2425.048 2425.048 2425.048 

 

First of all, from results in tables 3-5 it can be noticed that iterative optimization procedure 
does not have much influence on constant terms in both equations, respectively μ  and 0α , while the 
changes of parameters 1α  and 1β  differs between algorithms. Also, these differences disappear when 
a convergence criterion based on gradient approximately close to zero is used, in comparison to the 
other convergence criteria. When this convergence criterion is used, it can be perceive, that more 
iterations are needed. 

Namely, BHHH algorithm has approved to be faster according to number of iterations, with 
much stable parameter values according to different convergence criteria. Even so, convergence 
problem may arise, because the more parameters in the model are entered the "flatter" the log-
likelihood function becomes, and therefore the more difficult it is to maximize. 
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